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Abstract  By the last third of life, most mammals, 
including humans, exhibit a decline in immune cell 
numbers, immune organ structure, and immune 
defense of the organism, commonly known as immu-
nosenescence. This decline leads to clinical manifes-
tations of increased susceptibility to infections, par-
ticularly those caused by emerging and reemerging 
microorganisms, which can reach staggering levels—
infection with SARS-CoV-2 has been 270-fold more 
lethal to older adults over 80 years of age, compared 
to their 18–39-year-old counterparts. However, while 
this would be expected to be beneficial to situations 
where hyporeactivity of the immune system may be 
desirable, this is not always the case. Here, we discuss 

the cellular and molecular underpinnings of immu-
nosenescence as they pertain to outcomes of solid 
organ and hematopoietic transplantation.
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LECs	� Lymphatic endothelial cells
LNs	� Lymph nodes
Ly6C	� Lymphocyte-antigen 6
MHC	� Major histocompatibility complex
NK	� Natural killer
PAMP	� Pathogen-associated molecular pattern
PGD	� Primary graft dysfunction
pLNs	� Peripheral lymph nodes
PTA	� Peripheral tissue antigens
SLOs	� Secondary lymphoid organs
Tem	� T effector memory cells
Temra	� T effector memory cells expressing 

CD45RA
Tfh	� T follicular helper cells
Tfr	� T follicular regulatory cells
TGF-β	� Transforming growth factor β
Th	� T helper type
TLR	� Toll-like receptor
TN	� Naïve T cells
TNF	� Tumor necrosis factor
Tregs	� Regulatory T cells
Tvm	� Virtual memory T cells

Introduction

It is well established that the structure of molecules, 
cells, and tissues of the immune system, as well as their 
function in immune defense and organismal homeosta-
sis, undergo changes with aging [1]. Such changes are 
highly variable, affect individuals differently, and are 
commonly referred to as immune senescence. Their 
spectrum ranges from manifest qualitative immune 
response defects via temporal delays to imperfect coor-
dination of molecular and cellular responses. Some of 
these changes are primary in nature and are due to the 
process of aging, whereas others may be precipitated 
by other external stressors, and yet others could be 
compensatory and reactive to the primary age-related 
changes. With regard to the outcome for the host, clini-
cally, the most pronounced outcome involves increased 
vulnerability to acute microbial infections, particularly 
those caused by emerging and reemerging micro-
bial pathogens [2]. It is believed that the age-related 
increase in cancer incidence also in part derives from 
immune senescence because similar immune defects 
have been observed in response to tumor antigens 
[3]; however, the efficacy of cancer immunotherapies 
has not been proven to uniformly decline with age in 

all studies so far [4, 5], and in some cases, older ani-
mals can exhibit increased cancer resistance [6]. The 
relationship between immune aging and transplanta-
tion has been similarly more complex than expected. 
Clinically, despite reduced immune responses, dosing 
of immunosuppressive regimens needed to maintain 
transplant tolerance is not reduced in older adults [7], 
suggesting robust alloreactivity with aging. Below, we 
discuss immune aging in light of known defects and 
put this in the context of existing data as well as likely 
speculations on their relationship to transplant toler-
ance and rejection.

Innate immune cells

While much of the research in transplantation 
immunology has historically focused on the role of 
adaptive immune responses in the success, or failure, 
of transplant procedures, the wide array of cell types 
which comprise the innate arm of the immune response 
plays a critical role in graft survival via their pro- and 
anti-inflammatory activities. The major functions 
of the innate arm of the immune response are to (1) 
orchestrate the resolution of sterile injury, (2) act as the 
vanguard of immunity against pathogens, and (3) prime 
and calibrate the ensuing adaptive immune response. 
The key players in these activities include monocytes, 
macrophages, neutrophils, natural killer (NK) cells, 
NKT cells, and γδ T cells, all of which are affected 
by the process of aging. It is therefore important to 
consider how these defects in innate immune function 
can influence outcomes in transplantation.

In the context of solid organ transplantation, mono-
cytes and macrophages are the major cell types which 
infiltrate the allograft and surrounding tissues [8]. 
These populations of cells are critical in the resolution 
of sterile inflammation resulting from surgical trauma 
during the transplantation process and ischemia–rep-
erfusion injury (IRI) in a manner largely dependent 
upon damage-associated molecular pattern (DAMP) 
signaling (reviewed in [9]). With age, there is a gen-
eral decrease in the sensitivity of the pattern recogni-
tion receptors which recognize these DAMP ligands. 
For example, in both mice and man, the decreased 
activation potential of toll-like receptor (TLR) 4, 
which serves as a receptor for fibronectin, heat shock 
proteins, and DAMPs (as well as for microbial patho-
gen-associated molecular patterns, (PAMPs), such as 
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lipopolysaccharides), leads to decreases or delays in 
cytokine production and phagocytosis [10–12]. This 
age-linked dysregulation of cytokine production may 
in part underly diminished wound healing and delayed 
re-establishment of homeostasis in the surgical set-
ting. This is an especially important consideration 
when older grafts are utilized, due to their increased 
susceptibility to IRI [13]. Indeed, IRI has been shown 
to induce oxidative damage [14], and decreased abil-
ity of older cells to deal with this type of insult [15] is 
well documented. This is further potentially relevant 
when considering that cytomegalovirus (CMV) reacti-
vation readily occurs under IRI conditions due to oxi-
dative damage [16], which would be expected to have 
additional deleterious effects on transplant outcomes.

Moreover, upon tissue infiltration, monocytes can 
differentiate into Ly6Chi and Ly6Clo populations of 
macrophages. Experiments in mice have demonstrated 
that Ly6Chi macrophages can contribute to graft injury 
and rejection through pro-inflammatory cytokine pro-
duction and alloantigen presentation. Conversely, dif-
ferentiated DC-SIGN+ (Ly6Clo) macrophages can 
join tissue-resident populations and promote allograft 
tolerance through interleukin (IL)-10 signaling [17]. 
While it is known that aging skews macrophage dif-
ferentiation toward a pro-inflammatory and away from 
a reparative phenotype, how this impacts the outcome 
of transplantation with aging remains an understudied 
area [18].

Dendritic cells (DCs) are antigen-presenting cells 
(APCs) that capture and process antigens in tissues and 
present them to naïve T cells in secondary lymphoid 
organs, and thus, serve as a critical bridge between the 
innate and adaptive immune systems. In the setting of 
transplantation, DCs are responsible for stimulating (or, 
less commonly, tolerizing) alloreactive T cells via (1) 
presentation of intact donor major histocompatibility 
complex (MHC) molecules by donor DCs (direct 
allopresentation) or (2) recipient DC presentation of 
processed peptides from donor allogeneic proteins 
(including presentation of processed peptides from 
allo-MHC molecules themselves). The importance 
of DCs in both rejection and tolerance is thus self-
evident. In older individuals, DCs exhibit impaired 
antigen uptake reduced maturation and consequently 
reduced migratory capacity and costimulatory 
function [19, 20]. Experiments in old mice have 
demonstrated decreased expression of MHC-II, 
CD40L, and CD86 upon infection—molecules critical 

in priming T cell responses [21]. These changes may 
in part explain the increased proportion and activation 
of inducible regulatory T cells (Tregs) in older 
individuals, which are crucial in immune tolerance 
[22]. However, studies in older recipients have shown 
in bone-marrow transplants a surprisingly enhanced 
allostimulartory capacity by old host DCs, leading to 
increased activation of donor T cells and exacerbated 
inflammation and disease [23]. The precise basis for 
this observation has not been elucidated, thus further 
study is warranted to help develop targeted anti-
rejection therapies for older transplant recipients.

Lymphoid stromal cells and aging

Secondary lymphoid organs (SLOs) provide an 
optimal microenvironment for the induction of effector 
immune response during immunity, alloimmunity, and 
autoimmunity. Particularly, lymph nodes (LNs) serve 
a critical role in naïve T cell (TN) maintenance, but 
also are active sites to maintain peripheral tolerance 
by targeting auto-reactive T cells which have escaped 
central tolerance in the thymus (Fig.  1) [24]. The 
LNs are equipped with a wide variety of tolerizing 
mechanisms including generation of induced regulatory 
T cells (iTregs), inducing anergy or deletion of auto-
reactive T cells, and constraining T cell responses. 
The majority of such mechanisms are regulated by LN 
stromal cells. Stromal cells are non-hematopoietic cells 
that provide an intricate structural network for cellular 
compartmentalization, organization, and access to 
survival factors and tonic signals. They play a critical 
role in orchestrating the cellular interactions needed 
during various phases of the immune and tolerogenic 
responses [25]. Based on origin, phenotypic expression, 
and function, the LN stromal cells are subdivided 
into four major cell types, fibroblastic reticular cells 
(FRCs), lymphatic endothelial cells (LECs), blood-
endothelial cells (BECs), and double-negative cells, a 
heterogenous subset believed to contain precursors of 
other populations. Under the steady-state conditions, the 
LN stromal cells provide trophic and survival factors, 
including IL-7, IL-15, chemokine (C–C motif) ligand 
(CCL) 19, CCL21, B cell activating factor (BAFF), 
and chemokine (C-X-C motif) ligand (CXCL)13 to T 
cells and B cells and maintain lymphocyte homeostasis 
throughout the lifespan [26].



1386	 GeroScience (2023) 45:1383–1400

1 3
Vol:. (1234567890)

FRCs are myofibroblastic cells that comprise the 
majority of stromal cells in the SLOs, including the 
LNs. FRCs produce a meshwork of extracellular 
matrix (ECM) components that help in the genera-
tion and maintenance of three-dimensional conduits 
for rapid transport of antigens and soluble molecules 
within the SLOs. FRC processes form the “super-
highways” along which T, DC, and other cell types 
migrate to maximize contact and provide strength 
and flexibility for the expansion or contraction of 
SLOs during activation and resolution of immune 
responses. The deposition of ECM, survival (IL-7, 
IL-15, and BAFF), and migratory signals (CCL19, 
CCL21, and CXCL13) on the reticular network 
sheathing of the conduits facilitate APC-T cell inter-
actions, FRC-T/B cell cross-talk, and leukocyte 
migration [27, 28].

The BECs and LECs form the blood and lym-
phatic endovasculature, respectively, and help in 
antigen and leukocyte trafficking during immunosur-
veillance, immunity, and alloimmunity. They further 
provide important factors to maintain FRCs, although 
the exact spectrum of these interactions is still under 
investigation. High endothelial venule cells (HEVs) 
are highly specialized BECs that regulate the entry of 
circulating leukocytes, soluble antigens, and immuno-
logical mediators to the LN. The LECs are special-
ized endothelial cells that form lymphatic vessels 
throughout the body and drain tissues into the SLOs 
via afferent lymphatics, allowing rapid transport of 
soluble mediators, antigens, pathogens, and immune 
cells [29]. Several studies have suggested that the 
dynamic response of these stromal cells to immune 
activation and regulatory signals regulates effector 

Fig. 1   Potential role of lymph node stromal cell aging in trans-
plantation. A Structurally intact (1) FRC reticular network, (2) 
lymphatic vasculature, and HEV (not shown) in the adult LN 
support the homing and retention of tolerogenic DCs and Tregs 
[180, 181]. Such a lymph node near the allograft transplant 
in mice promotes the survival of grafted tissue by a variety of 
mechanisms that involve the induction of tolerance to the anti-
gens expressed in the grafted tissue 54. Further, (3) FRC-mediated 
diverse immunosuppressive pathways constrain effector T cell 
activation, proliferation, and differentiation leading to the gen-
eration of an environment favorable to support allograft survival 
44. B However, in old lymph nodes, numerical loss of LECs and 

structural deterioration of lymphatics and FRC networks [182] 
in focal areas in the paracortex (T-cell zones) and/or interfolli-
cular areas (T cell/B cell interphase) might negatively affect the 
mechanisms that support tolerogenic DCs and Tregs. Further, 
age-related fibrotic changes (excessive extracellular matrix depo-
sition along reticular network) in the old lymph nodes.32 might 
obscure the DCs’ and Tregs’ access to signals required to main-
tain their immunosuppressive function. However, whether FRCs 
retain their capacity to inhibit polyclonal effector T cell responses 
is not known, but age-related inflammatory changes in the lymph 
nodes are capable of influencing FRC function and needs system-
atic investigation. (Created with BioRender.com)
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immunity and tolerance [30, 31]. However, LNs and 
in particular stromal cells experience age-related dys-
regulation in their structure and function [32–35], 
which may affect the response in transplantation set-
tings, ultimately affecting the survival of grafted tis-
sue. Most notably, LECs decline numerically with 
aging, whereas FRC networks retract and disinte-
grate, sometimes unexpectedly early depending on 
the LN location and, likely, its exposure to environ-
mental microorganisms [36].

Role of stromal cells in immune tolerance 
and transplantation

Many studies have indicated that FRCs and LECs 
possess the immunoregulatory properties and play 
an important role in maintaining immune tolerance 
in the periphery, leveraging some overlapping and 
distinct mechanisms [37, 38]. It has been shown that 
peripheral LN FRCs and LECs express transcriptional 
activators of tissue antigens, such as deformed epider-
mal autoregulatory factor 1 [39], that allows them to 
express a wide variety of endogenous peripheral tis-
sue antigens (PTAs) to induce antigen-dependent tol-
erance [40, 41]. It remains to be determined if FRCs 
or LECs maintain their capacity to express PTAs and 
induce deletional tolerance or support tolerogenic 
DC and iTreg generation with aging. Although LECs 
lack the expression of functional MHC-II, it has been 
reported that LECs can capture antigen-loaded MHC-
II from DCs [42]. Similarly, FRCs are also known to 
acquire self-peptide-MHC II complexes from DCs 
that induce CD4+ T cell anergy or deletion [42]. 
Moreover, LECs archive antigens from the lymph 
flow and transfer them to DCs during steady-state 
conditions, as well as during infection and inflamma-
tion [43], thereby facilitating clonal deletion, anergy, 
or activation of T cells depending on the inflamma-
tory context. It is currently unknown whether these 
functions of LEC are affected by aging, although 
the fact that LEC themselves are drastically reduced 
with aging [32] suggests that this function would be 
expected to be impaired.

FRCs induce antigen-independent suppression of 
T cell responses via different mechanisms, including 
nitric oxide, indoleamine-2,3-dioxygenase, adeno-
sine 2A receptor, prostaglandin E2, and transforming 
growth factor (TGF)-β receptor pathways [44]. Other 

mechanisms include the generation of tolerogenic 
DCs, induction and migration of Tregs, expression of 
low levels of co-stimulatory molecules to induce T cell 
anergy, and expression of higher levels of co-inhibi-
tory molecules, such as programmed death-ligand 1 
(PD-L1) [44, 45]. LECs also support the maintenance 
of iTregs in the LN, and their ability to express PTAs 
allows the generation of antigen-specific iTregs, thus 
facilitating indirect antigen-specific tolerance in the 
LN [46]. Moreover, LECs in the afferent lymphatics 
support the migration of Tregs from tissue to the LN, 
which has been found to be a critically important step 
in the survival of allograft [47]. Further, it has been 
reported that HEVs induce the apoptosis of FasL-
expressing lymphocytes thereby contributing to the 
maintenance of peripheral tolerance [48]. HEVs also 
support the entry of APCs such as DCs, which cap-
tured the antigen from the allograft. Through elevated 
expression of CCL19/21, DCs enter the host LN, 
facilitate the generation or maintenance of tolerance to 
alloantigens, and support the survival of the allograft. 
The CCL19/21 gradient-mediated entry of tolero-
genic APCs to the donor LN seems a critical step, as 
a tolerance-inducing regimen with anti-CD40L did 
not induce tolerance in C–C motif chemokine recep-
tor (CCR) 7−/− mice [49]. The expression of different 
laminin isoforms on the reticular network has been 
shown to support immunity versus tolerance in a con-
textual manner by modulating CD4+ T cell differen-
tiation. Laminin 411 inhibits the differentiation of 
effector T helper type (Th) 1, Th2, and Th17 cells but 
supports the differentiation of iTregs, while laminin 
511 acts in an opposite manner [50, 51]. Recently, it 
has been shown that expression of laminin ∝ 4 in FRCs 
is critical in maintaining a tolerogenic niche in murine 
lymph nodes and its deficiency leads to the genera-
tion of hyper-active effector alloreactive T cells and 
humoral responses and reduced Tregs, resulting in the 
failure of tolerance and ultimately the rejection of car-
diac and lung transplant in the mice [52]. Collectively, 
the evidence suggests that LN stromal cells participate 
in the maintenance of immune tolerance in the periph-
ery and may play a decisive role in graft survival or 
rejection.

Recently, the allogeneic donor-specific splenocyte 
transfusion plus anti-CD40L mAb has been 
successfully used as a regimen to improve allograft 
survival, and a part of its mechanism may be via 
modulation of FRC-T cell interaction. The FRC-T 
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cell interaction via CD40L-CD40 signaling has been 
shown to induce alloimmune responses and blockade 
of this pathway using anti-CD40L mAbs significantly 
improved cardiac transplant survival in mice [51, 53]. 
The reticular network of FRCs supports the migration 
of Tregs in the LN, and perturbations of this reticular 
structure have been shown to adversely affect Treg 
trafficking and facilitate the rejection of allogeneic 
cardiac transplant in mice [54]. Similar disruption in 
the reticular network and cellular organization has 
been described in the aged LN [33, 35, 55], which 
may be sufficient to disturb the trafficking of iTregs 
into and within the aged LN and has the potential to 
adversely influence allograft survival. In support of 
this, an experimental perturbation of FRCs and HEV 
networks has recently shown a negative affect the 
survival of allografts [47, 54, 56]. The exact spectrum 
of age-related changes in the above features of stromal 
cells remains to be established but may have profound 
implications for the outcome of transplantation.

Stromal cells in graft‑versus‑host disease

Evidence suggests that LN stromal cells, including 
FRCs and HEVs, are involved in graft-versus-host 
disease (GVHD) induced by allogeneic transplant. 
In murine allogeneic stem cell transplant models, 
transplanted stem cells have been shown to mount 
a response against recipient LN FRC structure, 
affecting the reticular network and HEV structure via 
Fas-FasL signaling, resulting in the immunological 
scarring of the recipient LN [57]. The FRCs also 
contribute to GVHD through activating delta-like 
ligands (Dll)-1 and Dll4-mediated Notch signaling 
in alloreactive T cells. Deleting these Notch ligands 
selectively in FRCs and follicular DCs has been 
shown to control GVHD [58]. Allogeneic donor 
graft-derived mast cells have been shown to target 
host FRCs in the nearest LN. The donor mast 
cells induce FRC expression of herpes virus entry 
mediator (HVEM), and stimulation of FRCs by 
the HVEM-LIGHT axis forced FRCs to acquire a 
senescence-like phenotype (as marked by expression 
of the p16INK4a, p21, Trp53, and p57KIP2 genes), 
secrete increased levels of collagen I, and made 
the LN fibrotic long after allograft rejection [59]. 
Countering these issues with transplantation of 

ex  vivo expanded FRCs mitigated fibrosis in the 
LN and improved the ability of anti-CD40L to 
increase the survival of allogeneic cardiac transplant 
[59]. Therefore, therapeutically targeting the non-
hematopoietic cells of the SLOs, especially in aged 
recipients is a viable avenue of investigation to 
increase transplantation success.

Possible effect of age‑related changes 
on tolerogenic function of LN stromal cells

Recent studies from us and others have suggested that 
age-related changes affect the LN reticular structure, 
alter the T and B cell localization, and perturb the 
overall architecture and organization of SLOs, leading 
to poor antibody and T cell responses to infection and 
vaccination [32, 55, 60, 61]. Reduced priming of T 
cells is a characteristic of old DCs, limiting the ability 
of old T cells to mount an appropriate response to 
foreign antigens and alloantigens [12]. Aged peripheral 
lymph nodes (pLNs) show signs of fibrosis [32], and 
T cells in the proximity of accumulated collagen slow 
their migration within the LN [35]. Aged LNs also 
fail to support the homeostatic proliferation of TN 33. 
A recent report has shown that homeostatic aging of 
the mouse spleen is characterized by the erosion of the 
podoplanin + networks, corresponding to a reduction 
in T cell zone FRC numbers 55. Interestingly, it has 
been recently shown that aged pLNs lose their ability 
to undergo remodeling and expansion in response 
to viral infections such as West Nile virus and 
Chikungunya virus [34, 61]. In response to infection, 
aged FRCs respond poorly, exhibit delayed and 
slower proliferation, and fail to optimally stretch and 
elongate, resulting in poor expansion of the LN and a 
weak immune response [62]. Such age-related defects 
at the level of LN stromal cells may have the ability 
to influence the tolerance to alloantigens and grafts. 
Nonetheless, quantitative and direct studies are needed 
to address the exact role of aged stromal cells and the 
mechanisms involved in the transplantation setting 
where either donor, recipient, or both are experiencing 
age-related changes. This is particularly necessary 
to incisively dissect the relative contributions of 
decreased induction of T cell priming as opposed to 
reduced induction of transplant tolerance.



1389GeroScience (2023) 45:1383–1400	

1 3
Vol.: (0123456789)

T cell aging and transplantation

The function of T cells as the cellular immunity 
mediators of the adaptive arm of the immune system 
depends on the structural and functional integrity of 
the lymphoid organs. Following positive and nega-
tive selection in the thymus, TN cells migrate to the 
SLOs where they are activated by their first encoun-
ter with antigen. T cells then proliferate and differen-
tiate into several types of effector T cells: cytotoxic 
T cells (which kill cells infected with intracellular 
pathogens), helper T cells (which provide signals to 
support the functions of other cells like macrophages 
and B cells), and Tregs (which help dampen immune 
responses). In addition to affecting the extrinsic fac-
tors that T cells depend on for optimal function and 
survival, aging affects intrinsic T cell functions in 
several ways. Age-related thymic involution is the 
earliest dramatic change in our immune system, 
resulting in a 90% drop in TN output by the time of 
late puberty [63] and another drop of 90% between 
the ages of 40 and 50 in humans [64].

Lymph node atrophy (as described above) contrib-
utes to T cell defects over time. Overall, aging in the 
T cell compartment is characterized by reduced num-
bers and increased turnover of TN [64], an increasing 
proportion of TN cells converting to virtual memory 
T cells (Tvm) [65], reduced proliferation of Tvm 
[66], and reduced TCR repertoire [64, 67]. While 
there is an unquestionable and reproducible impaired 
response to new pathogens with aging, that includes 
reduced numbers and frequencies of responding T 
cells, as well as the reduced magnitude and polyfunc-
tionality of effector T cell responses [68, 69], it is less 
clear which of the features of T cell aging directly 
contribute to impaired immunity. It is now likely that 
initial innate sensing of microbial infection [70–73] 
as well as defective SLO environments [34, 36, 61] 
may be exceptionally important. This is further high-
lighted by our data showing that on a cell-by-cell 
basis, old Tn cells are at least equivalent to adult Tn 
cells in responding to L. monocytogenes when adop-
tively transferred into young recipients, whereas adult 
Tn cells cannot respond well in the old environment 
[74]. It is therefore most likely that the main problem 
with Tn cells in old age lies in their numerical loss (so 
that only ~ 25–33% remain), a defect that can be cor-
rected by transfers of antigen-specific T cell precur-
sors [75]. By contrast, memory responses produced 

in youth and young adulthood appear to be well pre-
served during aging [69, 76].

All of this, then, needs to be reconciled with the 
clinical observations and protocols suggesting that 
in aging, transplant rejection occurs as vigorously 
(if not more vigorously) as it does in younger organ-
isms. There are several changes in the older immune 
system that would heighten the likelihood of stronger 
alloreactivity. First, several lines of the investigation 
show that with aging, the T cell repertoire undergoes 
peripheral selection so that CD8+ Tvm, which arise 
from TN due to competition for trophic factors in the 
lymph nodes, exhibit both stronger affinity towards 
self-MHC [65] and a propensity to make cytokines 
rapidly after stimulation (i.e., appeared partially 
primed) [66], whereas CD4+ T cells exhibit broader 
crossreactivity [77]. Second, 70–95% of older indi-
viduals are infected with cytomegalovirus (CMV), 
which leads to a life-long absolute expansion of fully 
differentiated and highly cytotoxic T effector memory 
(Tem) and T effector memory re-expressing CD45RA 
(Temra) cells [78]. Tem and Temra cells likely keep 
their alloreactive potential and are poised for rapid 
allograft destruction. Third, deterioration of lymph 
node structure, and with it the erosion of the LN stro-
mal cell tolerogenic function (see above), also likely 
potentiates the propensity for strong alloreactivity.

A major complication of bone marrow transplan-
tation is T cell-mediated graft GVHD. An especially 
devastating consequence of GVHD is the damage 
done to the GI tract, which naturally harbors and 
abundance of T cells that can be both protective and 
pathogenic. Although immune-mediated damage as a 
result of GVHD has long been observed [79], recent 
mouse studies have revealed the crypt base stem cell 
compartment to be the primary target of infiltrating 
donor T cells [80]. It has been found that the extent of 
antigenic disparity directly correlates with the num-
ber of T cells that infiltrate the intestinal tissue, and 
T cell infiltration increases over time, but the stem 
cell compartment always remains the primary target 
[80]. This finding points to the necessity for targeted 
therapeutics for the treatment of GVHD, perhaps in 
addition to general immunosuppressive treatments 
to ensure the success of the graft. The known age-
related dysregulations in T cell biology, discussed 
at the end of the previous paragraph, should stimu-
late specific studies to address the roles of each of 
the changes in GVHD, with the goal to modulate 
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immunosuppressive therapies based on the immuno-
biology of the older recipient.

A major goal in the field of transplantation is to 
effectively target Tregs to modulate T-cell-mediated 
and antibody-mediated graft rejection [81]. Tregs 
dampen immune responses by producing IL-10 [82, 
83], modulating the amount of available IL-2 [84], 
and even by inducing apoptosis in effector T cells 
[85, 86]. Trials of Treg therapies in solid organ trans-
plants have only recently begun; thus, no long-term 
data exists on its efficacy or safety [87, 88]. However, 
there are aspects of Treg biology that will need to be 
considered in future trials. The first is bystander sup-
pression, where Tregs suppress responses in a non-
antigen-specific manner following Treg activation. 
This phenomenon has already been demonstrated 
in mice [89]. The second is Treg plasticity and their 
ability to take on Th-17 effector functions, which may 
contribute to graft rejection. Conflicting murine data 
exist on whether conversion to a Th-17-like pheno-
type and function can be prevented in humans [90, 
91]. In short, Treg therapy has the potential to trans-
form post-transplant patient care so long as specificity 
for regulating the immune responses within the graft 
can be achieved without further suppressing immune 
responses against malignancies or infections.

Aging of B cells

The quality and quantity of newly generated B cells 
in the bone marrow are impacted by age. While the 
mechanisms responsible remain to be fully charac-
terized, cell intrinsic and microenvironment changes 
have been described with aging in mice. Myeloid-
biased hemopoietic stem cells accumulate with age 
in the bone marrow of both mice and humans, pro-
moting the age-related decline in B lymphopoie-
sis [92]. In the bone marrow of old mice, there is a 
lower frequency of common lymphoid progenitors 
and reduced numbers of pro-B, pre-B, and imma-
ture B cell subsets when compared to young mice 
[93, 94]. Bone marrow stromal cells regulate B lym-
phopoiesis by controlling access to essential growth 
factors such as IL-7 to progenitor cells. In the aging 
microenvironment, studies have shown that stromal 
cells are impaired in IL-7 secretion, with a conse-
quent decrease in pre-B cell numbers [95]. Addition-
ally, alterations in the aged microenvironment are 

responsible for less efficient V(D)J recombination in 
pro-B cells due to reduced rag2 gene expression 96. 
Evidence also exists that key B cell maintenance fac-
tors, including BAFF/APRIL/BLyS, are also altered 
with aging [97]. Therefore, reduced B cell generation 
and maintenance lead to reduced naïve B (and some-
times total B) cell numbers with aging. Cell-intrinsic 
factors also contribute to the age-related deficit in B 
cell generation. Studies show that old common lym-
phoid progenitor cells express less of the transcription 
factor, EBF, necessary for B cell commitment and dif-
ferentiation [98]. Moreover, mature B cells from old 
mice express less of the transcription factor, PAX5, 
required for the maintenance of B cell fate [99].

Humoral immune responses are also impaired in 
old mice and humans. It is well established that anti-
bodies produced by aged individuals provide less 
protection against bacterial and viral infections when 
compared to their young adult counterparts. The abil-
ity of B cells to undergo class switch recombination 
(CSR) and switch immunoglobulin classes is vital 
for an effective and appropriate antibody response. 
Splenic B cells isolated from old mice undergo lim-
ited CSR, produce fewer class-switched antibodies, 
and express less of the E2A-encoded transcription 
factor E47 [100]. E47 induces activation-induced 
cytidine deaminase (AID) which is essential for CSR 
and somatic hypermutation. Therefore, under-induc-
tion of AID leads to antibodies of inferior quality 
in aged mice. There is evidence that the age-related 
decline of E47 expression in activated B cells is due 
to the downregulation of the p38 MAPK signal trans-
duction cascade resulting in elevated degradation of 
E47 mRNA [101, 102].

The germinal center (GC) reaction is critical for 
the secretion of high-affinity antibodies. Within the 
GC, antigen-specific B cells receive crucial signals 
from CD4+ Th cells. CD4+ T cells undergo differen-
tiation into various functional subsets, including Th1, 
Th2, Th9, Th17, T follicular helper (Tfh), T follicular 
regulatory (Tfr), and Tregs which allow the immune 
response to be tailored to the specific threat encoun-
tered. Of these, Tfh cells are essential to the GC reac-
tion; these cells localize to B cell follicles and GCs to 
provide help to B cells for the efficient production of 
antibodies [103]. In old mice, there is a defect in the 
differentiation of CD4+ T cells into Tfh cells which 
results in fewer GCs [104]. Additionally, reduced 
levels of CXCL13, a chemokine important for Tfh 
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cell trafficking to the B cell follicle, leads to reduced 
recruitment of T cells to GCs and impaired B cell help 
provided by T cells during aged immune responses 
[105]. Tfr cells have an opposing effect on humoral 
responses by limiting available T cell help and GC 
formation [106]. The ratio of Tfr and Tfh cells deter-
mines the robustness of the antibody response [104]. 
Increases in Tfh and Tfr cells are observed in aged 
mice but there is a greater proportion of Tfr cells, 
which may contribute to the suppression of the B 
cell response with aging [107]. Importantly, the sup-
pressive capacity of Tfr cells is not different between 
young and adult animals, suggesting that the ratio of 
Tfh and Tfr, and not the quality of suppression, plays 
a key role in determining the magnitude of the anti-
body response [107]. Evidence suggests that elevated 
TGF-β in the aged environment induces expression of 
FOXP3 in Tfh cells, driving their differentiation and 
contributing to impaired humoral responses in aged 
mice [108].

With all the above changes leading to dysregu-
lation and general reduction of antigen-specific 
humoral immune responses, there are also changes in 
B cells that may favor hyper-reactivity and increased 
inflammation, with the potential to maintain or 
enhance allograft rejection. Specifically, age-associ-
ated B cells (ABCs), that accumulate with aging in 
both mice and humans [109], react to innate recep-
tor ligands and secrete large amounts of cytokines to 
promote inflammatory responses. Thus, it comes as 
no surprise that B cells are gaining increasing recog-
nition for their complex effects on the outcomes of 
transplantation in aged individuals [110].

Aging B cells and transplantation

In the context of transplantation, acute and chronic 
rejection can be mediated by alloreactive antibodies 
produced by B cells. HLA incompatibility between 
donors and recipients is a major cause of solid organ 
rejection mostly due to antibody-mediated rejection 
(ABMR) in which antibodies against donor HLA 
molecules and other non-HLA donor antigens attack 
allografts and impair their survival. Donor-specific 
HLA antibodies can be present before transplantation 
or de novo donor-specific HLA antibodies (dnDSA) 
can appear late posttransplantation often due to insuf-
ficient immunosuppression [111, 112]. A study by 

Moos et al. found that the risk of developing dnDSA 
is lower in older adult recipients when compared 
to pediatric recipients [113]. This finding may be 
explained by the impaired ability of aged adults to 
generate effective humoral responses against novel 
antigens; however, the mechanism responsible for this 
observation has yet to be established.

In humans, anti-CD20 monoclonal antibody treat-
ments such as Rituximab are used to deplete B cells 
to improve graft survival in HLA antibody incom-
patible transplantation [114]. However, there are few 
studies that describe how B cell depletion affects 
transplantation in the context of aging. A study by 
Mori et al. demonstrated that B cell depletion in mice 
undergoing skin transplantation has disparate effects 
on allograft survival depending on the age of the 
recipient mouse [115]. Using a skin allograft model, 
B cell depletion resulted in the rapid rejection of 
the transplant in young mice. In contrast, aged mice 
treated with anti-CD20 had a 7-day delay in allograft 
rejection. This difference was attributed to ABCs 
and the adoptive transfer of ABCs into young mice 
reduced the skin allograft survival rate [115]. While 
the specific role of ABCs in human allograft reaction 
has yet to be directly addressed, it is tempting to spec-
ulate that they could have adverse effects on allograft 
survival.

Age‑related changes in systemic cytokine/
chemokine environment

Many studies reported that with aging, there is a sub-
tle but significant increase in blood levels of inflam-
matory markers, including IL-6, TNF-α, C-reactive 
protein, IL-8, IL-18, IL1ra, macrophage inflammatory 
protein (MIP)-1b, and soluble TNF receptor (sTNFR) 
I and II [116–119]. The increase of those factors in 
blood can be interpreted as the existence of chronic, 
systemic, low-grade inflammation, which has been 
associated with many age-related diseases, includ-
ing frailty and sarcopenia [119–124]. The effect of 
the age-related increase in inflammation is a problem 
from the standpoint of solid organ transplantation. 
Because of this increased proinflammatory status, 
older organs can exhibit more pronounced immu-
nogenicity, may respond suboptimally to stress, and 
may repair less well than younger organs following 
transplantation [110, 125–127]. The inflammatory 
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response in transplantation plays an important role 
in the allograft loss or dysfunction [128, 129]. It 
is reported that TNF-α, IL-6, IL-8, and IL-10 are 
expressed and released in circulation in the case of 
primary graft dysfunction (PGD) [130], and TNF-α 
and CCL2 have both been strongly associated with 
PGD development in lung transplant recipients [131]. 
Furthermore, pro-inflammatory cytokines IL-1, IL-6, 
and TNF-α are all upregulated in chronic lung allo-
graft dysfunction (CLAD) [132, 133]. Many of those 
inflammatory factors are regulated by the TLR4-
MyD88 pathway, and the upregulation of the MyD88 
gene or TLR4 mRNA was reported to be associated 
with cell-mediated rejection [134] or kidney graft 
rejection [135].

Proinflammatory cytokines and chemokines, how-
ever, are not the only ones dysregulated and overse-
creted with aging, and there is, unfortunately, an over-
simplified tendency by many authors to describe the 
dysregulation of soluble mediators only in proinflam-
matory terms (often using the popular but misleading 
term “inflammaging”). Indeed, age-related dysregula-
tion in soluble immune and inflammatory mediators 
affects equally strongly the mediators involved in the 
wound healing response, that are usually considered 
anti-inflammatory, most notably TGFβ and its family 
members, as well as other profibrotic mediators such 
as type 2 cytokines IL-4, 13 and others 1. TGFβ is 
overproduced by older organisms in many infections, 
including those with intracellular parasites [136, 
137], alphaviruses 61 and flaviviruses (J.L. Uhrlaub, 
personal communication), although the basis of this 
overproduction has not been established. It will be of 
interest to evaluate to what extent this response can 
lead to scarring and fibrosis of transplanted organs.

The presence of cells carrying signs of cellu-
lar senescence has recently been documented in an 
increasing number of tissues, and their removal has 
been shown to improve the function of some tissues 
under certain disease conditions as well as in chrono-
logical aging [138]. With regard to transplantation, it 
has been shown that cells accumulated in the organs 
from older donors increase immunogenicity and ele-
vate the risk of the rejection [139]. Many, but not all, 
of those senescent cells are characterized by a senes-
cent-associated secretory phenotype (SASP), which is 
characterized by high expression of pro-inflammatory 
cytokines and chemokines such as IL-6, IL-8, TNF-α, 
and CCL2 [140]. The SASP can contribute to tissue 

dysfunction, development of chronic diseases, accel-
erated aging-like state, and impairing tissue homeo-
stasis [138]. The removal of senescence cells has 
been shown to be effective to ameliorate age-related 
tissue dysfunctions in old mice [141–145]. Iske 
et al. found that senescent cell accumulation is a key 
source of cell-free mitochondrial DNA, which drives 
alloimmune responses to organs from older donors 
[146]. Therefore, the use of senolytics may repre-
sent a promising avenue to improve the outcome of 
older organ transplantation and prevent the spread of 
senescence.

Solid organ transplantation in older adults

Solid organ transplant is the most effective therapy 
for end-stage organ failure, even in older individu-
als. The number of people over 65  years of age 
receiving transplants is rising and so is the num-
ber of older adults on a waitlist to receive the organ 
transplant. However, our limited understanding of 
age-related changes, and their direct and indirect 
effects on donor organs and recipients, hinders the 
development of consensus protocols for solid organ 
transplantation in older adults (Table  1). Increased 
age of the donor organ negatively influences the 
longevity and outcome of transplantation, as it 
affects the organ’s homeostasis, inflammatory sta-
tus, antigenicity, metabolic and bioenergetic activi-
ties, reparative capacity, and ability to handle a 
wide variety of stress and malignancies [147]. The 
kidney (> 55 yrs.) [148], heart (> 50 yrs.) [149], 
and lungs (> 60 yrs.) [150] from old donors have 
lower longevity compared to those from young 
adult donors, and this might be due to diminished 
functionality such as decreased glomerular num-
ber and function, chronotropic incompetence, and 
diminished airway epithelial function, as well as to 
the above inflammatory, wound healing/reparative, 
and immunogenic differences. The CMV seroposi-
tive status of the donor also affects the quality of 
the donor organ, as persistent CMV infection may 
be associated with some features of immunosenes-
cence [151]. Further, IRI-related innate immune 
activation in the donor organ can contribute to 
faster allograft rejection [152]. It has been shown 
that aging compromises innate immunity and also 
induces chronic low-grade dysregulation of soluble 



1393GeroScience (2023) 45:1383–1400	

1 3
Vol.: (0123456789)

mediators (elevated serum IL-6 and TNF-α) [153], 
elevated TGFβ following infection [61, 137]. In 
such a situation, aberrant innate immune activation 
in the donor organ itself can alter intrinsic repair 
mechanisms and induce the recipient’s immune 
effectors, fueling the alloimmune responses. Older 
organs transplanted into older recipients show 
lower rejection than those in younger recipients 
[154], suggesting that age-matching in addition to 
immunological matching can help achieve realistic 
goals in transplant settings. Supporting this notion, 
transplantation of older (18  months) or younger 
(2.5–3  months) murine cardiac allograft into 
younger recipient mice showed that older hearts are 
rejected more rapidly than younger hearts, and aged 
DCs played a decisive role in mediating recipient’s 
alloimmune response, as depletion of DCs prior to 
transplantation resulted in comparable survival of 
old and young donor hearts [125]. Such findings 
highlight that age-related alterations in the innate 
immune compartments of the donor organ may 
determine transplant outcome. In that context, tar-
geting innate mechanisms in older organs may rep-
resent a logical avenue to help alleviate some of the 
negative effects of donor organ age on the outcome 
of a transplant, as well as to broaden the pool of 
donor organs available for transplantation. Along 
these lines, transplantation studies in transgenic 
mice that lack the components of innate signaling 
such as TLR2, TLR4, and MyD88, have shown ben-
eficial effects by delaying both acute and chronic 
allograft rejection [155, 156].

Adjustment of immunosuppressive treatment 
in older adults

Since the pharmacokinetics and pharmacodynam-
ics change with age, the administration of immuno-
suppressive drugs needs to be adjusted for age [157, 
158]. Jacobson et  al. analyzed calcineurin inhibitor 
(CNI) troughs in different age groups for 6  months 
following kidney transplant and showed that despite 
lower drug doses, the aged group (65–84  years old) 
showed higher troughs than younger groups [159].

The topmost adverse transplant outcome in older 
adults is death with a functioning graft [160, 161], 
and the most frequent cause of death more than 
5  years after transplantation is an infection due to 
immunosuppression [162–166]. Since it has become 
widely accepted that older transplant recipients may 
encounter less acute rejection episodes after trans-
plantation as compared to younger recipients due to 
immunosenescence [167–169], the application of a 
moderate immune suppression treatment strategy for 
the elderly seems to be reasonable. A rationale for 
age-adjusted immunosuppression in organ transplant 
is also reviewed by Krenzien et al. in 2015 [7]. How-
ever, many attempts to use lower immunosuppressive 
drug doses or withdrawal of drugs with high toxicity 
in kidney transplant patients result in a higher rejec-
tion rate [170–175]. These studies did not specifi-
cally target older adults, but included patients older 
than 65, and no age-associated benefit was found in 
those trials. A literature review of lowering or with-
drawing immunosuppressive drugs in older kidney 

Table 1   Age-related changes in immune responses that may change transplant outcome

Cellular compartment Transplant type

Solid organ Bone marrow

T cells - Bystander suppression by accumulated Tregs
-Reduced frequency of T cell-mediated rejection

-Increased bias away from lymphocytes in older 
donors

-Delayed reconstitution of the T cell compartment
B cells -Accumulation of age-associated B cells (ABCs)

-Lower risk of acute organ rejection as compared to 
pediatric recipients

-Lower risk of developing de novo donor-specific 
HLA antibodies

-Reduced B cell progenitors in aged mice and humans

Innate immune cells -Bias towards differentiation of infiltrating mac-
rophages and monocytes towards proinflammatory 
phenotypes

-Decreased DAMP recognition by PRRs, leading to 
faulty wound healing and IRI repair

-Defective direct allopresentation by donor DCs, 
possibly leading to decreased alloreactive T cell 
tolerization



1394	 GeroScience (2023) 45:1383–1400

1 3
Vol:. (1234567890)

transplant patients by Swinski et  al. concluded that 
the current data do not support definitive conclu-
sions, but that there may be a possible benefit from 
lowering doses or withdrawing of CNI in low-risk 
populations [176]. Withdrawal or minimization of 
immunosuppressive drugs at late time points after 
liver transplant have been more promising, but they 
also require selection of low-risk patients and close 
monitoring to be successful [177, 178]. Those stud-
ies showed that fine adjustments will be required to 
find a balance between sufficient immunosuppression 
for successful allograft survival and maintenance of 
sufficient immune function to fend off infections or 
malignancies in older populations. We suggest that 
high-resolution immune profiling may be of use in 
these situations to dissect likely correlations and to 
appropriately monitor the immune system’s reactivity 
in the face of titrated immunosuppression.

Conclusion

Overall, aging abounds in changes to both the innate 
and adaptive immunity, to systemic cytokine and 
chemokine milieu, and encompasses alterations in 
immune cells, stromal cells, and the ECM. With 
regard to immunity to new infection, the net outcome 
is often manifested as lower immune reactivity and 
impaired immune defense, although these changes, 
like most of aging, exhibit great individual variability.

The situation is not quite as simple when it comes to 
the transplant setting, and the simple expectation that 
lowered immune reactivity would translate to better 
transplant acceptance is often incorrect. Despite the 
reduced efficacy of primary immune responses to new 
antigens, alloreactivity remains an exceedingly strong 
force that is built into the very nature of T and B cell 
receptor recognition. Therefore, while, for example, 
precursor frequencies of T cells specific for viral antigens 
drop by 60–80% in a mouse with aging [65, 179], and 
in absolute numbers down to 30–200 cells, alloreactive 
cell numbers remain in tens if not hundreds of thousands 
despite some numerical reduction. Moreover, increased 
inflammation, and reduced tolerogenicity of certain 
microenvironments (e.g., lymph node stroma), further 
play into allograft rejection.

Finally, older organs themselves tend to invite 
higher rejection rates, due to innate and inflammatory 

activation, with senescent cells being a potential cul-
prit. Modulation of these processes by senolytics and 
by innate cell manipulations/depletions may expand 
the age of donor organs available to those in dire need 
of transplantation.
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