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Abstract
The Federal Emergency Management Agency (FEMA) divides the United States (US) into 
ten standard regions to promote local partnerships and priorities. These divisions, while 
longstanding, do not adequately address known hazard risk as reflected in past federal 
disaster declarations. From FEMA’s inception in 1979 until 2020, the OpenFEMA data-
set reports 4127 natural disaster incidents declared by 53 distinct state-level jurisdictions, 
listed by disaster location, type, and year. An unsupervised spectral clustering (SC) algo-
rithm was applied to group these jurisdictions into regions based on affinity scores assigned 
to each pair of jurisdictions accounting for both geographic proximity and historical disas-
ter exposures. Reassigning jurisdictions to ten regions using the proposed SC algorithm 
resulted in an adjusted Rand index (ARI) of 0.43 when compared with the existing FEMA 
regional structure, indicating little similarity between the current FEMA regions and the 
clustering results. Reassigning instead into six regions substantially improved cluster qual-
ity with a maximized silhouette score of 0.42, compared to a score of 0.34 for ten regions. 
In clustering US jurisdictions not only by geographic proximity but also by the myriad 
hazards faced in relation to one another, this study demonstrates a novel method for FEMA 
regional allocation and design that may ultimately improve FEMA disaster specialization 
and response.

Keywords  Federal Emergency Management Agency · Spectral clustering · Emergency 
management · Disaster exposure · Disaster management · Data analytics

1  Introduction

Global trends in urbanization and climate change have elevated the need for more devel-
oped disaster response systems at the national level (Garschagen and Romero-Lankao 
2013; Hallegatte et  al. 2013; Zhang et  al. 2018). China established its Ministry of 
Emergency Management to coordinate disparate efforts in 2018 (Hou et al. 2019; New 
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Authority Focuses on Emergency Response, 2018), and, since 2005, India has relied on 
its own National Disaster Management Authority for “timely and effective response to 
disaster” including twelve pre-positioned battalions based on anticipated deployment 
need (National Disaster Response Force, n.d.). Meanwhile, the European Union Civil 
Protection Mechanism is supported by a pool of response capacities “acting jointly in 
a spirit of solidarity” to respond swiftly against threats facing member states (Official 
Journal of the European Union, 2014).

While the United States (US) is well recognized for its bountiful resources and 
degree of economic and technological development, it has also experienced myriad 
catastrophes of breadth and scale. From historical disasters such as the 1900 Galves-
ton hurricane (McElreath et al. 2017), the 1906 San Francisco earthquake (The Califor-
nian Earthquake of 1906, 1909), and the great Mississippi flood of 1927 (Bhowmik and 
Demissie 1994), to modern events including the 2011 Joplin, Missouri tornado (Hou-
ston et al. 2015), the 2017 Hurricane Maria that devastated Puerto Rico (Zorrilla 2017), 
and the 2018 California wildfires (Syphard and Keeley 2019), no region is exempt. All 
five of the main Köppen–Geiger classification climate types are found within the US 
(Peel et  al. 2007), with disasters ranging from earthquakes to forest fires experienced 
from coast to coast (East vs West Coast Earthquakes, 2018; Bugaboo Fire Rages in 
Georgia and Florida, 2007). And yet, despite this apparent ubiquity of risk, regional 
exposures and local vulnerabilities vary immensely by geography.

Established in 1979, the Federal Emergency Management Agency (FEMA) is a US 
governmental organization tasked with coordinating federal resources in response to 
disasters that exceed local capabilities (Executive Order 12148, 1979). The 1988 Rob-
ert T. Stafford Disaster Relief and Emergency Assistance Act gave FEMA responsibil-
ity for leading national relief efforts in response to presidential disaster declarations  
(Robert 1988), and the newly established Department of Homeland Security subsumed 
the agency in 2003. A state governor, for example, may through the state’s correspond-
ing FEMA regional administrator request a presidential declaration for federal assis-
tance under the National Response Framework, which in turn offers structure and policy 
for interagency coordination in response to the incident (National Response Framework, 
2021). FEMA’s organization into ten regions is meant to facilitate this process and cor-
responds to the ten Office of Management and Budget-mandated regions that have since 
1974 divided US states, territories, and tribes to “improve management and economies 
of personnel which could result in savings among federal departments” (Office of Man-
agement and Budget, 1974). FEMA, in turn, relies on these regions to carry out its mis-
sion “to reduce the loss of life and property and protect the nation” by working with 
local partners to “identify and address regional priorities” in accordance with the Post-
Katrina Emergency Management Reform Act (2006).

While each FEMA region is expected to prepare for ‘all hazards’ potentially faced 
(McNerney et  al. 2015), a potential benefit to regionalization is the concentrating of 
like-exposures within geographic groupings, so as to enable targeted priorities and plan-
ning. It is not clear, however, whether this benefit is adequately realized by a regional 
system that was devised without relative hazard vulnerability in mind. The aim of this 
study is therefore twofold: first, to demonstrate one method of improved clustering of 
US states, districts, and territories (jurisdictions) into regions based on historical disas-
ter exposures and, second, to contrast those proposed regional assignments with the ten 
FEMA regions as presently arranged.
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2 � Data acquisition

Records of past disaster declarations were extracted from the OpenFEMA website (Federal 
Emergency Management Agency, n.d.). Unique events were listed by affected jurisdiction 
and by incident type, such as flood or fire. Among incident types provided through this 
centralized government registry, ‘chemical’, ‘dam/levee break’, ‘drought’, ‘fishing losses’, 
‘human cause’, ‘terrorist’, and ‘toxic substances’ were removed from consideration given 
their relative infrequency and this study’s focus on natural occurrences. Incidents cat-
egorized as ‘other’ were also excluded from analysis. The remaining incident types were 
aggregated by jurisdiction and year.

All FEMA disaster declarations prior to the year 2020 for all fifty states were included 
in this study, as were those for the District of Columbia (DC) and formal US territories. 
American Samoa, Guam, and the Northern Mariana Islands were collectively grouped as 
a single ‘Pacific territories’ entity. Given their proximity, the US Virgin Islands were con-
sidered along with Puerto Rico. These decisions were based on relative population and on 
the logistical improbability of geographical separation into two or more distinct FEMA 
regions. For this study, freely associated states, such as the Marshall Islands, Palau, and 
Micronesia, were excluded from analysis.

3 � Accounting for geography and disaster exposure

Grouping individual jurisdictions into regions based on past disaster exposure and geo-
graphic location can be considered an unsupervised clustering problem. Choosing spectral 
clustering (SC) for this analysis is advantageous for a few key reasons. SC does not make 
assumptions on the form of clusters, which can be important if clustering assignments form 
non-convex regions (Von Luxberg 2007). SC also accepts an affinity matrix as input (Li 
and Guo 2012), which, in representing all possible pairwise similarities between different 
features for each data point to be clustered, allows for flexibility in creating the similarity 
metrics between different jurisdictions for this analysis.

The first step of using SC for this analysis was to generate an affinity matrix to represent 
the similarity of every jurisdiction to all other jurisdictions. Such similarity metrics include 
the centroid distance between jurisdictions, a neighbor matrix indicating whether any two 
jurisdictions are neighbors, and FEMA disaster declarations across all 53 unique jurisdic-
tions. The output was affinity matrix A ∈ {x|x ∈ R, 0 ≤ x ≤ 1}53×53 , with each cell Aij rep-
resenting the affinity score of a pair of jurisdictions. Once complete, an ideal number of 
clusters was chosen by choosing the number of clusters k between 2 and 53 that maximizes 
the final clustering assignment’s silhouette score, a metric of consistency within clusters 
(Rousseeuw 1987).

Because the final affinity matrix needs to account not only for geographic location but 
also for the historical disaster exposure of every possible pair of jurisdictions, computing 
geographic and disaster exposure distance matrices was necessary. The disaster exposure 
data help cluster jurisdictions based on the types of disasters they are at risk of experi-
encing as well as their severity. Geographic distance aids in potential logistical concerns, 
as using only disaster exposure distance could create regions with far-flung jurisdictions. 
Once merged, these distance matrices were then converted into an affinity matrix for use 
in SC.
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3.1 � Geographic distance calculation

Because of the importance of physical proximity to regional identity, jurisdictions were 
first characterized by their direct geographic neighbors, using the jurisdiction neighbor 
matrix N ∈ {0, 1}53×53 representing a matrix of the binary neighbor relationship between 
two jurisdictions. For this purpose, the Hawaiian Islands, the Pacific territories, and 
Puerto Rico were considered along with the Alaskan exclave as neighboring their most 
proximate continental coastline, whether Atlantic or Pacific. For example, Maine was 
in this way considered to neighbor Massachusetts, New Hampshire, and Puerto Rico, 
consistent with FEMA Region II’s current role in overseeing New York, New Jersey, 
and Puerto Rico.

It was also necessary to calculate the physical distance in kilometers between possible 
pairs of jurisdictions using the latitude and longitude of their centroids. The three Pacific 
territories were considered jointly, relying on the arithmetic mean of their respective 
exclusive economic zones. Haversine distance, which calculates the great-circle distance 
between two latitude and longitude points, was used as shown in Eq. (1) (Robusto 1957). 
In the algorithm, d represents the output distance, R is the sphere’s radius, Xlat,Xlon is the 
first set of latitude and longitude coordinates, and Ylat, Ylon is the second set of coordinates.

Once calculated using the Earth’s mean radius of 6371 km (Moritz 2000), the dis-
tance was then normalized. Pairs consisting of the same jurisdiction twice were given 
a pairwise distance of 1, while pairs of jurisdictions 6000  km or more away from 
one another given a pairwise distance of 0. This is demonstrated by Eq.  (2), where 
H ∈ {x|x ∈ R, 0 ≤ x ≤ 1}53×53 is a matrix of the normalized Haversine distance, and 
C ∈ R53×2 is a matrix of centroid latitude and longitude coordinates for each jurisdiction.

Calculating the final geographic distance consisted of computing the geometric mean 
between the resulting normalized Haversine distance and the previously acquired juris-
diction neighbor matrix, as shown in Eq. (3), where G ∈ {x|x ∈ R, 0 ≤ x ≤ 1}53×53 is the 
final geographic distance matrix. In other words, regions with identical geographic sim-
ilarity would have a distance of 0. In contrast, areas that are either far from one another 
or not neighbors would have a value much closer to 1 (Fig. 1).
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Fig. 1   Methodology diagram for creating the geographic distance matrix
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3.2 � Jurisdiction disaster cost calculation

Disaster declaration cost per jurisdiction was used in this analysis as a proxy for disaster 
severity, providing a sense of economic impact and overall a more granular image of a 
jurisdiction’s disaster declaration profile than would simply the number of a given type of 
disaster alone. OpenFEMA provides data on disaster declaration costs from 2007 to 2020, 
which was then extrapolated to the entire length of existing declaration data from 1953 to 
2020.

Generating the extrapolated cost data for each jurisdiction first necessitated the creation 
of two intermediate datasets. The first was a dataset for every jurisdiction, demonstrating 
the average cost per disaster type from 2007 to 2020, in order to stay as granular as pos-
sible when extrapolating. If there were no cost data for a specific disaster type for a specific 
jurisdiction, then a fallback dataset was used containing the average cost of that disaster 
type across all jurisdictions from 2007 to 2020. Cost data on a given disaster type for a 
given jurisdiction were first verified to determine whether missing years could be filled in 
using jurisdiction-specific data or whether it would instead require using the average across 
all jurisdictions. Figure 2 demonstrates a block diagram of the cost data processing scheme 
to create a jurisdiction cost dataset from 1953 to 2020 using this limited cost data.

3.3 � Disaster exposure distance calculation

With the estimated cost for each disaster type available for all years and jurisdictions, per-
forming correlation analysis on every possible pair of jurisdictions was then possible. Such 
analysis can help determine relationships in disasters that appear highly correlated: for 

(3)Gij = 1 −

√
Hij × Nij

Fig. 2   Methodology diagram for creating a cost dataset by disaster type (1953–2020)
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example, a hurricane in one jurisdiction occurring together with floods in a neighboring 
jurisdiction. The Pearson correlation coefficient was generated for every possible pair of 
disaster types from each pair of jurisdictions using the extrapolated cost data from 1953 to 
2020. If the correlation coefficient for a particular pair of disaster type data was larger than 
the threshold value of 0.7, one of the correlated disaster types’ data was dropped from its 
jurisdiction dataset. Once the datasets for the pair of jurisdictions were filtered using this 
method, the remaining data were then z-score standardized and thereafter aggregated using 
the Euclidean norm to return a final distance measure for that jurisdiction pair. Once all 
possible jurisdiction pairs have had their disaster exposure distance calculated, the entire 
matrix DE ∈ {x|x ∈ R, 0 ≤ x ≤ 1}53×53  was normalized by setting the smallest disaster 
exposure distance to 0 and the largest disaster exposure distance to 1. Figure 3 visualizes 
this process with a block diagram.

Jurisdictions with many highly correlated disaster types will have fewer standard-
ized data to aggregate, returning a lower final Euclidean norm. In this way, the algorithm 
assumes that if many pairs of disaster types across the jurisdiction pair are highly corre-
lated, it is likely that the jurisdictions have similar disaster exposure.

The final distance matrix was computed using an element-wise geometric mean of G 
and DE , similar to the way in which the geographic affinity matrix was calculated. This 
distance matrix was then converted into an affinity matrix using a variant of the Ng–Jor-
dan–Weiss (NJW) algorithm accounting for multi-scale data (Zelnik-Manor and Perona 
2004). The approach uses an individual scaling parameter, ensuring that the affinities are 
low across clusters and high within clusters. The output affinity matrix was then used as the 
input to the SC algorithm to begin generating jurisdiction clustering results.

4 � Jurisdiction spectral clustering algorithm

The SC algorithm used in this analysis consists of both an embedding and k-means step 
to produce clustering results based on a custom affinity matrix (Von Luxburg 2007). The 
spectral embedding step uses Laplacian eigenmaps (Belkin and Niyogi 2003). As we 
already have a weighted adjacency matrix for the input graph in the form of the affinity 
matrix, we can directly calculate the normalized graph Laplacian using the method shown 
in Eq. (4), where L is the Laplacian, D is the input dimension and A ∈ R53×53 is the affinity 
matrix representing a symmetric matrix of jurisdiction pairs.

With the normalized graph Laplacian, the first k eigenvectors denoted as u1,… , uk are 
then calculated, with each eigenvector set as a column for the reduced embedding matrix 

(4)L = D
−

1

2 (D − A)D
−

1

2

Fig. 3   Methodology diagram for creating the disaster exposure distance matrix
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E ∈ R53×k . With E generated, the k-means clustering algorithm can then be used to cluster 
E into k unique clusters, minimizing within-cluster variance and outputting the final SC 
result.

5 � Experimental results

Based on the OpenFEMA dataset, there have been 4198 unique FEMA disaster declara-
tions prior to 2020. Due to their relative infrequency and artificial nature, the following 
declarations were excluded: 1 ‘chemical’, 4 ‘dam/levee break’, 6 ‘fishing losses’, 4 ‘human 
cause’, 26 ‘other’, 2 ‘terrorist’, and 8 ‘toxic substance’ incidents, with 4149 (98.8%) decla-
rations remaining. The two excluded ‘terrorist’ incidents involved the 2013 Boston Mara-
thon bombing and the 2001 Al-Qaeda attacks. Twenty-six incidents reported by the US 
Virgin Islands were added to those of Puerto Rico, and the 14 by American Samoa, 17 by 
Guam, and 21 by the Northern Mariana Islands were conglomerated into a single ‘Pacific 
territory’ jurisdiction. The 22 incidents reported to FEMA by freely associated states were 
excluded, leaving 4127 (99.5%) disaster incidents declared by 53 distinct jurisdictions for 
analysis.

Disasters must meet a certain standard, albeit not fixed, to qualify for federal declaration 
(Requests for emergency declarations, 2013), yet unique incident types invariably demon-
strate significant differences in community impact and scale, and the decision to grant a 
disaster declaration often lacks a consistent rationale across disaster types, geography, and 
time. Recognizing this, all past preliminary damage assessment reports available online 
through the FEMA digital library were obtained as portable document format (PDF) files 
and mined for individual and public cost estimates using Python (3.8.5). These data were 
then aggregated to calculate the mean total cost estimate for each incident type per state. 
Of the 859 past preliminary damage assessment reports available for extraction, 736 were 
accepted incidents (all since 2008). 657 (89.2%) of these had cost estimates available, 
whether individual or public.

The results in this section mainly concern the analysis of the ideal number of clusters 
and the resulting cluster assignments and ablation studies to help explain the effects of 
specific data processing techniques on the final clustering results. Such ablation studies 
include analysis on the choice of geographic distance metrics and the effects of using only 
either geographic or disaster exposure matrices.

5.1 � Optimal number of cluster determination

The silhouette score metric was used to determine the optimal number of clusters based on 
the affinity matrix and clustering methodologies explained in Sect. 3. As shown in Eq. (5), 
the silhouette score is essentially the average of the silhouette coefficients of every sample 
in the dataset, with di representing the mean nearest-cluster distance and mi representing 
the mean intra-cluster distance for sample i . The silhouette coefficient is bound between -1 
and 1. It represents a measure of how similar a given sample, or in this case, jurisdiction, is 
to its cluster and dissimilar to samples in other clusters. A score close to 1 means that the 
sample has been assigned to the appropriate cluster, and close to -1 indicates an inappropri-
ate clustering assignment (Rousseeuw 1987).
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For this analysis, the silhouette score is applied to the spectral embedding matrix E , as 
the embedding matrix is in the correct form to calculate the silhouette score across each 
sample. The silhouette scores at all possible cluster numbers were then calculated, and the 
optimal k was chosen by selecting the number of clusters corresponding to the clustering 
assignment with the highest silhouette score.

Using the merged geographic and disaster exposure distance matrices and the mean cost 
data methodology as described, a value of k = 6 clusters appeared to be ideal, returning 
a maximum silhouette score of 0.42. As can be seen from the silhouette score graph in 
Fig. 4a, the silhouette score peaks at six with an immediate drop off afterward, signaling a 
significant degradation in clustering quality as more clusters are introduced. Figure 4b con-
tains a visualization of this result on a map of the US and its territories. The degradation in 
cluster quality can be qualitatively observed in the t-SNE (t-distributed stochastic neighbor 
embedding) plots in Fig.  5a, b, as the clusters when k = 6 appear much more cohesive 
when compared to the clusters at k = 10 (Maaten and Hinton 2008).

5.2 � FEMA regions similarity comparison

As the existing FEMA regional assignment consists of 10 distinct regions shown in Fig. 6a, 
it was of interest to visualize the results using both a standard 10 clusters and the computed 
ideal 6 clusters, as shown in Fig. 6b, c, respectively. When directly comparing these clus-
tering results to existing FEMA regions, they appear significantly different from the FEMA 
regions’ current organization.

To quantitatively measure the similarity of these clustering assignments and the cur-
rent FEMA regions, the adjusted Rand index (ARI) is computed, which is bounded from 
-1 to 1. The Rand index can be understood as the percentage of matching sample pairs 
across two clustering results. Simultaneously, the adjusted Rand index adjusts this score 
for chance, such that a score close to 0 represents relatively random labeling, as shown in 
Eq. (6) (Santos 2009). In this case, a higher ARI would signify that the cluster assignments 
between the two are similar, whereas a low ARI would signify different or random cluster-
ing assignments.

(5)S =
1

n

n∑

i=1

(
di − mi

)

max
(
mi, di

)

Fig. 4   Clustering results visualized by a silhouette scores with a different number of clusters and b the US 
region assignments for all 53 jurisdictions when k = 6
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The ARI between the 10 cluster results and the original FEMA regions is 0.43, 
implying that considering disaster exposure can lead to different FEMA regions’ 
assignments. Comparing the maps in Fig. 6b, c with Fig. 6a reveals these differences.

5.3 � Distance metric ablation study

As the methodology used in this analysis mainly focuses on the disaster profiles for 
each jurisdiction and their physical proximity to one another, ablation studies were 
conducted to understand the effects of individual distance matrices on final clustering 
results. Figure  7 demonstrates the differences in the silhouette scores when utilizing 
only the disaster profiles of each jurisdiction (shown in orange), only their geographic 
data (shown in green), or the geometric mean of both, which was used for generating 
the final clustering results (shown in blue).
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Fig. 5   T-SNE plots of the quality of clustering assignments at 6 clusters and at 10 clusters. (Perplexity = 15)

Fig. 6   The US jurisdiction region assignments a original FEMA regions, b clustering results with 10 clus-
ters, and c the optimal clustering results with 6 clusters
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5.3.1 � Disaster profile distance

The effects of variation in cluster number and distance metric can be further appreciated 
through the visualizations in Figs. 8, 9, 10 and 11. Figures 8, 9 focus on an ideal, silhou-
ette-maximizing 6 clusters, while Figs. 10, 11 focus on 10 clusters consistent with the cur-
rent number of FEMA regions. Moreover, while each figure (a) considers both past disaster 
exposure and geographic distance, each figure (b) only accounts for disaster profile while 
each figure (c) only accounts for geographic data. These maps are especially useful in visu-
alizing irregularities in clustering without apparent emergence of regional shape, as seen 
along the coasts in Fig. 8b.

5.3.2 � Geographic distance

Using only geographic distance to calculate final affinity leads to a better silhouette 
score at 6 clusters than when using geographic and disaster distance matrices. This can 

Fig. 7   Comparing the number of clusters to the silhouette scores for all possible numbers of clusters using 
different distance metrics

Fig. 8   The US jurisdiction region assignments at 6 clusters with different affinities
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be attributed to the fact that physical distance measures are significantly easier to clus-
ter as adjacent jurisdictions can already be considered clustered together. Adding the 
disaster distance matrix can significantly complicate this as correlations between dis-
aster types could potentially span distant jurisdictions, which may just happen to have 
many correlated disaster types, even if the algorithm’s assumption that their disaster 
exposure is related could be false, Figs. 8c, 9c, 10c, and 11c produce clustering into the 
kind of neatly partitioned regions that would be expected when using Haversine dis-
tance and neighbor information. The 10 clusters in Fig. 10c using only geographic data 
are also closer to the current FEMA region assignments than any other affinity method 
with an ARI of 0.45. This ARI score compares to 0.43 for the method employing both 

Fig. 9   T-SNE plots of the quality of clustering assignments at 6 clusters with different affinities (Perplex-
ity = 15)

Fig. 10   The US jurisdiction region assignments at 10 clusters with different affinities

Fig. 11   T-SNE plots of the quality of clustering assignments at 10 clusters with different affinities (Perplex-
ity = 15)
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geographic and disaster declaration data and 0.16 when using only disaster declaration 
data.

5.4 � Geographic data ablation study

The choice of geographic data to use for this analysis was also compared, as the final 
analysis used not only the actual physical distance between centroids but also an adja-
cency matrix demonstrating whether states were neighbors or not. Based on Fig.  12, 
the most stable clustering can be seen when both metrics are used together. When used 
separately, the best silhouette scores would only appear at 2 clusters, with any larger 
number of clusters leading to a significant loss in clustering quality.

Using both metrics in this analysis is especially important, as using a jurisdiction 
neighbor matrix allows for the analysis to overcome the shortcomings of using a sin-
gular point, the centroid, to demonstrate location. Certain jurisdictions have signifi-
cantly larger surface area than others in the US, so only using centroid distance can 
misrepresent the actual geographic similarity between jurisdictions. Using the neighbor 
adjacency matrix can alleviate this by encoding information about the borders between 
jurisdictions that the centroid distance could not capture. However, only using neighbor 
information that does not include any actual geographic information about the physical 
location of jurisdictions will also lead to poor clustering results.

Fig. 12   Comparing the number of clusters to the silhouette scores for all possible numbers of clusters using 
different geographic data metrics



3439Natural Hazards (2023) 116:3427–3445	

1 3

6 � Discussion

In an effort to describe the unique consequences of catastrophic natural events and the 
circumstances surrounding their subsequent response, it has been said that all disasters 
are local, particularly in their initial phase (Ganyard 2009; Long 2018). Yet, insofar 
as all disasters by definition overwhelm local capabilities, there is also a need to con-
sider disasters as being more than local, fitting into a regional or even national context. 
FEMA’s role at the federal level has therefore evolved to augment these local efforts, in 
recognizing the propensity of disaster events to disrupt basic societal and governmental 
functions. The ten FEMA regions as they currently stand, however, do not reflect the 
natural distribution of hazards according to historical disaster declaration data.

This exercise in SC relies not only on physical proximity and neighboring state, 
but also on historical disaster exposures, and in so doing results in region assignments 
that draw significant contrast to the FEMA regions as currently defined. Regardless of 
whether six or ten regions are generated, for example, in both instances the algorithm 
produced a Pacific region that spanned Alaska, Hawaii, and the Pacific territories as 
well as the entire continental West Coast. Currently, this area is split between FEMA 
Regions IX and X. On the Atlantic side, the region corresponding to FEMA Region IV 
was recreated with notable changes: consistently excluding Mississippi and Kentucky 
and including Puerto Rico. FEMA Region IV administrator Gracia Szczech was quoted 
in September 2020 as saying, “As we enter the peak of hurricane season and continue 
to respond to COVID-19, we cannot let our guard down. By preparing for the hazards 
that are most likely to occur where you live and work, you and your family will be more 
resilient and better able to handle an emergency (Don’t Wait!, 2020).” Such statements 
are a testament to the importance of shared regional disaster profiles, offering bene-
fits that far exceed any concern that contemporary crises across multiple jurisdictions 
within a region might lead to resource competition or even depletion. Indeed, while 
undergoing independent review of existing disaster plans, several FEMA regional dis-
aster plans were characterized by their “most common disasters,” indicating perspective 
and priorities unique to that region (Richards 2012, 2015).

Such dispersed federalism implied in FEMA’s role emphasizes the need for appro-
priately representative and responsive regional assignments (Roberts 2007). Hurricane 
Maria’s landfall upon the southeast Puerto Rican coast in September 2017, for example, 
left widespread devastation (Pasch et al. 2017). With an estimated $90 billion in dam-
age to critical infrastructure, the cyclone has since been linked with 4,645 excess deaths 
across the territory (Kishore et  al. 2018). In the aftermath, questions emerged on the 
adequacy of federal planning: on implementing a pre-disaster advance contract strategy 
(Smith 2019), on facilitating inter-agency coordination best exemplified in the under-
utilization of the USNS Comfort hospital ship (Naor 2020), and on ensuring public trust 
despite bribery and fraud charges that have since been brought against key personnel 
involved in the island’s disaster recovery (District of Puerto Rico, 2019). It is notewor-
thy that the Puerto Rican response, coordinated through FEMA Region II which also 
includes the US states of New York and New Jersey, ultimately could not rely upon its 
existing Puerto Rico hurricane annex and instead resorted to tsunami and earthquake 
plans that simply could not adequately address the devastation to come (Cuffari 2020). 
The clustering algorithm, in contrast, grouped Puerto Rico with Alabama, the Caroli-
nas, Florida, Georgia, and Tennessee. Taking proximity and prior hurricane exposures 
into account may have helped with regional response to all phases of the disaster cycle, 
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even without knowing with certainty whether structural change alone would have been 
of material impact.

Hurricane Maria also highlights the moral hazard of potential dependence on FEMA, 
not as a supplemental response but as the primary one (Long 2018; Johnston 2012). The 
public good of pre-disaster mitigation is in this way inherently regional. For example, not 
only might flooding of the Mississippi river impact multiple states at one time, but levee 
construction may well involve federal engagement of contractors outside a state like Loui-
siana (Johnston 2012). Others have demonstrated significant political motivation behind 
disaster declarations and their subsequent federal relief payments, showing correlation not 
only with a state’s political importance but also with election year occurrence and even 
congressional subcommittee membership (Garrett and Sobel 2003). While such barriers to 
preparedness are the result of complex interplay between governance systems and public 
perception, it is plausible that a FEMA regional structure more transparently and objec-
tively organized around shared threats might mitigate some of these effects, particularly 
among jurisdictions without local resilience or political clout. Cohesion and collective 
action in preparedness and response necessarily depend on the degree to which the interests 
of grouped jurisdictions converge. In US water resource management for example, prior 
work has demonstrated that transborder watersheds suffer jurisdictional fragmentation and 
corresponding watershed impairment, as defined by the United States Environmental Pro-
tection Agency (Epperly et al. 2018). In the case of FEMA, partitioning the country along 
shared-hazard lines might in turn better align subnational mitigation strategies, particularly 
if disaster types like hurricanes, which commonly impact multiple jurisdictions, are then 
more likely to be addressed by one federal regional office.

Recent efforts to combat coronavirus disease 2019 (COVID-19) have brought to light 
numerous challenges to federal and state coordination, as the first declared nationwide 
emergency affecting all states and territories (COVID-19 Disaster Declarations, 2021). 
With such an unprecedented and ubiquitous need, several multistate agreements emerged 
in the vacuum to facilitate healthcare system support and economic recovery (Governor 
Murphy, 2020; California, 2020). Even for an infectious disease without the geographic 
specificity of the natural disasters considered here, this kind of ad hoc regional pooling of 
effort across state lines and between government agencies demonstrates a clear willingness 
to rethink how disaster response can and should be regionalized.

Although FEMA currently localizes operations into distinct regions, the decision to 
create ten such regions, rather than fewer or more than ten, is not obvious. For example, 
eight regions were initially proposed at FEMA’s inception but rapidly expanded to include 
region VII, based in Kansas City, MO, and region X, based in Bothell, WA (Office of Man-
agement and Budget, 1974). These ten regions are now used elsewhere within the federal 
government, for example in the Departments of Justice and Health and Human Services, as 
well as in agencies like the Cybersecurity and Infrastructure Security Agency (Our Reach, 
2020; Office of Intergovernmental and External Affairs 2014, CISA regions 2022). Mean-
while, other departments have organized differently, such as the Departments of Labor and 
State with six and seven regions, respectively (Regional Offices, n.d.; Regional Offices—
Office of Foreign Missions, n.d.). In fact, the Department of Labor’s regional offices are 
effectively organized in such a way that the six FEMA clusters proposed here could be 
similarly located, if not co-located. This, along with a reduced number of administrative 
offices and enhanced regional cohesion, offers a potential avenue for improved efficiency 
and cost-saving in the long term. A 2016 Congressional Budget Office report indicated that 
significant budget saving might be achieved if administrative support activities required 
fewer personnel and locations, if direct program activities could be coordinated, and if 
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organizational cultures and infrastructures were made compatible without sacrificing effi-
ciency (CBO 2016). Indeed, federal strategies to reduce inter-agency fragmentation, over-
lap, and duplication of effort have been demonstrated across multiple areas. According 
to the US Government Accountability Office (GAO), federal agencies have been actively 
coordinating resources to address maritime infrastructure in the US Arctic, and consolida-
tion of data centers alone across 22 federal agencies has since 2011 already led to an esti-
mated $5.7 billion in cost savings (GAO 2022).

While disaster management from an operational perspective may be a nascent field of 
research (Gupta 2016), the GAO in particular has encouraged FEMA to collect data that 
can facilitate decision making, cost saving, and response efforts (Irving 2007). The SC 
method used here illustrates one such strategy for doing so. Future work will require incor-
poration of logistical constraints as well as cost–benefit analysis of FEMA investments that 
may be employed under various regional structures. Such feasibility study of any proposed 
change will need to ascertain with high reliability the expected losses that can be avoided 
with implementation (World Bank 2014). An exercise such as this one is a preliminary 
attempt at re-envisioning the structural aspects of disaster risk reduction, but even in its 
simplicity it can serve as a template for relevant parties in rejuvenating discussion of how 
existing organizations might optimize mitigation and response across such disparate geog-
raphy and hazard vulnerability.

7 � Limitations

A jurisdiction’s disaster profile was established entirely based upon frequency of prior dec-
larations among reportable disaster types over several decades. Similarly, disaster types are 
often multifaceted and at times overlapping in their consequences. A ‘severe storm’ for 
example may have also spurred a ‘tornado’ or ‘flood’ and so could reasonably have been 
categorized by FEMA into multiple incident types. That degree of granularity is inherently 
lost when the categories applied are artificially treated as mutually exclusive.

Proximity was defined here as the average of a binary ‘yes’ or ‘no’ neighboring relation-
ship between jurisdictions and the geographic distance between them. However, logistical 
constraints not addressed in this model, such as coordination, sourcing, and distribution, 
may offer an additional supply chain-oriented dimension to the concept of proximity, likely 
improving the feasibility and appropriateness of otherwise optimal regional groupings. In 
addition, this work does not address real socioeconomic inequities in how federal assis-
tance is dispersed. Although beyond the scope of this state-level analysis, FEMA restruc-
turing may nonetheless aim to counteract such community-level disadvantages that have 
been linked not only to lower overall assistance in response to a disaster but also to an 
impaired ability to absorb and overcome its deleterious effects (Drakes et al. 2021).

Mean cost estimates based on limited and preliminary data may be inadequate in depict-
ing a particular disaster’s ultimate magnitude, which undoubtedly also depends on morbid-
ity, mortality, and other highly variable consequences. There are likely to be substantial 
differences by year and jurisdiction, and even within jurisdictions that vary considerably in 
both diversity and urbanization. As a result, a disaster may have significantly more human, 
property, or business impact yet appear less relevant to the disaster profile of an individual 
jurisdiction because that jurisdiction has also experienced numerous declarations of a dif-
ferent, perhaps less impactful kind. While this analysis helps to profile the relative fre-
quency of various hazards, it cannot be used to draw conclusions on vulnerability, impact, 
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or risk. FEMA relies heavily on preliminary cost estimates in formal disaster declaration, a 
process that is itself not fixed. This study aims not to truly collapse the multifaceted com-
plexity of natural disasters into a single linear scale but simply to capture the degree of 
projected resource need that FEMA, as the responding organization, could expect. Future 
efforts may include more complete and granular data to better reflect strain on not only 
FEMA but on the affected community more broadly.

Finally, despite 67 years of disaster declaration data, 2,450 unique incidents have been 
recorded between January 1, 2000, and December 31, 2019, inclusive (58.4%). While this 
suggestion of increasingly frequent disasters can indicate either higher incidence or lower 
threshold for declaring, past disaster declarations do not predict future occurrences. Cli-
mate change as well as demographic and political trends may well affect how often and to 
what extent different states and territories experience and report disasters going forward.

8 � Conclusion

This study suggests an opportunity to utilize existing disaster declaration data to organize 
federal emergency management operations in a way that could significantly improve disas-
ter specialization and response. Jurisdictional differences in incident type, frequency, and 
impact should be considered alongside logistic constraints in developing FEMA regions 
that can better meet the agency’s strategic objectives.
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