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Abstract

Penalized regression methods are used in many biomedical applications for variable selection and 

simultaneous coefficient estimation. However, missing data complicates the implementation of 

these methods, particularly when missingness is handled using multiple imputation. Applying 

a variable selection algorithm on each imputed dataset will likely lead to different sets of 

selected predictors. This paper considers a general class of penalized objective functions which, by 

construction, force selection of the same variables across imputed datasets. By pooling objective 

functions across imputations, optimization is then performed jointly over all imputed datasets 

rather than separately for each dataset. We consider two objective function formulations that 

exist in the literature, which we will refer to as “stacked” and “grouped” objective functions. 

Building on existing work, we (a) derive and implement efficient cyclic coordinate descent and 

majorization-minimization optimization algorithms for continuous and binary outcome data, (b) 

incorporate adaptive shrinkage penalties, (c) compare these methods through simulation, and (d) 

develop an R package miselect. Simulations demonstrate that the “stacked” approaches are more 

computationally efficient and have better estimation and selection properties. We apply these 

methods to data from the University of Michigan ALS Patients Biorepository aiming to identify 

the association between environmental pollutants and ALS risk. Supplementary materials are 

available online.
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1 Introduction

Variable selection in the presence of missing data is a common problem in applied 

statistics. Existing statistical methods (Table S1) to deal with both missing data and 

variable selection fall into two broad classes depending on whether the missing data is 
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handled prior to or at the same time as variable selection. While one can, in principle, 

handle missingness and selection simultaneously (Yang et al., 2005; Garcia et al., 2010; 

Johnson et al., 2008), in this paper we focus on a different scenario, where missing 

data have already been handled via multiple imputation and we wish to do variable 

selection post-imputation. In practice, we often find ourselves in the latter scenario for 

many reasons. Some examples include: (i) existing data sources or analytical pipelines 

provide the analyst with already imputed datasets (Schafer, 2001), (ii) data privacy settings 

where the missingness mechanism depends on sensitive information that is not needed for 

downstream analyses, and (iii) practical situations where the analyst wants to use an existing 

imputation software package to generate the multiply imputed datasets to be used across 

various analyses. That is, in this article we assume that the imputation model is correctly 

specified, imputed datasets are given to us, and we focus purely on variable selection 

techniques post-imputation. In particular, the challenge is to guarantee uniform selection of 

variables across multiply imputed datasets and to generate point estimates for the regression 

coefficients corresponding to the selected variables.

To address this issue, there are some existing methods in the literature proposed for variable 

selection post-imputation. The most common approach is to define an ad-hoc rule for 

harmonizing selection across imputed datasets (Wood et al., 2008; Lachenbruch, 2011; 

Ghosh et al., 2015). Wood et al. (2008) outlined three rules for finalizing selection after 

identifying the active set of predictors in each imputed dataset. These rules consider a 

variable to be selected if it is selected in at least one imputed dataset, if it is selected in 

all imputed datasets, or if it is selected in at least half of the imputed datasets. Another 

related approach is to apply variable selection methods on bootstrapped datasets (Heymans 

et al., 2007; Long and Johnson, 2015; Liu et al., 2016). One such method, proposed 

by Long and Johnson (2015), imputes missing values in the bootstrapped samples from 

the original data and then applies penalized regression on each bootstrapped imputed 

dataset. Proportions of each covariate being selected over all bootstrap imputed datasets 

are provided and the final active set is determined by thresholding the proportions. The 

challenge with such thresholding approaches is that there are no clear guidelines on how 

to choose the threshold. An alternative class of methods are penalized regression estimators 

whose objective functions involve a joint optimization over all imputed datasets. Wan et 

al. (2015) proposed a penalized regression estimator which is equivalent to fitting the 

penalized regression model on the stacked imputed datasets. The stacked method can also 

be interpreted in terms of maximizing an objective function pooled over imputed datasets, 

where regression coefficients are assumed to be the same across datasets. Chen and Wang 

(2013) proposed the multiple imputation-least absolute shrinkage and selection operator 

(MI-LASSO) which utilizes a group LASSO penalty to group regression coefficients of the 

same variable across imputed datasets together, thus arriving at uniform variable selection 

across imputed datasets. This grouped approach is less restrictive than the stacked approach, 

in that the parameter values are allowed to differ across imputed datasets. The stacked and 

grouped approaches are appealing because they handle variable selection and regression 

coefficient estimation simultaneously, and no ad hoc rules are required to determine the final 

active set.

Du et al. Page 2

J Comput Graph Stat. Author manuscript; available in PMC 2023 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite the advantages of the stacked and grouped approaches, automated implementation 

of these two methods (Wan et al., 2015; Chen and Wang, 2013) has been limited in practice. 

There is a lack of easy-to-use software for both approaches, and for variable selection 

with multiple imputed datasets in general. More specifically, off-the-shelf R packages such 

as glmnet (Hastie and Qian, 2014) and gcdnet (Yang et al., 2017) are inadequate for 

optimizing the stacked objective function proposed in Wan et al. (2015). Namely, the R 

package glmnet does not exclusively apply adaptive weights to the L1 penalty, as in adaptive 

elastic net, and the gcdnet package does not implement observation weights. As for the 

grouped approach with the group LASSO penalty function, gglasso (Yang and Zou, 2015) 

cannot be directly used without changing the data structure. The dimension of the new 

design matrix scales linearly with the number of imputed datasets and introduces many zero 

entries, which is computationally inefficient. Furthermore, existing approaches are targeted 

towards continuous outcomes and have not been extended to discrete/categorical outcomes 

that are abundant in practice. Even for continuous outcomes, the algorithm for MI-LASSO 

in Chen and Wang (2013) has an important limitation. Specifically, the existing MI-LASSO 

implementation is an optimization procedure that relies on a local quadratic approximation 

to the L1 penalty, which converts the penalized objective function into multiple ridge 

regressions. Coefficient estimates are always non-zero, requiring a manual threshold for 

setting small coefficient estimates exactly to zero.

To address the aforementioned limitations, we extend existing work on the stacked and 

grouped approaches for handling variable selection with multiple imputed datasets to 

incorporate binary outcomes and adaptive penalties (Section 2). We derive cyclic coordinate 

descent algorithms for optimizing the pooled objective functions from the stacked approach 

and majorization-minimization (MM) algorithms coupled with block coordinate descent 

updates to obtain optimizers of the pooled objective functions from the grouped approach 

(Section 3). Unlike the optimization routine in Chen and Wang (2013), our proposed 

methods provide exact shrinkage to zero without any ad hoc thresholding. We provide an 

R package miselect available on the Comprehensive R Archive Network (CRAN), allowing 

users to easily implement the proposed methods. In our motivating example, we apply 

these methods to identify persistent organic pollutants (POPs) associated with Amyotrophic 

Lateral Sclerosis (ALS) susceptibility using data collected from the University of Michigan 

ALS Patients Biorepository (Section 4). Seventeen of the 23 POPs have between 10% 

to 60% below their respective detection limits, making complete-case analysis infeasible. 

Finally, through a simulation study, we compare the performance of the proposed methods in 

terms of variable selection and estimation accuracy (Section 5).

2 Methods

We will first review and illustrate the issues with identifying an active set of predictors 

when fitting separate penalized regressions on each individual imputed dataset. We will then 

present the stacked and grouped approaches for uniform variable selection with imputed 

datasets. Let Xd denote the n × p matrix of predictor variables and Yd be the n × 1 vector 

of responses for the d-th imputed dataset (d = 1, … D). Let Xd,i indicate the p × 1 covariate 

vector for the i-th observation in the d-th imputed dataset, Yd,i be the response for the 
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i-th observation in the d-th imputed dataset, and Xd,ij, denote the j-th covariate for the i-th 

observation in the d-th imputed dataset.

2.1 Penalized regression on individual datasets

A common approach in practice is to use ad hoc rules for determining the final set of 

selected variables. Often this proceeds by fitting a penalized regression procedure on each 

imputed dataset separately:

θd = argmin
θd

− 1
n i 1

n
logL θd Y d i Xd i λPα βd (1)

for d = 1, …, D where log L is the log-likelihood function, βd is the p × 1 vector of 

regression coefficients for the d-th dataset, and θd = (μd, βd) is the vector of regression 

parameters including the intercept and coefficients for the d-th imputed dataset. Pα(βd) is 

the penalty function parameterized by α and λ ∈ (0, ∞) which are tuning parameters that 

control the relative contribution of the penalty to the overall optimization problem.

In this paper, we will focus on four penalty functions: LASSO (Tibshirani, 1996), adaptive 

LASSO (aLASSO) (Zou, 2006), elastic net (ENET) (Zou and Hastie, 2005) and adaptive 

elastic net (aENET) (Zou and Zhang, 2009). The penalty functions can be expressed as:

1. LASSO: Pα βd = j 1
p βd j

2. aLASSO : Pα βd = j 1
p ad j βd j

3. ENET: Pα βd = α j 1
p βd j + (1 − α) j 1

p βd j
2

4. aENET: Pα βd = α j 1
p ad j βd j + (1 − α) j 1

p βd j
2

βd,j is the coefficient for the j-th covariate in the d-th dataset. The intuitive appeal of 

adaptive weights is that they allow differential penalization of each covariate based on 

an initial estimate of the regression coefficient vector βd
0
 (smaller βd, j

0  implies a harsher 

penalty on βd,j). Moreover, adaptive penalties are known to address estimation and selection 

consistency issues that have been observed for non-adaptive penalties (Zou, 2006; Zou and 

Zhang, 2009). Here, the adaptive weight ad, j = βd, j
0 + 1/n

−γ
 for some γ > 0, where βd, j

0

is an initial estimate of βd,j, is often determined from ordinary least squares (OLS) or 

maximum likelihood estimation when p is smaller than n. If p is larger than n, βd, j
0  can be 

obtained using LASSO or ENET depending on the correlation structure of the predictors. 

For the purposes of this paper, we use ENET initial values to calculate the adaptive weights 

for both aLASSO and aENET. To avoid tuning on γ, we follow Zou and Zhang (2009), 

which fixes γ = ⌈2v/1 − v⌉ + 1 where v = log(p)/log(n). The 1/n term prevents division by 

zero for initial regression coefficient estimates that are exactly equal to zero.

For illustrative purposes, suppose that there are three imputed datasets and that LASSO is fit 

separately on each imputed dataset. Furthermore, assume that Xd is an n × 2 matrix for all 
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d = 1, 2, 3, i.e., we are applying LASSO shrinkage to coefficients of only two covariates. 

Figure 1 visualizes the geometry of the constrained region in this hypothetical scenario. As 

shown in the figure, the maximum likelihood estimates for each of the imputed datasets are 

slightly different and, when shrunk to the constrained region, lead to two cases: (i) βd, 1 = 0
and βd, 2 ≠ 0 and (ii) βd, 1 ≠ 0 and βd, 2 = 0. This toy example illustrates the fundamental 

problem of trying to harmonize variable selection across imputed datasets without borrowing 

information across imputed datasets.

2.2 Stacked objective functions

In a stacked objective function, we sum the loss functions for each of the imputed datasets 

together and jointly optimize the collective objective function:

θ = argmin
θ

− 1
n d 1

D

i 1

n
logL θ Y d i Xd i λPα(β) (2)

Note that θ is not indexed by d. This implies that optimizing the pooled objective function 

will result in one estimated parameter vector θ, thereby enforcing uniform selection across 

all imputed datasets.

A nice feature of the stacked objective function is that optimization is straightforward. 

Namely, optimization of the stacked objective function is equivalent to stacking the 

imputed datasets and fitting the desired penalized regression algorithm on the stacked 

imputed datasets with existing software. Therefore, the stacked objective function provides 

a framework for pooling penalized regression estimates across imputed datasets for a 

general class of objective functions. However, stacking all imputed datasets can be viewed 

as artificially increasing the sample size. A common way to address this is to add an 

observation weight, oi = 1/D, so that the total weight for each subject in the stacked dataset 

sums up to one. An alternative observational weight specification, proposed in Wan et al. 

(2015), is oi = fi/D, where fi is the number of observed predictors out of the total number of 

predictors for subject i, which accounts for varying degrees of missing information for each 

subject. That being said, upweighting subjects with less missingness and downweighting 

subjects with more missingness can, in some sense, be viewed as making the optimization 

more like complete-case analysis, which might be problematic for Missing at Random 

(MAR) and Missing not at Random (MNAR) scenarios. Going forward, we consider both 

equal weights (oi = 1/D) and the observation weights proposed in Wan et al. (2015) (oi = 

fi/D). The weighted stacked objective function can be written as:

θ = argmin
θ

− 1
n d 1

D

i 1

n
oilogL θ Y d i Xd i λPα(β) (3)

In (3), we directly sum the log-likelihoods ignoring the correlation for the same observation 

across all imputed datasets. This is not a problem for point estimation. Averaging over 

the number of imputed datasets D can be viewed as obtaining the expected log-likelihood 
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conditional on the observed data and then subsequently averaging over all n observations 

leads to the conditional log-likelihood given the observed data. This strategy of defining 

an objective function summed across correlated imputed datasets is well-founded in the 

statistical literature on missing data (Wang and Robins, 1998; Robins and Wang, 2000). 

Ignoring the dependence between these datasets will have an impact on estimation of 

standard errors, but the coefficient estimator will still be consistent (Wang and Robins, 1998; 

Robins and Wang, 2000).

From this stacked approach, we extend the penalty functions to LASSO, aLASSO, ENET 

and aENET. When equal weights are used, the names for different versions of the stacked 

methods are as follows:

1. Stacked LASSO (SLASSO): Pα β = j 1
p βj

2. Stacked adaptive LASSO (SaLASSO): Pα β = j 1
p aj βj

3. Stacked elastic net (SENET): Pα β = α j 1
p βj + (1 − α) j 1

p βj
2

4. Stacked adaptive elastic net (SaENET): Pα β = α j 1
p aj βj + (1 − α) j 1

p βj
2

where aj = β j + 1/(nD) −γ and β j is estimated through SENET. Following Zou and Zhang 

(2009), γ is fixed to be 2v/1 − v + 1, where v = log(p)/log(nD).

When oi = fi/D, the penalized methods are named SLASSO(w), SaLASSO(w), SENET(w) 

and SaENET(w), respectively. Adaptive weights for the stacked approach with the 

observation weights are calculated using SENET(w).

2.3 Grouped objective functions

An alternative to the stacked objective function is the grouped objective function. This 

method imposes uniform variable selection across imputed datasets by adding a group 

LASSO penalty across imputed datasets (Chen and Wang, 2013; Geronimi and Saporta, 

2017; Yuan and Lin, 2006). The optimizer of the grouped objective function can be 

mathematically expressed as:

θ1, …, θD = argmin
θ1, …, θD

− 1
n d 1

D

i 1

n
logL θd Y d i Xd i λP β1 β2 βD (4)

where λ ∈ (0, ∞) is a tuning parameter. Chen et al. (2013) originally formulated a special 

case of the grouped objective function known as MI-LASSO, where the penalty function is:

P β1, β2, …, βD =
j 1

p

d 1

D
βd j

2

In the grouped objective function, the parameter vector is now indexed by d, meaning that 

θ1 ≠ … ≠ θD. Although the θd’s are not identical, for any fixed j, the group LASSO penalty 
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jointly shrink all βd,j’s to zero, i.e. β1, j = … = βD, j = 0. This allows for uniform selection 

across imputed datasets but also allows for variability in the non-zero estimated coefficients 

across imputed datasets. Based on Chen et al. (2013), we consider the following penalties:

1.
Group LASSO (GLASSO): P β1, β2, …, βD =

j 1

p
d 1
D βd j

2

2. Group adaptive LASSO (GaLASSO): P β1, β2, …, βD = j 1
p aj d 1

D βd j
2

where aj = d 1
D

βd j
2 + 1/(nD)

−γ
⋅ βd, j is estimated from GLASSO, γ = ⌈2v/1 − v⌉ + 1, 

and v = log(pD)/log(nD) (Zou and Zhang, 2009).

Remark: We do not extend the grouped LASSO based approaches to grouped ENET based 

approaches because grouping itself provides constraints similar to the ENET penalty. How to 

effectively account for correlations among predictors using the grouped penalty remains an 

open question.

3 Optimization

In this section, we outline the optimization routines for SaENET(w) and GaLASSO with 

binary outcomes. To optimize the SaENET(w) objective function, we use local quadratic 

approximation coupled with a cyclic coordinate descent algorithm (Friedman et al., 2010). 

To obtain an optimizer of the GaLASSO objective function, we use a MM algorithm 

combined with block coordinate descent updates to handle the group LASSO component 

of the penalty function. The other objective functions listed in Section 2 are special cases 

of SaENET(w) and GaLASSO, and therefore can be optimized with minor simplifications 

(see Figure 2). Namely, when α = 1, SaENET(w) reduces to SaLASSO(w), and SENET(w) 

reduces to SLASSO(w). Furthermore, when aj = 1 for j = 1, 2, .., p, SaENET(w) reduces to 

SENET(w) and GaLASSO reduces to GLASSO. Optimizing the stacked objective function 

with equal weights can be achieved by setting oi = 1/D.

3.1 Optimization of SaENET(w)

Without loss of generality, suppose that the variables in the design matrix are 

standardized after stacking all the imputed datasets. That is, d 1
D

i 1
n xd ij = 0, 

1
n d 1

D
i 1
n xd ij

2 1 , for j = 1, 2, …, p. Let η = η1
T , η2

T , …, ηD
T T

 be the linear predictor 

based on θ = μ, βT T
 such that ηd, i = μ + xd, i

T β. Then the sum of the weighted loss functions 

can be expressed as:

L(η) = 1
n d 1

D

i 1

n
oi yd iηd i log 1 exp ηd i

Let η(t) denote the linear predictor at the t-th iteration. Following Friedman et al. (2010), we 

use a Taylor expansion at η(t) to construct a quadratic approximation to the loss function:
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LQ η ∣ η(t) = 1
2n d 1

D

i 1

n
oiwd i yd i μ xd i

T β
2

C η(t) 2

where

yd, i = μ(t) + xd, i
T β(t) + yd, i − p xd, i

p xd, i 1 − p xd, i
(5)

is the working response, wd, i = p xd, i 1 − p xd, i  is a subject weight that is specific to each 

imputed dataset, and

p xd, i = P Yd, i = 1 ∣ Xd, i = xd, i = 1 + exp − μ(t) + xd, i
T β(t) −1 .

Going forward we will use, OQ = LQ η ∣ η(t) + λPα(β), as shorthand notation for the 

objective function after quadratic approximation. We then use coordinate descent to solve:

argmin
θ

OQ = argmin
θ

LQ η ∣ η(t) + λPα(β)

The derivative of the approximate objective function with respect to the intercept parameter 

is:

∂OQ
∂μ = − 1

n d 1

D

i 1

n
oiwd i yd i μ xd i

T β = − 1
n d 1

D

i 1

n
oiwd i yd i xd i

T β

1
n d 1

D

i 1

n
oiwd iμ

Let z0 = d 1
D

i 1
n oiwd i yd i xd i

T β . Then μ can be updated as:

μ(t + 1) z0

d 1
D

i 1
n oiwd i

(6)

If βj > 0,

∂OQ
∂βj

= − 1
n d 1

D

i 1

n
oiwd ixd ij yd i μ xd i( j)

T β( j)
1
n d 1

D

i 1

n
oiwd ixd ij

2 βj λαaj 2λ(1

α)βj

where xd,i(−j) refers to the value of the covariate vector for the i-th observation in the 

d-th imputed dataset after removing the j-th covariate, and β(−j) refers to the regression 
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coefficient vector β without the j-th entry. If βj < 0 then the derivative of OQ with respect 

to βj is the same as the derivative when βj > 0, the only exception being that the λαaj term 

becomes −λαaj. Setting zj = d 1
D

i 1
n oiwd ixd ij yd i μ xd i( j)

T β( j) , then βj can 

be updated as:

βj
(t + 1) S 1

nzj, λαaj
1
n d 1

D
i 1
n oiwd ixd ij

2 2λ(1 α)
(7)

where S(z, λ) is the soft-thresholding operator:

S(z, λ) =
0 if z ≤ λ
z − λ ifz > λ
z + λ ifz < − λ

A summary of the optimization routine for SaENET(w) is presented in Algorithm 1. 

One thing to note is that we never directly compute zj after each update of βj. A more 

computationally efficient approach is to update zj through the residual rd, i = yd, i − μ − xd, i
T β. 

Specifically,

zj
d 1

D

i 1

n
oiwd ixd ijrd i +

d 1

D

i 1

n
oiwd ixd ij

2 βj
(t)

rd, i rd, i′ − xd, ij βj
(t) − βj

(t + 1)
(8)

where rd, i′  indicates the previous estimate of rd,i (we do not use the (t) superscript 

notation here because rd,i is updated multiple times within the same iteration). Updating 

the intercept parameter μ is similar, in that we assign rd, i rd, i′ − μ(t) − μ(t + 1)  and update 

z0 accordingly. Once a coefficient is shrunk to zero, it will stay at zero for the remaining 

iterations.
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3.2 Optimization of GaLASSO

Although Chen and Wang (2013) initially proposed the idea of grouped objective functions, 

their optimization procedure relies on a local quadratic approximation argument to rewrite 

the grouped objective function as the sum of D separate ridge regressions. Because the 

ridge penalty does not shrink regression coefficient estimates all the way to zero, the user is 

then forced to threshold the resulting regression coefficient estimates in an ad hoc manner. 

Another limitation of the algorithm proposed in Chen and Wang (2013) is that they only 

consider continuous outcome variables. In many biomedical applications, including our 

motivating example, the outcome is a binary indicator of disease status. To address both of 

these concerns, we developed a MM algorithm for GaLASSO with binary outcome data. The 

primary computational advantage of the MM-Algorithm is that it allows us to transform the 

optimization of a non-linear loss function into an optimization of a linear function, called 

the majorizing function. Block coordinate descent can then be applied to optimize the linear 

majorizing function, where the blocks correspond to regression coefficient estimates for 

each covariate across all imputed datasets, i.e., (β1,j, β2,j, …, βD,j) for the j-th covariate.

Without loss of generality, we standardize the data by letting 

i 1
n xd ij 0, n−1

i 1
n xd ij

2 1, for j = 1, 2, …, p and d = 1, 2, …, D. Let 

η = η1
T , η2

T , …, ηD
T T

 be the linear predictor based on (θ1, θ2, …, θD), where θd = μd, βd
T T

, 

ηd = ηd, 1, ηd, 2, …, ηd, n
T  and ηd, i = μd + βd, 1xd, i1 + … + βd, pxd, ip. For binary outcome data, 

the sum of loss functions in (4) can be written as:

L(η) =
d 1

D

i 1

n
yd iηd i log 1 exp ηd i
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Let η(t) be the linear predictor at the t-th iteration, L(η(t)) be the loss function given η(t), and 

L η ∣ η(t)  be the majorizing function of L(η(t)) (Breheny and Huang, 2015), which can be 

expressed as:

L η ∣ η(t) = L η(t) + η − η(t) T ∇L η(t) + v
2 η − η(t) T η − η(t) .

Here, v = maxdmaxisupη ∇2Ld, i(η) = 0.25 (Breheny and Huang, 2015). Ignoring constants 

not involving η, L η ∣ η(t)  can be written in terms of (θ1, θ2, …, θD):

L η ∣ η(t) = L θ1, θ2, …, θD ∝ v
2n d 1

D

i 1

n
yd i μd xd i

T βd
2

where

yd, i = μd
(t) + xd, i

T βd
(t) + yd, i − p xd, i

v (9)

is the working response and

p xd, i = P Yd, i = 1 ∣ Xd, i = xd, i = 1 + exp − μd
(t) + xd, i

T βd
(t) −1

.

Going forward, let MQ = L θ1, θ2, …, θD + λP β1, β2, …, βD  denote the penalized majorizing 

function, which we want to optimize:

argmin
θ1, θ2, …, θD

MQ = argmin
θ1, θ2, …,θD

L θ1, θ2, …, θD + λP β1, β2, …, βD

To derive the block coordinate descent updates for the majorizing function optimization, 

we first need to introduce some new notation to distinguish coefficients within an imputed 

dataset from those across the imputed datasets. Let μ = (μ1, μ2, …, μD)T  be the vector of all 

intercept parameters across the imputed datasets, let β · , j = (β1, j, β2, j, …, βD, j)T , for j = 1, 2, 

…, p denote the vector of the j-th regression coefficients across all imputed datasets, and let 

βd, · = (βd, 1, βd, 2, …, βd, p)T  for d = 1, 2, …, D indicate the regression coefficients for the d-th 

imputed dataset. If we take the subdifferential of MQ with respect to μ, we get:

∂MQ
∂μ = − v

nz0 + vμ

where
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z0 =

i 1
n

y1 i x1 i
T β1

i 1
n

y2 i x2 i
T β2

⋮

i 1
n

yD i xD i
T βD

Since xd,ij, have been centered, the intercept can be updated as:

μ(t + 1)

1
n i 1

n y1 i

1
n i 1

n y2 i

⋮
1
n i 1

n yD i

(10)

We now derive the update for the block of coefficients β·,j, j = 1, …, p. If β·,j ≠ 0, the 

subdifferential of MQ with respect to β·,j is:

∂MQ
∂β ⋅ , j

= − v
nzj + vβ ⋅ , j + λaj

β ⋅ , j
β ⋅ , j

where

zj =

i 1
n x1 ij y1 i μ1 x1 i( j)

T β1 ( j)

i 1
n x2 ij y2 i μ2 x2 i( j)

T β2 ( j)
⋮

i 1
n xD ij yD i μD xD i( j)

T βD ( j)

Here, xd,i(−j) is the vector of covariates for the i-th observation in the d-th dataset after 

removing xd,ij, and βd,(−j) is the corresponding vector of regression coefficients. The form 

of the partial derivative with respect to β·,j indicates that the β·,j update must lie on the line 

segment joining the zero vector, 0, and zj. Therefore, β·,j can be updated as:

β . , j
(t + 1) 1

vS v
n zj , λaj

zj
zj

(11)

As with SaENET(w), we do not directly calculate zj but use the residual rd,i to update zj. Let 

rd, i = yd, i − μd − xd, i
T βd, ⋅ . Then
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zj

z1, j
z2, j

⋮
zD, j

=

i 1
n x1 ijr1 i nβ1 j

(t)

i 1
n x2 ijr2 i nβ2 j

(t)

⋮

i 1
n xD ijrD i nβD j

(t)

(12)

rd, i rd, i′ − xd, ij βd, j
(t) − βd, j

(t + 1)

Updating the intercept parameter μ is similar, in that we assign rd, i rd, i′ − μd
(t) − μd

(t + 1)

and update z0 accordingly. Once the block of regression coefficients corresponding to the 

j-th covariate is shrunk to zero, it will stay at zero for the remaining iterations. A summary 

of the optimization routine is described in Algorithm 2.

3.3 Tuning parameters

The implementation of SaENET(w) and GaLASSO in the miselect package sets tuning 

parameter values based on a 5-fold cross-validation routine combined with a “one-standard-

error” rule (Hastie et al., 2009, 2015). More specifically, GaLASSO chooses the largest 

λ, such that the cross-validation error is within one standard error of the minimum cross-

validation error. SaENET(w) selects an (α, λ) pair by first identifying all dyads whose 

cross-validation errors are within one standard error of the minimum cross-validation error, 

and then picking the (α, λ) pair with the largest L1 penalty, i.e, λα. For both GaLASSO 

and SaENET(w), the default sequence for λ ranges from λmin to λmax on the log scale 

where λmax is chosen to be the smallest value where all the coefficients are shrunk to zero, 

and λmin = 10−6λmax. Since α ∈ [0, 1], then for SaENET(w) we can choose a sequence of 
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values, say (0.2, 0.4, …, 0.8, 1), to fully explore the tradeoff between L1 and L2 shrinkage. 

When the non-adaptive methods are used, i.e. GLASSO, SENET(w), SLASSO(w), we set 

λmin = 10−3λmax. The reason that λmin is smaller for the adaptive methods is to prevent 

large adaptive weights from overwhelming the overall shrinkage.

One caveat with cross-validation to select tuning parameters for the stacked objective 

function approach is that, by stacking the imputed datasets on top of one another, there are 

now D rows corresponding to the same subject. Therefore, if the D rows corresponding to 

the same subject are distributed across the validation folds, then we are prone to overfitting. 

To prevent this issue, we restrict the fold assignment such that all of the rows corresponding 

to the same subject are assigned to a single validation fold.

4 Data example

Our motivating example is derived from data in the University of Michigan ALS Patient 

Biorepository which aims to identify environmental risk factors associated with ALS (Su 

et al., 2016; Goutman et al., 2019; Yu et al., 2014). ALS is progressive disease primarily 

involving motor neuron cells in the brain and spinal cord leading to weakness of voluntary 

muscles and death within 2-4 years due to respiratory failure (Goutman, 2017). ALS has 

a complex etiology driven by the combination of genetic susceptibility and environmental 

exposures (Paez-Colasante et al., 2015; Goutman et al., 2018; Al-Chalabi and Hardiman, 

2013). In this particular study we are interested in characterizing the relationship between 

persistent organic pollutant (POP) exposure and ALS susceptibility. In total, 167 ALS cases 

and 99 healthy controls were recruited between 2011 and 2014. All participants provided 

written informed consent and the study was IRB approved (Su et al., 2016; Goutman et 

al., 2019). Participants provided their weight and height measurements at the time of study 

enrollment and 5 years prior to enrollment and their educational attainment. Plasma samples 

were collected from each study participant to measure 122 potentially neurotoxic POPs, 

which can be broadly partitioned into three chemical classes: organochlorine pesticides, 

polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Of the 122 

POPs, a subset of 23 POPs with less than 60% non-detects were used for further analysis. 

More information regarding data collection and study protocols can be found in (Su et al., 

2016; Goutman et al., 2019).

From a statistical perspective, the target model of interest is a penalized logistic regression 

model, where the outcome is ALS case/control status and the design matrix of predictors 

and covariates contains the 23 log-transformed POPs, age, sex, body mass index (BMI), 

rate of BMI change over the five years prior to survey consent, and education. The 

confounders are selected based on existing ALS literature (Chio et al., 2009). Elastic 

net regularization is of particular interest here, because many of the POPs have medium 

pairwise correlations with one another (Figure S1) (Goutman et al., 2019). We only penalize 

regression coefficients corresponding to POPs to ensure that adjustment covariates are 

retained in the final model. If we look at the percent missingness (Table S2), we observe that 

9 of the 23 variables have more than 30% below the detection limit and 24.4% of subjects 

have incomplete BMI. Complete-case analysis in this context is infeasible, as every control 

is missing at least one covariate or has at least one measured POP below its respective 
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detection limit. POP concentrations below their respective detection limits were imputed 10 

or 50 times conditional on case/control status following the censored likelihood multiple 

imputation strategy outlined in Boss et al. (2019). After imputing the exposure non-detects, 

multiple imputation by chained equations (mice) was used to impute the missing adjustment 

covariates (Van Buuren and Groothuis-Oudshoorn, 2011).

To illustrate the problem with fitting separate penalized regression routines, we first apply 

LASSO, aLASSO, ENET, and aENET to each imputed dataset and calculate the proportion 

of imputed datasets in which each variable is selected. In Table 1, we summarize the results 

for scenarios with 10 and 50 imputed datasets. The final active set for each method is 

determined using the ad hoc rules outlined in Wood et al. (2008), namely (i) a variable 

is considered selected if it is selected in all imputed datasets, (ii) a variable is considered 

selected if it is selected in at least one imputed dataset, (iii) a variable is considered 

selected if it is selected in at least half of the imputed datasets. Note that depending on 

whether we use (i), (ii), or (iii), the number of selected POPs changes, especially when D 
= 50. For example, if ad hoc combining rule (i) is used, then ENET selects PBDE 153, 

pentachlorobenzene (PeCB), trans-chlordane, cis-nonachlor, and PCB 151. However, ad hoc 

combining rule (ii) additionally selects PBDE 28, PBDE 99, PCB 110, PCB 174, and PCB 

180. As expected, the final active set determined by aLASSO and aENET is much more 

sparse than their non-adaptive counterparts; if ad hoc combining rule (iii) is used then 

aLASSO and aENET only select PeCB and cis-nonachlor.

A more subtle point that deserves further comment is that non-uniform POPs selection 

across imputed datasets makes it difficult to obtain final regression coefficient estimates. For 

example, consider aLASSO when D = 50, which selects PeCB in all 50 imputed datasets. 

Although PeCB is always selected, the interpretation of the regression coefficient for PeCB 

is conditional on the other selected exposures. That is, although PeCB is selected for all 

imputed datasets, the PeCB regression coefficient estimates are not necessarily comparable 

across imputed datasets because they condition on different sets of selected exposures.

The regression coefficient estimates obtained from the stacked and grouped objective 

function methods with 50 imputed datasets are in Table 2 and with 10 imputed datasets are 

in Table S3. Because the grouped methods produce different regression coefficient estimates 

across imputed datasets, the final estimates are the average of the regression coefficient 

estimates across imputed datasets. All coefficient estimates are positive, which is consistent 

with the hypothesis that higher POP exposure positively associates with a higher ALS risk. 

All of the non-adaptive methods select PBDE 153, PeCB, trans-chlordane, cis-nonachlor, 

and PCB 151. Similarly, the adaptive methods all select PeCB and cis-nonachlor, however 

the equally weighted stacked objective functions additionally select PCB 151 while the 

stacked objective functions with observational weights additionally select PBDE 153, trans-

chlordane and PCB 151. Since all methods select PeCB and cis-nonachlor, we conclude that 

further studies should be conducted to assess the PeCB and cis-nonachlor neurotoxicity.
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5 Simulation

We now evaluate the performance of the stacked methods and the grouped methods 

mentioned in Section 2, including SLASSO, SaLASSO, SENET, SaENET, SLASSO(w), 

SaLASSO(w), SENET(w), SaENET(w), GLASSO, and GaLASSO.

5.1 Simulation setting

We simulate 1000 datasets of size n containing outcome Y and p covariates X under 4 

different cases. For Cases 1 and 2 we take n = 500 and p = 20, and for Cases 3 and 4 

we take n = 1000 and p = 100. In all cases, covariates are generated from a multivariate 

normal distribution with zero mean and unit variance. The correlation structure of the 

covariates is block-diagonal, in order to mimic the correlation structure of the POPs. A more 

comprehensive breakdown of the correlation structure is detailed in Table 3.

Given X, we generate a binary Y from

logit(P(Y = 1 ∣ X)) = β0 + β1X1 + … + βpXp

The true value of β is specified according to different simulation cases, where Cases 1 and 

3 correspond to concentrated signals and Cases 2 and 4 correspond to distributed signals. 

Here, signals are concentrated if there is only one non-null coefficient in a group, and 

signals are distributed if there is more than one non-null coefficient in a group. Regression 

coefficient magnitudes are set to fix the prevalence of Y = 1 at about 50% and maintain the 

Cox-Snell pseudo-R2 at approximately 0.5. The four simulation settings are summarized in 

Table 3.

Missing values are generated under the Missing at Random (MAR) assumption (Little and 

Rubin, 2019). In all cases the outcome and the last covariate Xp are fully observed and the 

missingness indicator Mj for covariate Xj is generated from the logistic regression model

logit Pr Mj = 1 = α0j + α1jXp + α2jY

where Rj = 1 indicates that covariate Xj is missing, and α0j, α1j and α2j are chosen to control 

the percentage of missingness for Xj. For Case 1 and Case 2, about 25% of subjects are 

missing {X1, …, X5}, 35% are missing {X6, …, X13}, 45% are missing {X14, …, X17} and 

55% are missing {X18, X19}. For Case 3 and Case 4, about 25% of subjects are missing 

{X1, …, X30}, 35% are missing {X31, …, X60}, 45% are missing {X61, …, X82}, 55% 

are missing {X83, …, X95}, and 60% are missing {X96, …, X99}. In total, less than 5% 

of subjects have complete data, and about 13% of subjects have more than 90% data for 

all covariates. R package mice (Van Buuren and Groothuis-Oudshoorn, 2011) is used to 

multiply impute the missing data using predictive mean matching. Each simulated dataset 

is imputed 10 or 50 times. To obtain independent imputed values, we set the number of 

iterations to 30 in mice. The stacked and grouped methods are then applied to perform 

variable selection and parameter estimation.
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5.2 Simulation results

We evaluate simulation results in terms of the following four metrics. In the following 

definitions, T and F are the number of non-null and null coefficients in the data generating 

model, respectively, R is the total number of simulation runs, β j
r is the coefficient estimate 

for βj in the r-th run. Since the estimates for the j-th coefficient by GLASSO and GaLASSO 

are different across imputed datasets, the mean 1
D d 1

D βd j
r  is used to approximate β j

r .

• Sensitivity (SENS) = 1
RT r 1

R of selected non null coefficients in tℎe rtℎrun

• Specificity (SPEC) = 1
RF r 1

R ( of selected null coefficients in tℎe rtℎrun)

• Mean squared error for non-null coefficients 

MSEnon‐null = 1
R r 1

R

j 1

p
β j

r βj
2
I βj 0

• Mean squared error for null coefficients 

MSEnull = 1
R r 1

R

j 1

p
β j

r βj
2
I βj 0

Sensitivity and specificity capture the accuracy of variable selection and vary between 0 

and 1, with larger values indicating better performance. The MSEs quantify the estimation 

accuracy with smaller values being preferred.

Figure 3–4 and Table S4 present sensitivity, specificity, MSE for non-null coefficients, and 

MSE for null coefficients for all four cases with 50 imputed datasets. Using SLASSO as 

the benchmark, the ratio to SLASSO for each measure is presented in Table S5. Overall, 

compared to the corresponding non-adaptive methods, the adaptive methods perform better 

with respect to estimation and selection. Specifically, the adaptive methods have similar 

sensitivity but considerably higher specificity, and considerably smaller MSE for non-null 

coefficients, except for GaLASSO under Case 4. For null coefficients, the adaptive methods 

have similar MSE to those of non-adaptive methods under Cases 1 and 2, and noticeably 

larger MSE under Cases 3 and 4, except for GaLASSO under Cases 3 and 4. Adaptive 

methods have high sensitivity across all cases and high specificity under Cases 1 and 2. 

Under Cases 3 and 4, GaLASSO has the highest specificity, followed by SaLASSO(w) and 

SaENET(w). The stacked methods with adaptive weights have smaller MSE for non-null 

coefficients than the grouped method with adaptive weights under all 4 cases. On the 

other hand, under Case 4, GaLASSO has the largest MSE for non-null coefficients and 

the smallest MSE for null coefficients, which is due to relatively low sensitivity and high 

specificity compared to other adaptive methods. In addition, the stacked approach performs 

better than the grouped approach in terms of estimation and selecting important variables. 

Compared to SLASSO, GLASSO has slightly lower sensitivity in all four cases, but has 

noticeably lower specificity in Cases 3 and 4. The MSE for non-null coefficients is larger 

for GLASSO than SLASSO in all four cases, in addition to the MSE for null coefficients in 

Cases 3 and 4, due to large variability in the coefficient estimates.
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The average runtime for each method is presented in Table 4. Compared to the grouped 

methods, the stacked methods are faster in all cases. SLASSO is 5.7 times faster than 

GLASSO in Case 1 when the sample size is small. When the sample size is large, i.e. Case 

3, SLASSO is 8.9 times faster than GLASSO. The adaptive methods have longer average 

runtimes than the non-adaptive methods because the adaptive methods require an elastic net 

initialization step to construct the adaptive weights.

To understand how the performance of these methods is affected by the number of imputed 

datasets, we provide simulation results for a smaller number of 10 imputed datasets in the 

supplementary materials and compare sensitivity, specificity, MSE for nonnull coefficients, 

and MSE for null coefficients (Figure S2–S3, Table S6–S7). Overall, increasing the number 

of imputed datasets improves the MSE for both non-null and null coefficients, but has 

little impact on sensitivity and specificity, especially when p is large. The improvement 

coming from an increased number of imputed datasets is more significant for the grouped 

methods than the stacked methods. For example, in Case 3, the MSE for non-null and 

null coefficients for SLASSO with 10 imputed datasets are 1.07 and 1.22, respectively, and 

with 50 imputed datasets are 1.04 and 1.08, respectively. While for GLASSO, the MSE for 

non-null and null coefficients with 10 imputed datasets are 4.09 and 42.27, respectively, and 

with 50 imputed datasets are 3.30 and 29.70, respectively.

6 Discussion

In this paper, we elucidated the difference between stacked and grouped pooled objective 

functions, which are both designed to achieve uniform variable selection across multiple 

imputed datasets. The stacked pooled objective function assumes that the underlying 

true signals are the same across imputed datasets, including the signal magnitude, while 

the grouped pooled objective function assumes uniform signal selection but allows for 

different active signal magnitudes across imputed datasets. We extended existing methods 

to handle binary outcomes, developed a MM algorithm combined with block coordinate 

descent updates to optimize grouped pooled objective functions for LASSO and aLASSO 

regularization, and derived cyclic coordinate descent algorithm for the stacked pooled 

objective functions with ENET and aENET regularization. Algorithms for implementing 

the stacked and grouped approaches outlined in Section 2, for both continuous and binary 

outcomes, are available in the miselect R package on CRAN.

From a practical perspective, there are several reasons that one might prefer stacked over 

grouped objective functions. Based on our simulations, the overall MSE for estimates 

generated by optimizing stacked objective functions was either smaller than or equal 

to the estimates generated by optimizing the grouped objective function, provided that 

adaptive weighting is used. We also observed that the total runtime for optimizing stacked 

pooled objective functions is noticeably lower compared to the grouped objective function 

optimization routine. An additional practical consideration is that the stacked objective 

functions are much easier to extend beyond ENET penalization. For example, if one wanted 

to use a hierarchical interaction detection penalty, such as hierNet (Bien et al., 2013), 

one would only need to download the hierNet package from CRAN, and use the existing 

hierNet implementation on the stacked imputed datasets. Conversely, grouped methods 
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would necessitate the development of additional algorithms to optimize an objective 

function with both a group LASSO penalty and a hierarchical interaction detection penalty. 

Lastly, although we did not observe a substantial difference between equal weights and the 

observational weights proposed by Wan et al. (2015), there are still conceptual concerns with 

having the observational weights depend on the fraction of missingness. As we mentioned 

earlier, upweighting observations with more data artificially moves the analysis in the 

direction of complete-case analysis, which is known to be biased under MAR and MNAR 

missing data mechanisms.

The positive ALS-POPs associations identified in the data example add to a growing 

body of literature on environmental risk factors for ALS (Kamel et al., 2012; McGuire 

et al., 1997; Sutedja et al., 2008). A major advantage of the data collected in this 

study is that POP concentrations were measured in plasma samples, rather than through 

surveys. Since ALS results from the complex interplay of multiple risks combined with 

neurotoxic environmental exposures (the gene-time-environment hypothesis), we contend 

that additional work is needed to more fully understand gene and pesticide exposure 

interaction (Paez-Colasante et al., 2015; Goutman et al., 2018; Al-Chalabi and Hardiman, 

2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Example of LASSO fit separately on each imputed dataset with two predictor variables. β1 

and β2 represent the first and second coefficient, respectively. β(d)
 denotes the maximum 

likelihood estimate in the d-th imputed dataset without the constraint (d = 1, 2, 3). The 

diamond-shaped areas around the origin represent the resulting constrained regions for the 

imputed datasets. The contours surrounding the maximum likelihood estimates represent the 

loss function.
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Figure 2: 
Illustration of how to obtain penalized pooled objective function methods, which are special 

cases of SaENET(w) and GaLASSO.
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Figure 3: 
Simulation results for Case 1 (top panel) and Case 2 (bottom panel) where n=500 and p=20 

for 50 imputed datasets. Sensitivity (SENS) and specificity (SPEC) are on the left and MSE 

for non-null and null coefficients are on the right.
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Figure 4: 
Simulation results for Case 3 (top panel) and Case 4 (bottom panel) where n=1000 and 

p=100 for 50 imputed datasets. Sensitivity (SENS) and specificity (SPEC) are on the left and 

MSE for non-null and null coefficients are on the right.
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Table 1:

The proportion of imputed datasets in which each POP is selected. Note that only 10 out of the 23 POPs are 

listed because the other 13 POPs were never selected by LASSO, aLASSO, ENET, or aENET. Bolded entries 

indicate a selection proportion over 0.50 and dashes denote a selection proportion of zero. D is the number of 

imputed datasets. The total number of POPs in the final active set, as determined by three ad hoc combining 

rules, are presented in the rows titled, Union (in at least one dataset), 50%-cutoff (in over 50% datasets), and 

Intersection (in all datasets).

POPs
LASSO aLASSO ENET aENET

D=10 D=50 D=10 D=50 D=10 D=50 D=10 D=50

PBDE28 - - - - 0.1 0.1 - -

PBDE99 - - - - - 0.04 - -

PBDE153 1 1 - 0.02 1 1 - 0.02

PeCB 1 1 1 1 1 1 1 1

trans-chlordane 0.9 0.94 0.1 0.08 1 1 0.1 0.08

cis-nonachlor 1 1 1 1 1 1 1 1

PCB 110 - 0.02 - - - 0.06 - -

PCB 151 0.9 0.96 - 0.04 1 1 - 0.06

PCB 174 - 0.02 - - 0.1 0.08 - -

PCB 180 - - - - - 0.02 - -

Union 5 7 3 5 7 10 3 5

50%-cutoff 5 5 2 2 5 5 2 2

Intersection 3 3 2 2 5 5 2 2
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Table 2:

Regression coefficient estimates for five POPs collected as part of the University of Michigan ALS Patients 

Biorepository case-control study (167 ALS cases and 99 healthy controls). Results are based on 50 imputed 

datasets. Only five of the 23 POPs are displayed because the other 18 POPs were not selected by any method.

POPs SLASSO SaLASSO SENET SaENET SLASSO 
(w)

SaLASSO 
(w)

SENET 
(w)

SaENET 
(w) GLASSO GaLASSO

PBDE 153 0.083 - 0.092 - 0.086 - 0.095 - 0.075 -

PeCB 0.331 0.744 0.367 0.715 0.284 0.670 0.322 0.657 0.299 0.968

trans-
chlordane

0.074 - 0.109 - 0.073 0.034 0.109 0.036 0.044 -

cis-
nonachlor

0.247 0.576 0.303 0.558 0.253 0.615 0.309 0.601 0.198 0.191

PCB151 0.080 0.156 0.128 0.151 0.057 0.189 0.111 0.184 0.038 -

# selected 5 3 5 3 5 4 5 4 5 2

# 
removed

18 20 18 20 18 19 18 19 18 21
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Table 3:

Data generation details for all simulation settings. In the correlation structure column, covariates within the 

same parentheses have an exchangeable pairwise correlation structure with one another, but are independent 

from all other covariates. For Case 1 and Case 2, n = 500, p = 20, approximately 25% subjects are missing 

{X1, …, X5}, 35% are missing {X6, …, X13}, 45% are missing {X14, …, X17}, and 55% are missing {X18, 

X19}. For Case 3 and Case 4, n = 1000, p = 100, about 25% subjects are missing {X1, …, X30}, 35% are 

missing {X31, …, X60}, 45% are missing {X61, …, X82}, 55% are missing {X83, …, X95}, and 60% are 

missing {X96, …, X99}. The No. Signals (%) column refers to the number of covariates that have non-null 

coefficients and the corresponding relative percentage.

Correlation structure Signal 
structure

No. Signals 
(%) Signals

Case 1
(X1, X2, X3) as 0.9
(X6, X7, X8) as 0.5
(X11, X12, X13) as 0.3

Concentrated 5 (25%) β1 = 2, β4 = 1.5, β7 = 1.5, β11 = 1, β14 = 1;

Case 2
(X1, X2, X3) as 0.9
(X6, X7, X8) as 0.5
(X11, X12, X13) as 0.3

Distributed 5 (25%)  β1 = 2, β2 = 1, β4 = 2, β7 =1, β11 = 1

Case 3
(X1, …, X6) as 0.9
(X11, …, X16) as 0.5
(X21, …, X26) as 0.3

Concentrated 10 (10%)
β2 = 2, β7 = 0.8, β9 = 0.8, β12 = 0.5, β17 = 1.5, β27 = 1, β37 = 0.8, β47 = 
0.4, β48 = 1, β49 = 1;

Case 4
(X1, …, X6) as 0.9
(X11, …, X16) as 0.5
(X21, …, X26) as 0.3

Distributed 10 (10%)
β1 = 1.2, β2 = 0.8, β3 = 0.4, β4 = 0.4, β12 = 1.2, β13 = 1 β17 = 1.2, β27 = 
1, β37=1, β47 = 1;
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Table 4:

Average runtime (in minutes) of each method for 4 simulation cases with 10 imputed datasets (1000 

replications). Case 1 and Case 2 have 500 observations and 20 covariates. Case 3 and Case 4 have 1000 

observations and 100 covariates.

SLASSO SaLASSO SENET SaENET SLASSO 
(w)

SaLASSO 
(w)

SENET 
(w)

SaENET 
(w) GLASSO GaLASSO

Case 1 12.8 56.7 51.3 77.1 12.7 52.4 47.7 69.1 73.1 86.1

Case 2 15.6 65.7 57.8 94.4 16.3 62.3 55.1 85.8 106.0 126.7

Case 3 127.0 585.0 557.8 704.5 129.6 549.2 527.9 638.2 1129.1 1182.8

Case 4 219.9 830.5 769.3 1086.5 194.7 736.4 686.3 931.4 1417.5 1467.0
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