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Animal communication sounds exhibit complex temporal structure because of the amplitude fluctuations that comprise the
sound envelope. In human speech, envelope modulations drive synchronized activity in auditory cortex (AC), which correlates
strongly with comprehension (Giraud and Poeppel, 2012; Peelle and Davis, 2012; Haegens and Zion Golumbic, 2018). Studies
of envelope coding in single neurons, performed in nonhuman animals, have focused on periodic amplitude modulation
(AM) stimuli and use response metrics that are not easy to juxtapose with data from humans. In this study, we sought to
bridge these fields. Specifically, we looked directly at the temporal relationship between stimulus envelope and spiking, and
we assessed whether the apparent diversity across neurons’ AM responses contributes to the population representation of
speech-like sound envelopes. We gathered responses from single neurons to vocoded speech stimuli and compared them to si-
nusoidal AM responses in auditory cortex (AC) of alert, freely moving Mongolian gerbils of both sexes. While AC neurons
displayed heterogeneous tuning to AM rate, their temporal dynamics were stereotyped. Preferred response phases accumulated
near the onsets of sinusoidal AM periods for slower rates (,8Hz), and an over-representation of amplitude edges was appa-
rent in population responses to both sinusoidal AM and vocoded speech envelopes. Crucially, this encoding bias imparted a
decoding benefit: a classifier could discriminate vocoded speech stimuli using summed population activity, while higher fre-
quency modulations required a more sophisticated decoder that tracked spiking responses from individual cells. Together, our
results imply that the envelope structure relevant to parsing an acoustic stream could be read-out from a distributed, redun-
dant population code.
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Significance Statement

Animal communication sounds have rich temporal structure and are often produced in extended sequences, including the syl-
labic structure of human speech. Although the auditory cortex (AC) is known to play a crucial role in representing speech syl-
lables, the contribution of individual neurons remains uncertain. Here, we characterized the representations of both simple,
amplitude-modulated sounds and complex, speech-like stimuli within a broad population of cortical neurons, and we found
an overrepresentation of amplitude edges. Thus, a phasic, redundant code in auditory cortex can provide a mechanistic expla-
nation for segmenting acoustic streams like human speech.

Introduction
Animal communication sounds, including human speech, are
produced in extended sequences of “syllables,” or packets of in-
formation. The temporal structures of natural sounds are percep-
tually and behaviorally informative (Singh and Theunissen, 2003;

Peelle and Davis, 2012; Haegens and Zion Golumbic, 2018).
Studies in humans have established that slower rates of am-
plitude modulation (AM), below ;8 Hz, are correlated with
successful speech reception (Drullman et al., 1994a, b; Smith
et al., 2002; Ghitza, 2012). Fluctuations in sound envelope
drive rhythmic activity in auditory cortex (AC), and the fi-
delity of this signal correlates closely with speech compre-
hension (Giraud and Poeppel, 2012; Peelle and Davis, 2012;
Haegens and Zion Golumbic, 2018). Rhythmic tracking
(sometimes called entrainment) is thought to reflect the neu-
ral mechanism that parses the acoustic stream into segments,
which are subsequently used during phonemic processing.
Much of what is known about the neuronal mechanisms of
envelope processing in AC, however, comes from responses
to simplified, periodic AM stimuli, assessed through single-
unit (SU) recordings in animal models. Here, we asked how
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the temporal coding properties of single AC neurons con-
tribute to speech envelope processing.

Single-cell studies have established that AC neurons display
heterogeneous responses to AM rate (Schreiner and Urbas, 1988;
Eggermont, 1998; L. Liang et al., 2002; Joris et al., 2004; Malone
et al., 2007, 2013; Zhou and Wang, 2010; Yin et al., 2011; Hoglen
et al., 2018). At the low AM rates discussed above, many neurons
display phasic firing. Qualitatively, mean phases have been
observed to vary between cells (Joris et al., 2004). A recent study
of single units in squirrel monkeys using sinusoidal AM stimuli
reported that many cortical neurons showed similar phase prefer-
ences and predicted that population coding of speech envelopes
would be robust to indiscriminate pooling of cortical responses
(Downer et al., 2021). A primary goal of the current study was to
quantify the temporal relationship of spiking responses to both
simple AM and complex speech-like envelopes and to investigate
these encoding patterns in the context of decoding models.

To do so, we recorded from single AC neurons in awake ger-
bils and compared sinusoidal AM responses to those of vocoded
speech stimuli. Although AC neurons were sampled across the
tonotopic axis and were heterogeneous in terms of AM rate
tuning, their temporal dynamics were relatively stereotyped.
Spiking was biased toward the onsets of AM periods, illustrated
by a majority of cells showing mean phases falling in the first
90° of a sinusoidal period. The encoding bias in individual neu-
rons translated to an over-representation of amplitude edges in
the gross population signal. For all speech-like stimuli, a tran-
sient, coherent population response was observed at onset
edges. If a global neural signal sufficiently represents the enve-
lopes of complex sounds like speech, then the marginal benefit
of tracking individual neurons would be relatively small. Indeed,
stimuli evoking this onset-biased encoding pattern were success-
fully decoded from a single-trial population-averaged activity
vector, whereas stimuli without syllable-like envelopes required a
more sophisticated decoding strategy for classification. Taken to-
gether, the results suggest that the temporal structure of a contin-
uous sound stream, like speech, could be sufficiently captured by
a redundant, population-level signal.

Materials and Methods
Subjects
Electrophysiological data were obtained from adult Mongolian gerbils
(Meriones unguiculatus; N=5, 1 female). Animals were weaned at post-
natal day 30 from commercial breeding pairs (Charles River) and housed
on a 12/12 h dark/light cycle. Procedures related to the care and use of
animals were approved by the Institutional Animal Care and Use
Committee at New York University.

Stimuli
For the sinusoidal condition, the acoustic stimulus consisted of a contin-
uous stream of sinusoidally amplitude-modulated (AM) noise. AM
depth was 100%, and the modulation rate was switched every 1–2 s,
always at the trough/zero phase. Modulation rates were either periodic
at an AM rate of 2, 4, 8, 16, or 32Hz, or irregular: quasi-random sequen-
ces of individual periods drawn from this set of rates (Fig. 1A). The car-
rier was white noise filtered with a high pass cutoff of 100Hz and a low
pass cutoff of 1, 5, 10, 20, or 45 kHz, and mean level was either 45 or
60dB SPL. These parameters were adjusted via a brief characterization
protocol performed at the beginning of each session.

Vocoded speech stimuli were delivered to animals either after a be-
havioral session or on off-days (behavioral protocols discussed in section
below). Excerpts from Seuss books were recorded in a sound-proof
booth. Speech envelopes were extracted by low pass filtering (cutoff at
45Hz) of the Hilbert transform. These envelopes were clipped into six

stimuli, ranging from;1.5 to 6 s in duration, and then used to modulate
white noise with carrier and level parameters set to match those pre-
sented in the immediately preceding behavioral session. Vocoded speech
stimuli were presented pseudo-randomly in trial format with a 1-s inter-
val from offset to onset. Several analyses used 500-ms tokens extracted
from the full AM and vocoded speech stimuli. For more details, see
below, Population poststimulus time histograms (PSTHs).

Figure 1. Experimental design and methodology. A, The sinusoidal amplitude modulation
(AM) stimulus consisted of a continuous broadband noise for which amplitude was either
modulated or unmodulated. AM segments fluctuated periodically, at a single rate from 2 to
32 Hz, or irregularly, with individual periods from the same range presented in pseudoran-
dom order. Gerbils performed a detection task in which they could safely drink water from a
metal spout during all AM sounds. Unmodulated noise predicted a small electrical shock,
which subjects learned to avoid by withdrawing from the spout momentarily. B, Neural ac-
tivity was recorded in auditory cortex during task engagement, and single units (SUs) were
isolated offline. Waveforms of two units are shown on one shank of a 64-channel probe. C,
The two units were separated in principle component (PC) space. D, The autocorrelation of
spike times for each unit was confirmed to show a clean refractory period. E, The distribu-
tions of waveform amplitudes across the session were inspected to ensure that a majority of
spiking events were captured and that drift did not degrade unit quality. If all conditions
were met, the unit was labeled as a SU and included in further analyses. F, The width of
spike waveforms for all SU resulted in a clean bimodal distribution, which was used to sepa-
rate regular/broad spiking (RS) cells from narrow spiking (NS) cells.
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Gerbils were in a plastic testing cage within a sound-attenuating
booth (Industrial Acoustics) and observed through a webcam. Sounds
were presented from a calibrated tweeter (DX25TG05-04, Vifa) installed
1 meter directly above the testing cage. Calibration was performed using
a one-quarter inch free-field condenser microphone (Bruel & Kjaer) and
custom software (Daniel Stolzberg). Calibrations were verified with a
handheld spectrum analyzer (Bruel & Kjaer).

Behavior
Sinusoidal stimuli were presented to gerbils within the context of a
standard aversive detection task. Gerbils were placed on controlled water
access and trained to drink water continuously from a spout in the test-
ing cage in the presence of any AM sound. Occasionally, the sound level
held constant for 1.5 s, and a mild electrical shock would be delivered
through the metal spout during the final 200ms of these unmodulated
noise trials. Gerbils learned to avoid the shock by withdrawing momen-
tarily from the spout.

Stimulus presentation and timing of behavioral events were con-
trolled using custom software (ePsych, Daniel Stolzberg), working
in conjunction with an RZ6 multifunction processor (Tucker Davis
Technologies; TDT). Recording sessions lasted 10–30min, ending
when the animal was satiated or after a sufficient number of trials
were collected. All sessions analyzed showed good behavioral per-
formance, with a mean d9 of 2.8 (d9 range 1.4–4.5; mean hit rate =
68%, mean false alarm rate = 2%).

Electrophysiology
Surgery
After gerbils were trained in the behavioral task, a silicon probe
with either 16 or 64 recording sites was implanted in left auditory
cortex (Neuronexus, model A4x4-4mm-200-200-1250-H16 and
model Buzsáki64_5x12-H64LP_30mm). The probe was affixed to a
custom-made manual microdrive, with a screw that allowed the
electrode to be advanced parallel to the implantation plane. Probes
were inserted at a 25° angle on a mediolateral axis such that
advancement of the probe allowed sampling of multiple sites pass-
ing roughly tangentially through a cortical layer. Recording sites
were spaced along four shanks (model A4x4-4 mm-200-200-1250-
H16) or five shanks (model Buzsáki64_5x12-H64LP_30mm), with
200 mm between each shank, thus spanning the anterior/posterior
tonotopic axis of AC. The surgery was performed under isofluorane
anesthesia. Animals underwent one week of recovery before being
placed back on controlled water access.

Data acquisition and processing
Electrophysiological data were acquired from freely-moving animals
while they performed the aforementioned behavioral task using a wire-
less headstage and receiver (W16 or W64, Triangle Biosystems). Analog
signals were amplified and digitized at a sampling frequency of 24,414Hz
and transmitted to a digital signal processor (TDT; 16-channel recordings:
TB32 to RZ5; 64-channel recordings: PZ5 to RZ2) then sent to a PC for
storage and postprocessing.

Electrophysiological data underwent common average referencing
and were bandpass filtered at 300–5000Hz. An artifact rejection pro-
cedure was performed to remove noisy portions of the signal, for
instance from the electrical shock or extreme head movement. These
trials were excluded from analyses. Open-source spike sorting pack-
ages were used to extract and cluster spike waveforms (16-channel
recordings: UltraMegaSort 2000; 64-channel recordings: KiloSort),
and manual sorting was performed on the output of the algorithm.
All analyses were restricted to well-isolated single units (SUs). Unit
quality was verified using several metrics, including separation in
principal component space from other clusters, clear refractory peri-
ods, and waveform amplitudes above the noise floor throughout the
recording sessions (Fig. 1B–E).

Cell type assignment
All high-quality single units that survived the spike sorting process were
included in analyses; no response criteria were applied. Cells were labeled

as regular spiking (RS) or narrow spiking (NS) according to spike width
(Fig. 1F). The distribution of time from waveform trough to peak was
bimodal, and a boundary was placed at 0.43ms. This measure of cate-
gorization based on spike width was related to spontaneous firing rates
(FRs): mean spontaneous FR of cells labeled as RS was 4.1 spikes per
second, while mean baseline rate of NS cells was 13.3 spikes per second.
In cortical neurons, these measures and categorizations are commonly
thought to reflect excitatory and inhibitory neurons in cortex, respec-
tively (Wilson et al., 1994; Barthó et al., 2004; Mesik et al., 2015;
F. Liang et al., 2019).

Histology
The location of recording sites was confirmed to be in AC by histology.
Subjects were intraperitoneally administered an overdose of sodium
pentobarbital (150mg/kg) and perfused (0.01 M PBS, 4% paraformalde-
hyde). The brain was extracted and postfixed in 4% paraformaldehyde.
At the time of slicing, the brain was embedded in 3% agar and coronal
sections of 50mm were made on a vibratome (Leica). Sections were wet
mounted onto gelatin-subbed slides and inspected under an upright
microscope (Revolve Echo). Cytoarchitectonic features were used to find
the closest matching plate in the gerbil brain atlas (Radtke-Schuller et al.,
2016). While most brains were imaged using a fluorescent mounting so-
lution containing DAPI (Vector Laboratories), one brain underwent a
staining procedure for capturing images in bright field. In order to
increase contrast of cytoarchitectonic landmarks for bright field imaging,
we adapted a myelin staining procedure using Sudan Black (Ineichen et
al., 2017). Figure 2 displays the sections that contain AC, marked in yel-
low, according to the Radtke-Schuller atlas. The site of the probe can be
identified by perforations in the tissue and/or from damage at the dorsal
surface, resulting from atrophy over the course of weeks to months of
the chronic implantation. Perforations from the shanks of the probe are
clearly visible and well aligned with primary AC (A1). Because it is possi-
ble that some units in the dataset came from secondary auditory regions,
we refer to our recording site as AC.

Neural analyses
Basic response properties
Several traditional analyses were performed to assess the response prop-
erties of AC neurons to amplitude modulation stimuli. While spectral
tuning was not directly analyzed, neurons were sampled along the entire
tonotopic axis of AC, often simultaneously, as probe shanks spanned
600–800 mm anterior/posteriorly. Firing rate distributions were calcu-
lated from the average number of spikes emitted by each cell during the
1-s trials for each stimulus, and spontaneous rate from an epoch of
silence at the beginning of each recording session. The resulting histo-
grams were fit with log-normal distributions (Fig. 4A). The Kruskal–
Wallis test was used to assess differences between distributions.

Each neuron’s sinusoidal AM responses were characterized by tradi-
tional metrics. Firing rate (FR) was calculated for each periodic AM
stimulus (1-s duration). A cell was considered significantly responsive
if the FR distribution across stimuli passed the Kruskal–Wallis test
(p, 0.01) and the stimulus with the highest response was significantly
higher than the lowest (rank-sum, p, 0.01). The AM rate yielding the
highest response was labeled that cell’s best modulation frequency (rate
BMF). To measure the proportion of significantly responsive cells for
each periodic AM rate, the distribution of FR across trials was compared
with the spontaneous FR distribution using the Wilcoxon rank-sum test
at p, 0.01, Bonferroni corrected to 0.0002 (Fig. 4B). Collection of spon-
taneous firing occurred at the beginning of a recording session.

Temporal responsiveness was measured using the vector strength
and the Rayleigh statistic (p, 0.001, Bonferroni-corrected; Fig. 4C).
Temporal BMFs were defined for each cell as the periodic rate with the
highest vector strength value, of those that were significantly synchron-
ized. Mean response phases (Fig. 5B) were calculated excluding periods
that began ,250ms from the onset of a trial to avoid any potential arti-
facts from stimulus transitions, and measuring the temporal dynamics of
spiking responses during a “steady state” of AM.

The percentage of cells that showed significant adaptation or facilita-
tion was calculated over the course of 1 s for each periodic AM rate.
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Responses were labeled adapting if the number of spikes was signifi-
cantly lower in the last 250ms than the first, and vice versa for facilitat-
ing responses (Wilcoxon rank-sum p, 0.01, Bonferroni corrected). For
the 2-Hz stimulus, spiking responses were compared between the first
and last 500ms.

Population poststimulus time histograms (PSTHs)
Analyses in Figures 5, 8–12 used responses from unique 500-ms seg-
ments that were extracted from the sinusoidal and vocoded speech stim-
uli. Cells were included in analyses if they had at least 12 trials for each
segment. Activity was convolved with an exponential function (t = 5ms,
binsize = 1ms). For display in Figures 5 and 8, RS cells were split into
five quantiles according to the mean of the maximum peak FR evoked
by each stimulus. Thus, Q1 contains the cells exhibiting FR peaks in the
highest 20% of the population, and cells in Q5 show little to no spiking
modulation related to the stimulus segments. Within each group, cells
are sorted from shortest to longest latency of the peak FR reached dur-
ing stimulus three for sinusoidal AM (4Hz) and stimulus 8 for vocoded
speech (“Trees”).

Linear predictions of responses
The linear generalizability of responses was compared across the stimu-
lus classes, which had varying temporal complexity (Fig. 7). To do so,
we adapted a forward model from the literature (David et al., 2009).
Linear regression was used to estimate a temporal kernel for each cell
from the exponentially-smoothed (t = 5ms) poststimulus time histo-
gram (PSTH) created from 10 randomly drawn trials. To predict the
cell’s response to a different stimulus, the kernel was convolved with the
stimulus amplitude trace. The quality of the prediction was quantified

by Coincidence, or Pearson’s correlation coefficient, between predicted
and observed responses. Prediction quality was compared with the coinci-
dence value resulting from a prediction based on the PSTH of 10 separate
trials from the same stimulus type. The procedure was cross-validated by
randomly drawing new trials on each of 100 iterations. Linearity was esti-
mated for predictions of irregular sinusoidal responses based on periodic
data, and for vocoded speech responses based on irregular sinusoidal data.

Population activity surrounding envelope landmarks
For the analysis presented in Figures 9 and 13, envelope landmarks, or
features in the amplitude signal, were identified within the trial-averaged
stimulus traces of Figures 5 and 8. First, the linear amplitude signal was
transformed to a relative dB scale by taking the logarithm of the ampli-
tude: dB = 20 · log10(x) then subtracting the maximal value across
all stimuli in the session. Local minima in the log-transformed amplitude
signal were identified. Events were excluded if the ensuing local maxi-
mum was not at least 6 dB higher than the preceding minimum.
peakDrv events were then defined as peaks in the derivative of the
log-transformed amplitude signal, including only events that fell
between valid minima and maxima events as described above. Events
that followed a period of silence (i.e., intertrial intervals in vocoded
speech sessions) were excluded from analyses, so all landmarks
occurred within an ongoing acoustic stream. Thus, a peakDrv event
represents a perceptually salient increase in amplitude that need not
begin from silence.

Population PSTHs for each stimulus (binsize = 1ms; exponentially-
convolved, t = 10ms) were averaged across RS cells. A window of activ-
ity was extracted surrounding each valid peakDrv landmark. Sinusoidal
AM results are presented separately for each stimulus, and vocoded

Figure 2. Histologic verification of probe location. A, Coronal sections of the brain of one subject, myelin-stained with Sudan Black, spanning the full rostro-caudal range of core AC. Sections
were matched to the coronal plates in the gerbil brain atlas (Radtke-Schuller et al., 2016), and the approximate boundaries of AC are marked in yellow. This range also corresponds to the sec-
tions that show perforations in the tissue from the shanks of the probe (orange arrows). B, An enlarged section displays the probe location more clearly along with the cytoarchitecture of this
section, which corresponds most closely with plate #30. C, Dorsal view of an intact gerbil brain with plate locations overlayed (image from Radtke-Schuller et al., 2016). The yellow region
marks those plates which contain AC according to the atlas, and the orange bracket marks the rostro-caudal span of visible tracks of our implanted probe.
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speech results pool all events extracted across stimuli (22 total for vocoded
speech). Results for vocoded speech show the mean6 SD across events.

Classification of temporal structure by single units
Amachine learning classification approach was used to quantify the abil-
ity of each cell’s spiking activity to discriminate between modulation
rates (Figs. 10, 13). Eight envelope segments (those from Fig. 5 for sinu-
soidal AM and Fig. 8 for vocoded speech) were extracted from the full
stimulus set and used in an eight-way classification task. Broadly, the clas-
sification procedure measured how reliably single-trial spiking responses
could correctly discriminate stimulus tokens.

For each cell, one iteration of the classification procedure occurred as
follows. A total of 16 trials of each stimulus token were randomly drawn
and used for training the classifier, and one additional trial of each was
set aside for testing. Thus, at least 17 trials of each stimulus were
required for units to be included in this analysis. The number of trials
was determined as the minimum number of trials needed to achieve
reliable templates and avoid overfitting the training data. Commonly,
classification algorithms are applied to spiking activity directly. Instead,
we implemented a preprocessing step, which imparted a few benefits.
First, it made the procedure less sensitive to slight offsets of phases
between AM stimulus segments, or from trial to trial. Additionally,
this preprocessing step mitigates the risk of overfitting introduced by
increasing dimensionality of input data to the classifier. This mitiga-
tion measure becomes important for population decoding analyses
(described in the following section), when evaluating classification
accuracy as additional cells are added to an ensemble.

To create the training data for the classifier, for each stimulus, the
dot product was calculated between each of the 16 trials and the averaged
activity of the other 15 trials. Thus, each of the eight stimuli was repre-
sented by a distribution of projection values. As in prior analyses, spiking
activity was binned at 1ms and exponentially convolved (t = 5ms)
before these projection values were calculated. These data were fed into a
support vector machine (SVM) with a linear kernel (templateSVM and
fitcecoc functions in MATLAB). The algorithm learned the discriminant
functions that best separated stimulus classes defined in the training
data. We then calculated the dot product between the held-out test trial
and the trial-averaged response template for each stimulus. If the single-
trial spiking response to a given stimulus consistently differed in firing
rate or pattern from the other stimuli, classification was reliable. This
procedure was repeated for 500 iterations with 17 new randomly-drawn
trials, and was performed for each cell that had a sufficient number of
trials of each stimulus token (�17). Classifier results were obtained in
the form of a confusion matrix (Fig. 10A,C), then transformed into a sig-
nal detection theory metric, d9 (Green and Swets, 1966). The discrimina-
bility of each stimulus was calculated from the confusion matrix by the
following equation:

d9stim ¼ z hit rateð Þ � z false alarm rateð Þ:

The classification accuracy assigned to a cell was the mean of d9
across stimuli. Overall, a consistent pattern of spiking emitted in
response to a stimulus, unique from the spiking patterns evoked by other
stimuli, results in good classification and high d9 values. All main find-
ings were confirmed using alternative approaches to classification (e.g.,
SVM input data consisting of spiking vectors instead of projection val-
ues, different binning and convolution parameters).

Classification by neural ensembles
The spiking of individual cells is variable trial-to-trial, particularly in
relation to sound envelope. Therefore, we investigated strategies for pop-
ulation decoding, to assess how a downstream neuron may be able to
extract reliable information about the envelope signal based on the activ-
ity in AC during a single trial. The ability of a population of cells to dis-
criminate between AM stimuli was quantified using a similar SVM
classification procedure to that described above, and two methods of
pooling information across cells were compared (Fig. 12). For one
approach, trial-template dot products were calculated as above for each
cell individually, and all projection values included as input to the SVM

algorithm. This method allowed the classifier access to information from
each cell individually and is referred to as “Independent” pooling (plot-
ted in blue). In the other method, referred to as “Summed” pooling,
trial-template projections were calculated from spiking activity summed
across cells (plotted in yellow). This approach eliminates any informa-
tion that might be carried by cells’ individual firing patterns, and it
assesses classification accuracy based on the collective temporal pattern
of activity across the population. Control analyses were run to confirm
that the difference in dimensionality did not affect classification results.
For these analyses, RS cells were pooled across sessions and animals.
Results are reported as d9 values capped at four and reflect the average
performance of 500–1500 iterations of the classification procedure.

The same approaches were applied to quantify classification accuracy
of smaller ensembles of cells. Maximally informative populations can be
approximated by selecting units in descending order of the information
they carry individually (Ince et al., 2013). Beginning with the best SU, we
gradually expanded the pool size and quantified classifier performance
for each ensemble for both Independent and Summed population pool-
ing methods.

Results
In order to characterize the population-level representation of
sound envelope in AC, we recorded extracellular single unit ac-
tivity in core AC of freely-moving gerbils in response to several
types of amplitude modulated noise. We first analyzed encoding
of sinusoidal AM in the cortical population, looking at single
units and at an aggregated population signal. We then extended
these observations to describe cortical coding of one-channel
vocoded speech. We used the observed encoding patterns to
make predictions about decoding strategies, comparing between
methods with the goal of identifying envelope cues to support
segmentation of a continuous acoustic stream.

The sinusoidal AM stimuli consisted of a continuous stream
of sinusoidally-modulated noise, which included both periodic
and irregular intervals built from AM rates in the 2 to 32 Hz
range (Fig. 1A; see Materials and Methods). The two irregular
stimuli were constructed by permuting the sequence of, then con-
catenating, two full periods of each periodic AM rate. Periodic
stimuli were 1000ms in duration, and irregular stimuli were
1938ms. Neural activity was recorded while animals were in an
alert, engaged state. Subjects performed a straightforward percep-
tual task, which served to limit variability from changes in head
position and behavioral state (details in Materials and Methods).

Extracellular activity was recorded in core auditory cortex (AC)
with 16-channel or 64-channel silicon probes (Fig. 1B). Single units
were sorted offline and confirmed to be well isolated based on sev-
eral quality metrics (Fig. 1C–E). A bimodal distribution of spike
widths allowed us to separate cells into regular spiking (RS) and
narrow spiking (NS) subpopulations (Fig. 1F), a distinction that is
correlated with excitatory and inhibitory cell types (Mesik et al.,
2015; F. Liang et al., 2019). This report analyzes 277 single units,
205 RS and 72 NS, and their responses to sinusoidal AM. We also
collected responses to vocoded speech stimuli, introduced in more
detail later, and this dataset consisted of 130 single units (100 RS
and 30 NS). We neither searched for strong responses nor applied
any post hoc responsiveness criteria to exclude cells from the dataset,
in effort to collect a broad and unbiased sample of the entire AC
population. After recording sessions were completed, histology was
performed to confirm that the probes were located in AC (Fig. 2;
see Materials andMethods).

Summary of sinusoidal AM response properties
Figure 3 displays the spiking activity of three example cells dur-
ing each stimulus in the sinusoidal AM set. The spike width of
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the first cell classified it as a RS unit (Fig. 3A). Its firing rate
synchronized to several AM stimuli, with firing peaking early in
the cycle yet sustained throughout the period. The middle cell,
also an RS unit, synchronized better to slower AM rates and
showed a different preferred response phase (Fig. 3B). This cell’s
spiking peaked near the onsets and offsets of 2- and 4-Hz

periods. The last cell had a narrow spike width, categorizing it as
NS (Fig. 3C). Its firing rate modulated with the AM cycles,
closely echoing the shape of the noise.

To gain a sense of the diversity of response properties both
within and across RS and NS cell types, responses of all recorded
cells were quantified according to several traditional response

C

B

A

Figure 3. Example SU responses to sinusoidal AM stimuli. A, Responses of an RS cell are shown for periodic stimuli (top: 2, 4, 8, 16, 32 Hz), both irregular stimuli, and unmodulated noise.
At the top of each panel is the average stimulus envelope. Below, Raster plot shows spike times during the first 20 trials. Trial-averaged activity is shown at the bottom. B, Responses of
another RS cell displayed using the same conventions. C, Responses of an NS cell to each sinusoidal AM stimulus. Each cell’s mean spontaneous firing rate during silence is marked with a gray
line in each panel.
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metrics. Average firing rates (FR) during each stimulus were
roughly log-normally distributed and were consistent across
periodic AM rate and irregular stimuli (Fig. 4A). The distribu-
tion of spontaneous rates, measured during silence, were also
remarkably similar (filled gray area). Firing rates of NS cells
were greater than those of RS cells (ANOVA p= 1.31e�134;
black diamonds in Fig. 4A and 4B mark the median FR across
all stimuli: RS cells = 2.35 spikes per second, NS cells = 11.08 spikes
per second). For RS cells, FR distributions for 16 and 32Hz (dark
gray and yellow lines, respectively) were significantly lower than
the second irregular stimulus (green line; Kruskal–Wallis
p=0.007). Within NS cells none of the distributions significantly
differed from one another. These findings are in agreement with
previous studies in rodent models (Hromádka et al., 2008; Hoglen
et al., 2018).

The stability of FR distributions might suggest that the
stimulus had little effect on neural activity in the popula-
tion. To unpack these population FR distributions, we
measured each cell’s direction of change from spontaneous
activity for each periodic AM rate (Fig. 4B). Approximately
25% of cells increased their firing above baseline (blue),

;25% were suppressed (yellow), and 50% showed no change
in the time-averaged FR compared with silence (gray). These
proportions were similar in RS and NS cells, and they demon-
strate that excitatory and inhibitory responses did occur in
many cells but were balanced across the population such that
average FRs did not change. AM rate tuning was also meas-
ured. The distribution of best modulation frequency (BMF) as
measured by FR was roughly uniform in this range of AM
rates (data not shown). This heterogeneity of AM rate tuning
is in agreement with previous literature (Schreiner and Urbas,
1988; Eggermont, 1998; L Liang et al., 2002; Joris et al., 2004;
Malone et al., 2007; Zhou and Wang, 2010; Yin et al., 2011;
Hoglen et al., 2018).

Neurons also encode AM with phasic modulations of spiking
over time, synchronized to the stimulus. To gauge the prevalence
of temporal responses in the population, we quantified the per-
centage of cells with significantly synchronized activity according
to the Rayleigh statistic (see Materials and Methods) during
each periodic AM rate (Fig. 4C). Approximately 50% of RS
and NS cells were phasically modulated by AM rates of 8Hz
and below (orange). In line with previous descriptions of cort-
ical phase locking limits in rodents, synchronization fell off at
16 and 32Hz. NS cells were more likely to continue phase
locking at higher AM rates.

When temporal and rate response metrics are considered to-
gether, 60–70% of RS cells and 70–80% of NS cells were consid-
ered responsive by at least one of these two measures for each
periodic AM rate (data not shown). These high proportions of
responsive cells stand in contrast to the overlapping FR distribu-
tions of Figure 4A. Specifically, the AM stimulus modulated the
activity of a majority of cells in the population, but changes in fir-
ing rate were balanced across time and across cells in a way that
maintained an overall equilibrium.

Responses are stereotyped at the beginning of slow
modulation events
The analyses presented above conform with the literature in
demonstrating that AC cells show heterogeneous AM tuning as
measured by firing rate and synchronization. However, these tra-
ditional response metrics fail to describe the alignment of spiking
with the dynamic changes in amplitude that define AM stimuli.
Mean phase of firing has been evaluated within cell as stimulus
parameters are varied, but the temporal structure of activity in
relation to the stimulus remains unexamined. If the timing of
synchronized responses is heterogeneous, like the response met-
rics above, mean phase would be distributed evenly throughout
the AM stimulus, tiling each modulation cycle. Alternatively, cer-
tain envelope features could be overrepresented.

First, responses in the population collectively were visualized
by plotting the average activity of each cell during each of eight
500-ms tokens extracted from the sinusoidal AM stimulus set
(Fig. 5A). RS cells were grouped into five quantiles of equal size
according to their peak firing rates (see Materials and Methods).
Cells within each RS group were sorted by the time of the peak
response during the 4-Hz token, such that cell identity remains
constant as a row across panels. NS cells were sorted by time of
the firing minimum during 4Hz.

A large portion of neurons displayed temporal structure
related to the stimuli, in accordance with the summary metrics
of Figure 4C. Qualitatively, synchronized responses to 2 Hz
appeared to be more prevalent near the beginning of a modulation
period, while, in contrast, responses to faster modulations appeared
to distribute through the modulation cycles.

Figure 4. Tuning characteristics to sinusoidal AM stimuli. A, Probability distributions of fir-
ing rates (FRs) during each stimulus (colors) and silence (gray area), for RS cells (left) and NS
cells (right). For each group, data were fit with a log-normal distribution. NS FRs are higher
than RS cells (ANOVA p= 1.31e�134; overall medians for each group are denoted by black
diamonds: RS cells = 2.35 spikes per second, NS cells = 11.08 spikes per second). Within RS
cells, 32 and 16 Hz (yellow and dark gray lines) yielded firing rates significantly lower than
one irregular stimulus (green line; Kruskal–Wallis p= 0.007, Bonferroni post hoc correction).
For NS cells, none of the stimulus FR distributions significantly differed (Kruskal–Wallis,
p= 0.073). B, Proportion of RS and NS populations responsive to each periodic AM stimulus
as measured by change in average FR. The proportion of units in which FR significantly
increased from spontaneous rate is shown by the blue area for each AM rate, and the pro-
portion of units with decreased FR from spontaneous is shown in yellow (significance deter-
mined by Wilcoxon rank-sum, p, 0.01, Bonferroni corrected). C, Proportion of RS and NS
cells that were significantly synchronized is shown in orange for each AM rate (significance
determined by Rayleigh statistic, p, 0.01, Bonferroni corrected).
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To quantify the timing of responses, we plotted the mean
phase distributions for each periodic stimulus (Fig. 5B). For each
cell with a significantly synchronized response to that AM rate,
its mean phase was calculated, quantifying when during an AM
period spikes were likely to occur. The distributions of cells’ pre-
ferred phases are presented as polar histograms, in which the
onset (trough) of a period is at the bottom and the polar axis pro-
ceeds clockwise. The length of the polygon on the radial axis
illustrates the number of cells with that mean phase. While mean
phases were heterogeneous in many cases, responses were stereo-
typed within RS cells during 2- and 4-Hz stimuli. The Rayleigh

test for nonuniformity confirmed that these distributions were
significantly skewed (2Hz: p= 1.44e�14; 4Hz: p= 6.78e�8), col-
lecting around 28° for the 2-Hz stimulus and 68° for the 4-Hz
stimulus. As each period was part of a continuous stream of am-
plitude-modulated noise, this bias toward cycle onset is not the
result of sound onset in the classical sense, i.e., when preceded by
silence. In fact, to ensure our phase measurements came from
“steady-state” AM, the first 250ms following transitions between
different AM rates was excluded from mean phase calculations.
Thus, responses of the AC population were biased toward the
onsets of periods during continuous low-frequency modulation.

B

A

Figure 5. Response timing is biased toward onsets of modulation cycles. A, The average response of each neuron during eight segments of sinusoidal AM is plotted on a color scale, where
lighter gray indicates a higher FR. NS cells are grouped at the bottom, and RS cells are split into five quantiles according to maximum peak FR. Cells within each RS group are sorted by the la-
tency of peak FR during the 4-Hz stimulus, and NS cells are sorted by the time of minimum FR during 4 Hz. The identity of a cell is maintained in a row across all stimuli. Stimulus waveforms
are illustrated above each column. B, For each periodic AM rate, the mean phase distribution is shown for all synchronized cells, RS above and NS below. Distributions are shown on polar plots
that represent one modulation cycle. The trough, phase = 0, is at the bottom and the period proceeds clockwise. The numbers positioned at 225° label the limits of the radial axis, which corre-
sponds to number of cells. The p-value above each plot denotes significance level from the Rayleigh test of nonuniformity. The mean preferred phase across all synchronized cells (mu) is listed
above each plot.

100 • J. Neurosci., January 4, 2023 • 43(1):93–112 Penikis and Sanes · A Cortical Code for Speech Envelope



Nonlinearity in envelope responses based on local temporal
dynamics
The sinusoidal stimuli in this report focus on the slow modula-
tion frequencies that are known to be important for the process-
ing of human speech and other animal communication sounds.
However, it is not clear that observations based on simple, peri-
odic stimuli directly translate to more complex envelopes such as
those of human speech.

To compare the sinusoidal AM data to a more natural signal,
neural activity in AC was also collected in response to noise
modulated by the envelopes of natural speech. 130 single units
were recorded in this condition: 114 RS and 16 NS cells. Of these,
41 cells were also recorded during sinusoidal AM. An example
cell’s response to one of the six vocoded speech stimuli is shown
in Figure 6A.

Sinusoidal (orange line) and speech (filled gray area) stimuli
showed overlapping modulation power spectra (Fig. 6B), and
roughly corresponded to the power spectrum calculated from a
large database of natural human speech (black line; adapted from
Ding et al., 2017). However, the local temporal properties of
speech envelopes are more complex than sinusoidal AM. For
instance, natural sounds are rarely symmetrical: the shape of the
amplitude ramp and decay is not directly determined by the rep-
etition rate. How well do responses to periodic, sinusoidal AM
stimuli predict neural responses to other envelopes? If neurons
track sound amplitude in real time, the response to any envelope
should be linearly predictable from that of periodic AM stimuli.
On the other hand, if responses differ from the linear prediction,
it exposes a nonlinear relationship between the stimulus and
spiking activity.

To probe the linearity of responses, we first assessed the
impact of periodicity in sinusoidal AM, adapting a common for-
ward model to predict FR over time (David et al., 2009). Here,
the procedure gauged the ability of responses to periodic stimuli
to predict responses to irregular stimuli. For each cell, a linear
kernel was learned from a PSTH of its responses to all periodic
stimuli (see Materials and Methods for more details). The result-
ing kernel was used to predict the cell’s response to the irregular
AM stimuli (Fig. 7A, orange). The quality of the prediction was
measured by the coincidence (C) of the predicted response,
based on 10 randomly-drawn trials, and the observed response,
measured from a held-out set of 10 trials. To stabilize coinci-
dence values, this procedure was cross-validated 100 times per
cell. These periodic-to-irregular coincidence values were com-
pared, within-cell, to coincidence values derived from predic-
tions of irregular responses based on kernels learned from

irregular data (Fig. 7A, blue). The resulting coincidence values
are plotted in Figure 7B by cell type (RS: filled green circles,
NS: open circles; example cell from Fig. 7A is RS and filled
in black). Periodic stimuli produced similar coincidence val-
ues as predictions created from the held out irregular data
(Pearson’s r = 0.98, p = 1.66e�194). Predictions from irregular
data were slightly but significantly better (DCPdc-Irr = –0.006,
p= 1.59e�4 Wilcoxon sign-rank).

One possible contribution to the difference in linear predic-
tion quality could be the small proportion of cells that displayed
adaptation or facilitation during a periodic stimulus of 1-s
duration. For AM rates of 2–8 Hz, ,3% of cells, RS or NS,
demonstrated any significant change in firing rate from the
beginning to the end of the stimulus (rank-sum p, 0.05,
Bonferroni corrected). In response to 16Hz, most RS cells’ FRs
were still constant, while slightly more NS cells displayed ei-
ther adaptation or facilitation. At 32 Hz, many more cells
demonstrated changes in FR: 7% (RS) and 6% (NS) showed
a significant increase in firing and 9% (RS) and 31% (NS) of
cells displayed adaptation. Consistent with prior results in
awake squirrel monkeys (Malone et al., 2015), this observa-
tion could contribute to a difference in linearly predicted
responses because the adaptive processes that occur during sus-
tained periodic modulations would less likely be engaged during
irregular AM stimuli.

Next, the ability of irregular sinusoidal data to predict
responses to vocoded speech was assessed for the 41 cells
that had a sufficient number of trials in both stimulus con-
ditions (Fig. 7C,D). While the response of a cell to sinusoidal
AM did provide information about vocoded speech responses
(Pearson’s r= 0.74, p= 3.18e�8), speech-to-speech predictions
yielded higher coherence values on average (DCSin-Speech =
–0.06, p= 3.91e�7 Wilcoxon sign-rank). The predictive power
for AM to speech stimuli was an order of magnitude smaller
than comparing periodic to irregular AM, which suggests
that drawing conclusions about speech representations based
on AM data should be done carefully. Overall, these analyses
demonstrated that the envelope representation was somewhat
robust across different types of modulations. However, just as
AC cells demonstrate spectral (Sadagopan and Wang, 2009)
and spectrotemporal (David et al., 2009) nonlinearities, tempo-
ral nonlinearities may exist independently, as well. Because irre-
gular AM and vocoded speech stimuli contained a similar
distribution of energy across modulation frequencies on aver-
age, the nonlinearities were likely driven by real-time envelope
dynamics. This result emphasizes the notion that the AC

Figure 6. Vocoded speech stimuli. A, The example response of an RS cell is plotted for one of the six vocoded speech stimuli. The stimulus waveform is shown on top, and the raster and his-
togram are plotted below. B, Power spectra showing the relative energy across modulation frequencies, for comparison across stimulus sets. The power spectrum calculated from periodic sinu-
soidal AM stimuli is plotted in orange, and that computed from vocoded speech stimuli is shown in gray. The black line illustrates the modulation power spectrum of a large database of
recorded speech (adapted from Figure 3A in Ding et al., 2017).

Penikis and Sanes · A Cortical Code for Speech Envelope J. Neurosci., January 4, 2023 • 43(1):93–112 • 101



representation is not simply an analog reproduction of the
sound envelope, but a nonlinear, temporal transformation of
the sensory signal.

Coherent population responses from envelope landmarks
If cortical neurons do not linearly encode the sound amplitude,
what features of the envelope drive responses? Figure 8 shows
the average activity of each cell during eight 500-ms unique seg-
ments extracted from the full vocoded speech stimuli. Like sinu-
soids, speech-shaped modulations also evoked temporally rich
patterns of activity in the population of AC neurons. While the
shapes and timing of responses are heterogeneous across cells, it
qualitatively appears that the onsets of syllables are often corre-
lated to increased spiking across many cells in the population.

The temporal heterogeneity of responses to irregularly shaped
waveforms cannot be quantified with the standard circular statistics

used for periodic stimuli (as in Fig. 5B). Instead, we borrowed from
an analysis of electrocorticographical (ECoG) data recorded during
speech processing in humans (Oganian and Chang, 2019). This
analysis inspects the pattern of neural activity surrounding a partic-
ular feature of the speech envelope (e.g., local peaks or local minima
in the amplitude signal). Specifically, Oganian and Chang (2019)
demonstrated that a sharp increase in high g activity follows peaks
in the derivative of the speech envelope. Further, they found that
these acoustic landmarks correspond to a linguistic landmark: sylla-
ble nuclei. Oscillatory activity in the high g range is thought to
reflect an aggregate of local neuronal firing, making this observation
congruent with the biased phase preferences exhibited in Figure 5B.
Thus, we adapted the analysis from Oganian and Chang to ask
whether peaks in the derivative of amplitude (peakDrv) also corre-
sponded to a coherent increase in firing rate of individual AC cells
in gerbils.

Figure 7. Nonlinearity in responses from local features of modulation stimuli. A, Two predictions for the response to irregular modulation were created, one from a linear kernel generated from peri-
odic data, and the other from a kernel based on held out trials of irregular data. The quality of each prediction was quantified by a coincidence value (C). Predicted (orange) and observed (gray) responses
are plotted for an example cell for periodic training data and irregular training data (blue). B, Coincidence values for each cell of observed responses with responses of the same stimulus (irregular data,
abscissa) are shown against coincidence values obtained from the kernel constructed from the opposite stimulus type (periodic data, ordinate). Overall, linear predictions are similar for either context
(Pearson’s r=0.98, p=1.66e�194), although same context predictions are slightly higher (DCPdc-Irr = –0.006, p=1.59e�4 sign-rank). C, The ability of sinusoidal data to predict vocoded speech responses
was compared with predictions generated from separate trials of vocoded speech. Predicted activity for an example cell is shown for the opposite stimulus type (irregular sinusoidal, orange) and same
stimulus (vocoded speech, blue). D, Coincidence values are plotted for all cells that were recorded in both stimulus conditions (N=41), with predictions from the same stimulus type (vocoded speech, ab-
scissa) and the opposite stimulus type (irregular sinusoidal, ordinate). Again, coincidence values are strongly correlated across stimulus types (Pearson’s r=0.74, p=3.18e�8), but same context prediction
is better (DCSin-Speech = –0.06, p=3.91e�7 sign-rank). Colors in panels B, D: RS cells are filled green and NS are outlined black. Example cells from A, C are highlighted as filled black circles.
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Landmarks were identified in the envelope signal, defined as
local peaks in the derivative of the logarithmic transformation of
the sound envelope (peakDrv; Fig. 9A, orange dots). Extracting
peakDrv landmarks from speech envelopes was less straightfor-
ward than from sinusoidal AM because natural stimuli contain
many local maxima and minima (Fig. 9B). Thus, we set a thresh-
old, requiring the sound to double in sound pressure amplitude
(16dB) to constitute a valid peakDrv event. To apply this thresh-
old, we transformed the linear stimulus amplitude to a decibel
(dB) scale, to reflect the SPL profile of the modulation (Fig. 9A,
right). Note that, as this rescaling is nonlinear, it means that
peakDrv events (orange dots) occur closely in time to envelope
minima (yellow dots), or roughly the onsets of modulation cycles
(Fig. 9A; e.g., separated by 8ms in the 4-Hz stimulus). See
Materials and Methods for full description of event identification.
Ultimately, peakDrv events represent perceptually salient increases
of amplitude in an ongoing sound stream.

After peakDrv landmarks within stimuli were identified, spik-
ing activity was summed across all RS cells and the evoked
response was calculated by averaging the population activity sur-
rounding each peakDrv event. The schematic in Figure 9B and
9C illustrates this process for one vocoded speech stimulus.
When summed activity of RS cells was aligned to peakDrv events
in the sinusoidal AM stimulus, temporally synchronized firing
was prominent (Fig. 9D). Population activity peaked with laten-
cies between 30–90ms, and the phasic response was larger in
magnitude and spread over a broader time period for slower
modulation frequencies. peakDrv events during irregular stimuli
evoked a similar phasic increase in population firing rate, with
an attenuated peak because of averaging responses across the
range of AM periods (data not shown). The same analysis was
performed for landmarks during the complex envelopes of
vocoded speech. When population activity was aligned to peakDrv
events in vocoded speech, neural activity showed a prominent peak
around 40ms following these landmarks (Fig. 9E).

When activity was averaged around local peaks in the amplitude
envelope of vocoded speech stimuli, the resulting population trace
showed a shallower, broader peak of activity centered at 3-ms la-
tency (data not shown). The fact that the firing rate began increasing

long before amplitude peaks occurred implies that this landmark is
not likely responsible for evoking coordinated activity in the AC
population. When local minima in the envelope signal were used as
landmarks for this analysis, evoked activity traces looked nearly
identical to those yielded from peakDrv events (data not shown).

Taken together, the results confirm that amplitude edge onsets
are overrepresented at the population level. While the mean phase
histograms in Figure 5B suggested that many cells are triggered
near onset events, the present analysis shows that this encoding bias
results in a pattern of activity that is visible in the global population
signal. This brief coherence in the population could contribute to
the global signals recorded by EEG and ECoG studies. As observed
for rhythmic tracking in human AC, the effect observed here is
strongest for modulation frequencies at or below the natural rate
of syllables.

Decoding envelopes from individual neurons is unreliable
The presence of a coherent, global signal predicts that prominent
amplitude edges could be decoded by a strategy that ignores the
heterogeneity and tuning of individual cells. In other words,
sampling the aggregate level of activity across the AC population
could be sufficient to parse an acoustic stream into behaviorally-
meaningful segments.

While the preceding analyses examined patterns in trial-aver-
aged activity, the perceptual and behavioral effects of a sound
stimulus in natural scenarios are driven by the collection of noisy
spike trains emitted by cells. To investigate how cues for envelope
parsing could be decoded from single-trial population activity in
AC, we performed several classification analyses. The results pre-
sented above describe a representation that could be useful for seg-
menting a continuous acoustic stream into smaller windows for
subsequent processing. The parsing process must occur in real
time, and acoustically, ground truth is ambiguous as boundaries
are defined perceptually. Thus, instead of arbitrarily defining boun-
daries to train the classifiers to detect, classifiers were trained to
categorize neural responses to short envelope segments which
differed only in their temporal patterns of modulation.

Before decoding from the collective population, the classifica-
tion performance of each cell was first assessed individually. A

Figure 8. Response patterns in the cortical population during vocoded speech. Average responses for all cells with at least 12 trials to segments drawn from speech-derived AM stimuli,
shown with the same conventions as Figure 5. Stimulus waveforms are illustrated above each column. Each cell’s trial-averaged response profile is plotted with lighter gray indicating a higher
FR. NS cells are grouped at the bottom, and RS cells are split into five quantiles according to peak FR. Each group is sorted by the latency of the peak FR (for NS cells: minimum FR) reached
during the stimulus on the far right: “Trees.” The identity of a cell is maintained across a row.
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linear support vector machine (SVM) was trained to use single-
trial spiking patterns to discriminate between eight unique enve-
lope tokens (details in Materials and Methods). Classification
accuracy was measured for individual cells recorded during the
sinusoidal AM tokens shown in Figures 5 and for the cells
recorded during the speech stimulus tokens in Figure 8. As inhibi-
tory cells are less likely to project information to a downstream de-
coder, we focused on RS cells in the following analyses. A total of
16 trials were used for training the algorithm, and classification
was tested based on the response to one additional trial. Note that
the number of cells included in this analysis is lower (N=180 RS
for Sinusoidal AM; N=78 RS for vocoded speech), as previous
analyses required only 12 trials of each stimulus while this one
requires a minimum of 17. The number of trials used in this analy-
sis was identified by systematically determining the amount of
data needed to achieve reliable templates and avoid overfitting.

Classifier results are shown in the confusion matrix in Figure
10A, top, for one example cell from the sinusoidal dataset (same
cell as Fig. 3A). For this neuron, the percentage of trials that were
assigned to the correct stimulus ranged from 9% to 50%. Results
can also be expressed as d9 values, which incorporate the error
rate for each stimulus into the metric (Fig. 10A, bottom).

Although the PSTHs in Figure 3 show clear modulation with the
AM stimuli, single trial spiking varied enough that all d9 values
for this cell were under 1.2. The same classification metrics are
shown for an example cell from the speech stimulus set (Fig.
10C, same cell as Fig. 6A). This cell achieved a high d9 for one
stimulus, classifying 85% of trials correctly (d9 = 2.1), but several
other stimuli were classified near chance levels (12.5%, d9 = 0).

Classifier results for each RS cell are plotted in Figure 10B.
The matrix depicts d9 values on a color scale illustrating how
accurately each cell classified each stimulus. Thus, each column
of this matrix shows the d9 values across stimuli, like that shown
for the example cell in Figure 10A. The same data are illustrated
for the population of cells tested with vocoded speech classifica-
tion (Fig. 10D). In each panel, a hierarchical clustering algorithm
was used to sort the columns (cells) by similarity of their stimu-
lus classification accuracies. Independently, matrix rows were
clustered, which grouped stimuli with similar representations
across the population of cells. A dendrogram of the stimulus
clustering result is shown to the left of each matrix. In agreement
with the results presented previously, sinusoidal AM rates that
evoke undisputedly phase locked responses (� 8Hz) group to-
gether. In other words, a cell that displays a high d9 for 4Hz is

A B

CD

E

Figure 9. Coherent population responses follow peak derivative events during slow modulations. We measured evoked responses in the global average firing rate of RS cells, reasoning that
if a given amplitude feature evokes spiking in many cells, this coherent response would be reflected in the mean population activity. A, A schematic illustrating the identification of peakDrv
events (orange circles) in sinusoidal AM stimuli. The left panel marks these events on a linear amplitude scale. For this analysis, peakDrv landmarks were identified within the logarithmically-
transformed amplitude signal (right panel), corresponding to perceptual space. Note that, when the amplitude is expressed on a dB scale, peakDrv events coincide with the onsets (minima) of
sinusoidal amplitude cycles (yellow circles). B, peakDrv events were identified within the log-transformed envelopes of vocoded speech stimuli. To focus on perceptually relevant amplitude
modulations, we restricted analyses to peakDrv events that occurred between a local minimum followed by a local maximum at least 6 dB higher. The schematic in panel B illustrates the
peakDrv events identified within an example speech segment. C, The stimulus envelope and corresponding RS population activity are depicted using the conventions of Figure 8. The trace at
the bottom shows the mean activity across all RS cells for this stimulus segment. D, Mean population activity surrounding peakDrv landmarks was averaged across all events, plotted for each
periodic modulation rate. Slower rates evoke stronger phasic activity in the population, and the short, positive latencies suggest that peakDrv could have a causal relationship to coherent activ-
ity in the population. E, Evoked population activity is plotted after averaging across peakDrv events in all vocoded speech stimuli (mean6 SD). This stimulus feature evoked a strong, phasic
response in the aggregate population with;45-ms latency. The rising edge of the evoked response is sharp, as would be expected if the causal stimulus landmark were aligned in time.

104 • J. Neurosci., January 4, 2023 • 43(1):93–112 Penikis and Sanes · A Cortical Code for Speech Envelope



likely to decode 2 and 8Hz with similar success. Speech stimuli
also clustered into groups based on d9 values.

Overall, single-trial spiking activity from individual neurons
did not allow for reliable envelope classification. The population
of RS cells, on the sinusoidal AM classification task overall, had a
mean d9 value of 0.32, a median d9 value of 0.11, and 13/180
units showed task classification levels of d9 . 1. Performance
was similar for the vocoded speech classification task (mean d9
across cells = 0.52, median d9 across cells = 0.29, and 16/78 units
with task d9 . 1). The full distribution of d9 values for each cell-
stimulus pair is displayed by the ranked distributions in Figure
11A, black dots. Of all cell-stimulus combinations from the sinu-
soidal dataset, 133/1440 (9.2%) exceeded a d9 of 1, and median
performance was d9 = 0.09. For the speech dataset, 18% of cell-
stimulus pairs had d9 . 1, and the median d9 was 0.18 (Fig.
11B). These low d9 values contrast with the observation that 60–
70% of cells are significantly modulated by at least one AM stim-
ulus as measured by firing rate and/or synchronization metrics,
although the classification procedure had access to all rate and
temporal information (Fig. 4).

An implicit assumption in discussions of sparse coding holds
that the most informative cells for a particular stimulus are those
with the highest firing rates (Willmore et al., 2011; Barth and
Poulet, 2012; Ince et al., 2013). Several prior studies have, in fact,
identified a correlation between decoding accuracy and mean fir-
ing rate (Hoglen et al., 2018). However, the relationship is not
clear-cut in all datasets, as demonstrated in Figure 11. First, all
cell/stimulus pairs were ranked by d9 (Fig. 11A,B, black dots).

Overlaid, we plotted a cumulative count of the average number
of spikes produced during each response (Fig. 11A,B, orange
line). While the number of spikes produced by a cell in response
to a stimulus is significantly correlated to its decoding accuracy
(Pearson, sinusoidal: p=2.34e�76; speech: p= 2.18e�27), only a
small fraction of the variance of d9 values was explained by the
number of spikes in a response (sinusoidal AM: r2 = 0.21, speech:
r2 = 0.17). Skewness values of the distributions of d9 values were
greater than skewness of firing rates (sinusoidal AM: gd9 = 3.3.
gNspk = 2.7; speech: gd9 = 2.0 . gNspk = 1.6). Ultimately, 78%
and 71% of spikes were produced by cells with a d9 below 1, for
sinusoidal AM and vocoded speech respectively. If sound enve-
lope were represented by a sparse coding model, it would be
essential for a decoder to identify and segregate signals from the
most informative cells. While there are other ways that informa-
tive cells could be identified, the present analysis suggests that it
would be a nontrivial task for a downstream decoder to isolate
signals from the most informative cells.

Simple pooling supports classification of slow AM and
speech
Most individual neurons could not provide reliable information
about sound envelopes on single trials, so activity must be pooled
across several cells to achieve envelope discrimination on par
with perception. At present, there is scant evidence to inform the
projection and convergence patterns within each of AC’s many
targets, so we assessed population coding by all RS cells. Two
population decoding strategies were examined to compare

Figure 10. Poor envelope classification by individual neurons. A, A confusion matrix displays the results of the single-trial SVM classification procedure for an example cell in the sinusoidal
AM condition (same cell as Fig. 3A). A d9 value was calculated for each stimulus and is plotted below. Note that the order of stimulus tokens is different from prior figures; see stimulus key on
far right. B, d9 values across stimuli for all RS cells. Cells were sorted according to similarity of their d9 vectors using a hierarchical clustering algorithm. The same clustering approach was inde-
pendently applied to sort stimulus tokens according to similarity of population representation. Overall, 9% of cell/stimulus pairs had classification levels of d9 . 1. C, Results from the vocoded
speech classification task are shown for an example cell (same as Fig. 6A). Below, d9 is shown for each stimulus. D, d9 values across stimuli for all RS cells. Cells and stimuli were hierarchically
clustered as above; 18% of cell/stimulus pairs had d9 . 1.
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envelope classification at either extreme when
combining information across cells. At one
extreme, inputs from cells are pooled separately
and each provides independent evidence to the
classifier (Fig. 12A,B, top). Independent pooling
allows for maintenance of the identity (tuning
preferences) of each cell, e.g., inputs arrive via
separate synapses with weights that can be inde-
pendently regulated. Alternatively, signals can
be summed together when input to the classifier
(Fig. 12A,B, bottom). Summed pooling is agnos-
tic to the source of each spike and thus unable
to weight inputs individually. However, this
method requires minimal resources and requires
no assumptions about the specificity of AC pro-
jections. If independent pooling were to yield bet-
ter classification performance, it would suggest
that envelope information is conveyed in the
unique spiking patterns of individual cells (Fig.
12A). This would be the case if, for example, neu-
rons produced synchronized responses with sta-
ble but heterogeneous preferred phases or response delays.
Alternatively, if responses share common temporal dynamics
(as indicated by previous analyses), classification based on summed
population activity would be equally as good as the more sophisti-
cated decoding strategy (Fig. 12B).

We compared the results of two population classifiers designed
to approximate the integration strategies described above, to gain
a sense of how simple the decoding rule could be. Specifically,
does the collective activity of the population suffice for detecting
prominent edges in the envelope signal? For the sinusoidal AM
dataset, the average classification accuracy was d9 = 3.98 when
information from all RS cells in the population was included in-
dependently (Fig. 12C, left). When spiking activity was summed
across cells before being passed to the classifier, average perform-
ance for the task dropped to d9 = 2.15, suggesting that independ-
ent integration is advantageous. However, when classification
results were examined for each stimulus separately, it was appa-
rent that some AM rates benefited from maintaining independent
inputs more than others (Fig. 12C, right). Stimuli containing
slower AM rates (2Hz, 4Hz, and the irregular segment containing
a 4-Hz period) showed roughly equivalent classification perform-
ance when activity was summed across cells.

To estimate the best performance that could be achieved
from this population, we gradually pooled cells from best to
worst individual d9 (Fig. 12D). Classification based on independ-
ent integration required only a few of the best neurons to reach
d9 = 4. When decoding was measured from the summed activity
pattern, performance was best with a selective ensemble of the
best cells, and d9 converged to roughly the level of the best indi-
vidual unit when all cells in the population were included.

Which population decoding model is better for decoding the
envelopes of human speech? Would a decoder need to maintain
the identity of individual cells, or is the temporal pattern of activ-
ity in the global population sufficient? On average for the task,
the two pooling methods result in similar d9 values (Fig. 12E, left).
Unlike most sinusoidal AM stimuli, each individual speech stimu-
lus demonstrated similar decoding accuracy from summed and
independent pooling methods (Fig. 12E, right). Additionally,
the two decoding methods show consistent performance across
ensembles of varying sizes (Fig. 12F). As before, performance of
the entire RS population converges to approximately the level
of the best individual cell.

Overall, decoding syllabic structure does not require inde-
pendently tuned inputs. Although tuning and responses across
the AC population are heterogeneous, our results suggest that
the onset edges of sound amplitude coherently shape the tempo-
ral response dynamics in a manner that creates an easily decoded
population level signal.

Narrow spiking cells
Our analyses have focused primarily on stimulus encoding and
decoding by RS cells, which are thought to represent the princi-
pal neurons that project to downstream populations. However,
we also recorded from a smaller number of narrow spiking (NS)
cells, thought to reflect inhibitory interneurons (Wilson et al.,
1994; Barthó et al., 2004; Mesik et al., 2015; F. Liang et al., 2019).
The population of NS cells displayed higher spontaneous and
evoked (Fig. 4A) firing rates as compared with RS cells, suggest-
ing that our recordings primarily sampled fast spiking interneur-
ons (Li et al., 2015).

To compare the envelope-evoked responses of RS and NS
cells, we plotted the normalized population activity surrounding
peak derivative events in the envelope signal for each AM rate
(Fig. 13A). The temporal pattern of spiking differed for RS and
NS cells. Most notably, NS cell activity dipped around 40–50ms
after a peakDrv event, coinciding with the time that RS activity
peaked. This discharge pattern was particularly apparent for
slower AM rates, suggesting that a brief period of enhanced exci-
tatory transmission follows the onset edges in the amplitude en-
velope signal. Speech stimuli followed this pattern as well: the
peak in RS firing occurs when NS activity is at a minimum (Fig.
13B). However, our ability to draw quantitative conclusions
about NS cells’ vocoded speech encoding is limited by the rela-
tively few NS units recorded in this condition (N= 11).

Since a small percentage of inhibitory neurons do project
over long distances (Melzer and Monyer, 2020; Urrutia-Piñones
et al., 2022), we also evaluated the envelope decoding properties
of NS cells for the sinusoidal AM stimulus tokens (Fig. 13C). The
distribution of single-trial decoding accuracies was similar to RS
cells: 11.1% of NS cell/stimulus pairs achieved d9 . 1 (as com-
pared with 9.2% of RS cell/stimulus pairs). Like RS cells, only a
small amount of the variance in d9 values was explained by the
number of spikes in a response (sinusoidal AM: r2 = 0.04). In
contrast to RS cells, however, NS cells demonstrated more accu-
rate decoding of faster AM rates (32Hz d9 . 1: 25.9% of NS

Figure 11. Distribution of information is sparser than distribution of spikes. A, The ranked distribution of d9 values
is plotted for all cell/stimulus pairs included in the sinusoidal AM stimulus classification analyses (black dots, right ver-
tical axis). Overlaid is a cumulative count of the number of spikes in the responses of the corresponding cell/stimulus
pairs (orange line, left vertical axis). The skewness of the distribution of d9 values is higher than the skewness of the
number of spikes (g d9 = 3.3. g Nspk = 2.7). B, Ranked d9 values are plotted for all cell/stimulus pairs for vocoded
speech classification (black dots). The corresponding number of spikes in the response plotted as a cumulative
distribution (orange line). As above, the distribution of spikes is less skewed than that of d9 values (g d9 = 2.0.
g Nspk = 1.6).
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cells vs 10.6% of RS cells). This observation is consistent with
the results of Figure 4C, where a greater fraction of NS cells
synchronized to higher modulation rates according to vector
strength metrics.

Discussion
Animal communication sounds have rich temporal structure
and are often produced in extended sequences of “syllables,” or
packets of information, occurring at rates of ;2–8Hz. Human
speech research has built a strong case that AC plays a crucial
role in comprehension, in part, by segmenting the acoustic
stream into syllables (Giraud and Poeppel, 2012; Peelle and

Davis, 2012; Haegens and Zion Golumbic, 2018). The cellular
mechanisms underlying this parsing operation are unclear
because single neuron responses are largely studied during peri-
odic AM stimuli and because traditional analyses do not examine
the absolute temporal relationship between spikes and the stimu-
lus. In the present study, we measured responses of a broad
population of AC neurons and asked how the discharge pat-
terns of individual neurons contribute to envelope representa-
tions of complex, natural sounds like speech. While AM rate
and synchronization tuning of neurons was heterogeneous, the
timing of responses was stereotyped across cells. We found that
preferred phases collected near the onsets of sinusoidal AM
periods, corresponding to transient increases in the global

Figure 12. Syllable-rate envelopes can be decoded from the sum of population activity. Comparison of two population decoding methods based on single-trial data. A, Schematic shown for
a case where independent pooling (blue) yields better decoding accuracy than summed pooling (yellow). d9Ind (top, blue) results from classification based on the single trial spiking data from
each RS cell in the population. d9Sum (bottom, yellow) collapses spiking activity into one vector, and SVM classification is based on the temporal profile of activity in the population. In this
example, d9Ind . d9Sum because the information carried by individual cells does not manifest as a common temporal pattern of spiking. B, Decoding schematic shown for a case where
d9Sum = d9Ind. Here, temporal structure related to the envelope is preserved when activity is summed across the population. C, Classifier results, for the Sinusoidal AM task (left) and broken
down by stimulus (right), from independent pooling (blue) and summed pooling (yellow). Stimuli are sorted in ascending order of d9Ind–d9Sum. The three stimuli with prominent 2- or 4-Hz
periods show d9Sum performs nearly as well as d9Ind, while faster AM rates benefit from independent integration of cells. D, Average classification in the sinusoidal AM task for each pooling
method, with increasing ensemble cells. Cells are gradually added to the population from best to worst d9 (black dots). Overall, independent pooling is needed to sufficiently discriminate
between all stimuli in this set. Performance from pooling all cells is roughly equivalent to performance when including only a few of the best neurons. E, Results for the vocoded speech stimu-
lus set: task average (left) and broken down by stimulus (right), presented as in panel C. Performance is equivalent for both decoding methods, meaning that independent integration of cells’
activity is not required to distinguish between speech envelopes. F, Classification with increasing pool size, as presented in panel D. Average performance from the two decoding methods is
similar across all ensemble sizes.
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population signal marking amplitude edges. Only modulation
rates in the range of natural syllables exhibited this pattern,
although phase-locked responses continued at higher modula-
tion rates (Figs. 5, 9). The stimuli that displayed an overrepresen-
tation of onset edges in encoding analyses also demonstrated an
advantage for decoding: while classification of higher frequency
modulations required input from individual cells, vocoded speech
and syllable-like stimuli were discriminated equally well using the
summed population activity from single trials (Fig. 12). These
results suggest that a phasic, redundant code in the AC population
provides a mechanism for segmenting acoustic streams like
human speech.

Distributed, coherent spiking encodes amplitude edges
Prior work on AM encoding established diversity across cells as a
principal feature of sinusoidal AM rate tuning. This pattern has
been observed regardless of whether the carrier was broadband
noise or tones optimized for each cell individually, and regardless of
whether responses were measured by firing rate, temporal metrics,
or a classifier (Schreiner and Urbas, 1988; Eggermont, 1998; L.
Liang et al., 2002; Joris et al., 2004; Malone et al., 2007; Zhou and
Wang, 2010; Yin et al., 2011; Hoglen et al., 2018). Heterogeneity
has also been reported when analyzing the shapes of modulation
period histograms in the inferior colliculus (Rees and Møller,
1983; Krishna and Semple, 2000) and in AC (Malone et al., 2007).

Figure 13. Narrow spiking (NS) cells display a temporally-distinct response pattern and similar single-unit decoding accuracy. A, The evoked response surrounding peakDrv landmarks in
each periodic sinusoidal AM stimulus is shown for the RS population (green, N= 181) and the NS population (black, N= 54). Analysis is identical to Figure 9, but population mean firing rates
are normalized to facilitate comparison between cell types. Note that NS cell firing dips around 40- to 50-ms latency, at the same time RS cell firing peaks. B, Evoked responses for RS cells
(N= 100) and NS cells (N= 11) are shown for three example vocoded speech stimuli. Only preliminary observations can be made about NS population activity (dotted line) because of the lim-
ited number of cells recorded with at least 12 trials for each vocoded speech stimulus. Still, the same pattern is visible, with NS firing decreasing and RS firing increasing at short latency follow-
ing peakDrv events. C, Single trial decoding accuracy is shown for each NS cell. d9 values are illustrated by color scale (right) for each NS cell (columns) and each sinusoidal AM stimulus (rows).
As in Figure 10, rows and columns are independently sorted by hierarchical clustering. Overall, 11.1% of NS cell/stimulus pairs had classification levels of d9 . 1, compared with 9.2% for RS
cells. NS cells were more successful at decoding the 32-Hz stimulus (25.9% of NS cells with d9 . 1, compared with 10.6% of RS cells with d9 . 1).
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Temporal responses to sinusoidal AM are measured by the
mean phase of spikes. However, this metric is typically reported
only for example neurons or is inspected on a within-cell basis
(Eggermont, 1998). In this study, we directly quantified the tem-
poral relationship between spiking across the AC population and
both simple and complex envelopes. Despite a strong precedent
of heterogeneity, we found that mean phases were heavily biased
to occur in the first 90° for AM rates in the fluctuation range
(Fig. 5). Our results are consistent with a recent study of single-
unit sinusoidal AM responses in squirrel monkeys, which reported
shared phase preferences across neurons in AC and high accuracy
of a population-based decoding model (Downer et al., 2021).
Their results suggested that population coding of speech envelopes
would be robust to indiscriminate pooling of cortical responses.
Our results obtained with vocoded speech confirm that prediction
(Fig. 12). In addition, RS neurons (putative projection neurons)
and NS neurons (putative inhibitory interneurons) were cleanly
distinguished in our dataset. Both displayed phasic AM responses,
and RS cells exhibited a bias toward increased spiking following
amplitude edges, at a time when inhibition is briefly reduced.

If individual RS neurons contributed differential information
to the envelope representation, summing activity across cells
would detract from classification performance. In contrast, we
found a classifier could extract sufficient information to discrimi-
nate envelope stimuli using a single-trial population activity vec-
tor, with no benefit of tracking inputs from individual cells.
Natural speech contains substantially more complexity than one-
channel vocoded speech. Instead of a single envelope signal, en-
velope cues involve correlated modulations in amplitude across
frequency bands. Thus, envelopes of complex, natural sounds
may involve distributed codes within a few subpopulations of
neurons simultaneously, in addition to the sparse coding that is
likely needed to decode spectral information.

Relationship between NS and RS properties
Thus far, we have focused on regular spiking (RS) cells which are
thought to reflect principal neurons that serve as the primary
output of AC to downstream regions. However, we also charac-
terized a population of narrow spiking (NS) cells that are thought
to reflect inhibitory interneurons (Wilson et al., 1994; Barthó et
al., 2004; Mesik et al., 2015; F. Liang et al., 2019). Functionally,
inhibitory interneurons are largely involved in local networks
that sculpt RS cell coding properties, and they are also implicated
in a broad range of AC coding properties (Tsunada et al., 2012;
Natan et al., 2015, 2017; Seay et al., 2020; Pérez-González et al.,
2021), as well as long-term auditory plasticity (Jeanne et al., 2013;
Sarro et al., 2015; Resnik and Polley, 2017; Vickers et al., 2018;
Mowery et al., 2019). That said, we acknowledge that there are
many types of cortical interneurons (Kepecs and Fishell, 2014)
including a small percentage of GABAergic neurons with long-
range projections (Melzer and Monyer, 2020; Urrutia-Piñones
et al., 2022), and spike kinetics cannot conclusively determine
cell types (Moore and Wehr, 2013).

In layers 2–4, the primary location of our recordings (Fig. 2;
Materials and Methods), principal neurons are known to integrate
at least two, functionally distinct, inhibitory inputs (Beierlein et al.,
2003; Tan et al., 2008; Cruikshank et al., 2010). In gerbil auditory
cortex, fast-spiking interneurons provide feed-forward inhibition,
and exhibit large, reliable inhibitory potentials that display short-
term depression, while low-threshold spiking interneurons produce
smaller inhibitory potentials that do not display as much synaptic
depression (Takesian et al., 2010, 2013).

The population of NS cells reported in the present study dis-
played high spontaneous and evoked firing rates (Figs. 1F, 4A),
and phasic responses that continued at higher AM rates than RS
cells (Fig. 4C), consistent with previous descriptions of fast spik-
ing inhibitory interneurons in AC (Atencio and Schreiner, 2008;
Levy and Reyes, 2012; Moore and Wehr, 2013; Li et al., 2015;
Bottjer et al., 2019; Gao and Wang, 2019; Liu and Wang, 2022).
Furthermore, we found that the relative response latencies of NS
cells, as referenced to the peaks in the derivative of the envelope
signal (peakDrv), were longer than those of RS cells at slow mod-
ulation rates (Fig. 13A). In fact, NS cell firing briefly decreased at
the time of the RS cell peak response, suggesting that NS cells
constrain the RS response window. This is consistent with exper-
imental evidence that parvalbumin-positive (PV1) interneurons
shape RS cell discharge pattern. For example, pharmacological
manipulations of GABAergic transmission in gerbil AC (Kurt et
al., 2006) or optogenetic manipulations of PV1 cells in mouse
AC brain slices (Krause et al., 2019) result in selective alterations
to RS cell discharge patterns.

In the present study, latencies of NS cell peak firing following
onsets of amplitude edges often occurred later than RS cell peaks.
This observation contrasts with reports from PV1 fast-spiking
neurons in mouse AC, which display shorter latencies than non-
PV cells in response to medial geniculate stimulation or to pure
tones (Rose and Metherate, 2005; Moore and Wehr, 2013). A
possible reconciliation of these observations is that continuous
sound streams may lead to different spectrotemporal adaptation
and circuit dynamics as compared with isolated stimuli with
rapid rise times (e.g., tone pulses). Future studies should con-
tinue to probe how envelope coding is sculpted by the relative
timing of excitation and inhibition and adaptation to ongoing
sound stimuli.

Limitations of the dataset
While our recordings spanned the tonotopic axis of AC, we
did not directly assess spectral tuning. However, there is rea-
son to believe that envelope representation would be robust to
changes in spectral parameters. Global, population-level sig-
nals in human AC and single units in animals have been
shown to encode amplitude envelopes independently from
spectral features (Malone et al., 2007; Oganian and Chang,
2019). Previous experiments using pure tone carriers also pre-
dicted that amplitude edge detection could be accomplished
by a collective signal from the AC population (Zhou and
Wang, 2010; Downer et al., 2021). Further, behavioral experi-
ments using chimerized stimuli, which dissociate envelope
and carrier components, provide perceptual evidence of inde-
pendent processing (Smith et al., 2002).

Additionally, the upper bound of modulation rates for which
a redundant code exists is not clear. In the present study, the
range of phase locking extended higher than the range for which
coherent phase preferences were observed. Studies in different
species reveal different synchronization limits of single units in
AC, with nonhuman primates showing phase-locking retained at
faster modulation rates than rodent species (Hoglen et al., 2018).
The results in Downer et al. (2021), obtained from squirrel mon-
keys, demonstrate that coherent phase preferences stretch to
higher modulation rates in species with higher synchronization
limits. Still, future studies will have to investigate the relationship
between synchronization and phase preferences, how these proper-
ties influence population coding, and whether these properties extend
to single neurons in human auditory cortex.
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Limitations of a redundant code
The present evidence suggests that a distributed, redundant code
might be available and useful for the task of parsing a continuous
signal like speech. Faster modulation rates (16 and 32Hz in the
present dataset) did not exhibit the same representation, suggest-
ing that this redundant code would not contribute to perception
of acoustic elements such as timbre and pitch although these
properties also rely on envelope cues. Similarly, discriminating
between similar modulation shapes may also require higher reso-
lution neural representations. For example, the classifier used in
this study struggled to discriminate the vocoded speech segments
corresponding to the words “please” and “trees” (Figs. 10, 12). A
similar observation was made in a study assessing envelope
responses at a different scale, using ECoG recordings: responses
were qualitatively identical for linear-shaped and nonlinearly-
shaped amplitude ramps (Oganian and Chang, 2019).

While we have emphasized the similarity of cells’ responses,
substantial richness and diversity did exist in the population
(Figs. 4, 5, 8). This heterogeneity reflects the tuning specializa-
tion that is characteristic of cortex and is valuable for coding
many other key sound dimensions. Tuning specificity is integral
in sparse coding models, which have been shown to be effective
for discriminating natural sound stimuli that vary greatly in
spectral characteristics (Ince et al., 2013; Schneider and Woolley,
2013). Sparse and redundant codes are not mutually exclusive,
though; they can exist in parallel. This phenomenon was demon-
strated in piriform cortex: the identity of active neurons conveyed
odor identity, while a distributed temporal code represented odor
intensity (Bolding and Franks, 2017). Future experiments should
be designed to look for multiplexed acoustic information in AC.

There is reason to believe that multiplexing could occur in au-
ditory cortex. For example, transient responses are observed at
sound onset (from silence) in marmoset neurons with a variety
of tuning preferences, but sustained responses occur only in a
subset of cells precisely-tuned to the current acoustic parameters
(Wang et al., 2005). Note that the prevalence of sustained
responses likely depends on species: 43% of rhesus neurons dis-
play a sustained response to long pure tone stimuli (Malone et
al., 2007). Regardless, the present results suggest that relatively
promiscuous onset responses extend beyond sound onsets from
silence and also occur for amplitude edges during continuously
modulating sounds. Thus, population sparseness and decoding
conditions may vary over time, influenced by stimulus dynamics,
allowing for multiple codes to coexist.

Relationship to speech processing
In humans, neural recordings during both passive and active
speech listening demonstrate precise tracking of speech enve-
lopes by cortical activity, known as rhythmic tracking or entrain-
ment (Giraud and Poeppel, 2012; Peelle and Davis, 2012;
Haegens and Zion Golumbic, 2018). Intelligibility of speech
depends on the vitality of phasic responses in AC; for example,
microstimulation in Heschl’s gyrus applied at acoustic edges dis-
rupts comprehension (Forseth et al., 2020). However, rhythmic
tracking activity is also evoked in the absence of intelligibility,
suggesting a purely acoustic, or bottom-up, component of speech
processing (Peelle et al., 2013; Meyer et al., 2017). Our results
align with studies of speech and AM encoding in humans, which
find that population activity in AC is sensitive to edges in the
amplitude envelope of speech stimuli (Oganian and Chang,
2019; Forseth et al., 2020). Importantly, these acoustic edges cor-
relate with the onsets of vowel nuclei, which perceptually define
syllabic rate (Oganian and Chang, 2019). The evidence for a

direct relationship between the acoustic signal and the linguistic
structure of speech emphasizes the possibility that some mecha-
nisms underlying speech processing may be studied using animal
models.

The scales of neural activity in human speech studies and ani-
mal electrophysiology are vastly different, as are the complexity
and salience of species’ vocalizations. Is it fair to compare these
data? One previous study provides insight into how cellular
electrophysiology could be linked to speech parsing models
in humans. Szymanski et al. (2011) presented spectrotempor-
ally complex stimuli, including rock music, to anesthetized
rats while measuring current source density (CSD) across layers
of AC. Discrete events were identified in the CSD signal that
reflected “high-amplitude neuronal discharge,” thought to be
driven by thalamocortical input. These events occurred at a rate
of 2–4Hz and, although their temporal relationship to the stimu-
lus was not quantified, qualitatively appear correlated with the
onsets of prominent amplitude edges in the stimulus. Crucially, the
occurrence of high-amplitude discharge events corresponded to
phase resets of low frequency local field potentials. In human
speech literature, oscillatory phase resetting is a prominent mech-
anism implicated in speech parsing (Peelle and Davis, 2012;
Haegens and Zion Golumbic, 2018). Mechanisms of phase reset-
ting are ripe for investigation at the level of single cells and cir-
cuits in awake animals (Guo et al., 2017). Overall, by combining
several levels of inquiry, we can elucidate how the information-
processing operations performed by cells and circuits underlie
the global signals measured in humans, helping to crack the
neural mechanisms of speech processing.
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