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Fluid intelligence, the ability to solve novel, complex problems, declines steeply during healthy human aging. Using fMRI, fluid intelli-
gence has been repeatedly associated with activation of a frontoparietal brain network, and impairment following focal damage to these
regions suggests that fluid intelligence depends on their integrity. It is therefore possible that age-related functional differences in fron-
toparietal activity contribute to the reduction in fluid intelligence. This paper reports on analysis of the Cambridge Center for Ageing
and Neuroscience data, a large, population-based cohort of healthy males and females across the adult lifespan. The data support a
model in which age-related differences in fluid intelligence are partially mediated by the responsiveness of frontoparietal regions to
novel problem-solving. We first replicate a prior finding of such mediation using an independent sample. We then precisely localize the
mediating brain regions, and show that mediation is specifically associated with voxels most activated by cognitive demand, but not
with voxels suppressed by cognitive demand. We quantify the robustness of this result to potential unmodeled confounders, and esti-
mate the causal direction of the effects. Finally, exploratory analyses suggest that neural mediation of age-related differences in fluid
intelligence is moderated by the variety of regular physical activities, more reliably than by their frequency or duration. An additional
moderating role of the variety of nonphysical activities emerged when controlling for head motion. A better understanding of the
mechanisms that link healthy aging with lower fluid intelligence may suggest strategies for mitigating such decline.
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Significance Statement

Global populations are living longer, driving urgency to understand age-related cognitive declines. Fluid intelligence is of
prime importance because it reflects performance across many domains, and declines especially steeply during healthy aging.
Despite consensus that fluid intelligence is associated with particular frontoparietal brain regions, little research has investi-
gated suggestions that under-responsiveness of these regions mediates age-related decline. We replicate a recent demonstra-
tion of such mediation, showing specific association with brain regions most activated by cognitive demand, and robustness
to moderate confounding by unmodeled variables. By showing that this mediation model is moderated by the variety of regu-
lar physical activities, more reliably than by their frequency or duration, we identify a potential modifiable lifestyle factor that
may help promote successful aging.
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Introduction
Aging affects many cognitive abilities, but the drop in fluid intel-
ligence, the ability to solve novel, complex problems (Cattell,
1963; Carpenter et al., 1990; Duncan et al., 2017), is particularly
steep (Horn and Cattell, 1967; Kievit et al., 2014; Samu et al.,
2017). Moreover, fluid intelligence may be especially important
for determining aging trajectories through contributions to abil-
ity across cognitive domains (Parkin and Java, 1999; Salthouse et
al., 2003), performance in daily life (Diehl et al., 1995), and even
health outcomes (Gottfredson and Deary, 2004). Understanding
fluid intelligence decline is increasingly urgent as lifespans increase
(Vaupel, 2010).

Extensive research associates fluid intelligence with a fronto-
parietal brain network (Jung and Haier, 2007; Duncan, 2010;
Santarnecchi et al., 2017a). These regions, including the precen-
tral sulcus, middle frontal gyrus, intraparietal sulcus, anterior
insula, and anterior cingulate cortex, have been termed the mul-
tiple-demand network (MDN) because of their activation during
many cognitively demanding tasks (Duncan and Owen, 2000;
Naghavi and Nyberg, 2005; Duncan, 2010), including tests of
fluid intelligence (Prabhakaran et al., 1997; Duncan et al., 2000).
Individual differences in fluid intelligence correlate with MDN
activity (Gray et al., 2003; Lee et al., 2006; Tschentscher et al.,
2017; Assem et al., 2020b) and with its connectivity to other
brain networks (Cole et al., 2012). The impact of focal lesions
(Glascher et al., 2010; Woolgar et al., 2010; Barbey et al., 2014;
Woolgar et al., 2018; Smith et al., 2022) and transient transcra-
nial stimulation (Momi et al., 2020) suggests these regions’ causal
role in supporting fluid intelligence. We therefore test the possi-
bility that functional differences in MDN activation mediate fluid
intelligence decline during healthy aging (Phillips and Della Sala,
1998). Confirming this would help to understand the mechanism
of age-related decline, and suggest potential targets for mitigation
with interventions that might impact on the putative causal path-
way from age to fluid intelligence via neural responsiveness.

Many studies have considered relations between brain activa-
tion and cognitive performance in older adults (Dennis and
Cabeza, 2008; Eyler et al., 2011; Grady, 2012), although few have
probed the specific three-way relationship between differences in
age, brain activation, and fluid intelligence. In the context of
broader questions on differential age effects across task domains,
a recent study (Samu et al., 2017) reported results consistent
with frontoparietal activity mediating age differences in per-
formance during a fluid intelligence task. Activity of the default
mode network (DMN), typically deactivated during attentionally
demanding tasks (Buckner et al., 2008), was not found to medi-
ate performance decline in the task, despite changing with age in
tasks that showed behavioral decline.

Here, we have five main aims. First, we replicate the finding
of frontoparietal mediation of age differences in fluid intelligence
(Samu et al., 2017), using an independent, nonoverlapping sam-
ple of participants from the population-based, healthy, adult life-
span cohort (Cambridge Center for Ageing and Neuroscience
[Cam-CAN]) (Shafto et al., 2014) used by Samu et al. (2017). As
the dependent variable, we replace concurrent task performance
with a previously acquired, standardized fluid intelligence mea-
sure (Cattell and Cattell, 1973), avoiding external factors (e.g.,
arousal) that could comodulate simultaneous measures of brain
activity and behavior. Second, after combining the nonoverlap-
ping sample with that from Samu et al. (2017), we test whether
mediation is specifically associated with voxels most responsive
to cognitive demands, or also with voxels suppressed by cogni-
tive demand. Third, we assess the robustness of the mediation

result to possible unmodeled covariates. Fourth, since the
mediation analysis cannot itself determine causality, we esti-
mate causal directions under additional assumptions of an
acyclic model with non-Gaussian errors. Finally, in explora-
tory analyses, we consider whether these relationships depend
on potentially modifiable lifestyle factors. Specifically, increas-
ing research proposes that physical exercise confers resilience
to cognitive aging, although the nature and mechanism of this
benefit remain unclear (Colcombe and Kramer, 2003; Smith et
al., 2010; Liu-Ambrose et al., 2018). We therefore examine
whether the mediation model is moderated by questionnaire
measures that distinguish the variety, frequency, and duration
of regular physical recreations.

Materials and Methods
Experimental design and statistical analyses. The original experi-

mental design for the Cam-CAN project (www.cam-can.com) is
described in Shafto et al. (2014). Full details of the within- and
between-subject variables, statistical tests, and software used in the
current project are described in the following sections. Data can be
requested after registration via the Cam-CAN dataset inventory (https://
camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/). Analysis code is avail-
able via the Open Science Framework (https://osf.io/xgw56/). The analy-
ses were not preregistered.

Participants. Participants reported here are a subset of 252 partici-
pants from the population-based healthy adult cohort recruited for the
Cam-CAN (for full details of the sample and exclusion criteria, see
Shafto et al., 2014). The initial Cam-CAN data collection consisted of a
background interview (Stage 1), detailed cognitive testing and core
measures of brain structure and function (Stage 2), and targeted func-
tional neuroimaging studies (Stage 3). The current study reports results
from the behavioral test of fluid intelligence (Stage 2), the fMRI session
using a similar fluid intelligence task (Stage 3), and self-reported recrea-
tional activities (from a questionnaire distributed in Stage 1). Of the par-
ticipants recruited, 252 (133 female) completed the fMRI task, of whom
all had completed the prior fluid intelligence test. Stage 3 testing
occurred between 0.3 and 3.4 (mean 1.4) years following Stage 2. For
analyses including age, we used the age midway between the two tests,
for which ages ranged from 20.5 to 90.3 years (mean 55.1 years; approxi-
mately equal numbers per decile).

The first analysis, seeking to replicate the mediation observed by
Samu et al. (2017), used a subset of 154 participants not included in the
prior study. The remaining analyses used all 252 participants, except for
the final analyses of moderated mediation, for which questionnaire data
on physical recreation were missing from 13 participants and data on
nonphysical activities were missing from 15 participants.

Participants gave written, informed consent, and the study was
conducted in accordance with ethical approval obtained from the
Cambridgeshire 2 (now East of England–Cambridge Central) Research
Ethics Committee.

Fluid intelligence measure. Fluid intelligence was assessed using
Scale 2, Form A of Cattell’s Culture Fair Test (Cattell and Cattell, 1973),
according to the standard protocol. This consists of four, nonverbal,
multiple-choice, pencil-and-paper subtests of abstract reasoning (series
completion, odd-one-out, matrix completion, and topological judgment)
each introduced with examples and then completed under timed condi-
tions, but with participants not informed of the precise time limits.
When the total number of correct problems was converted to its stand-
ardized fluid intelligence score (IQ) using the conversion table in the
manual (which is age-adjusted only below age 14) (Cattell and Cattell,
1973), its variance was found to decrease significantly with age (White-
Wooldridge test, x 2

(2) = 11.6, p= 0.003). We therefore constructed a
latent IQ variable from the first principle component across the subt-
ests, similar to Kievit et al. (2014), which had homoscedastic residuals
when predicted from age. This variable was standardized to have the
same sample mean and SD as the normed scores based on the manual.
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Lifestyle activities measures. Recent years have seen increasing con-
sensus that physical exercise can be beneficial for neurocognitive health,
including in older adults (Colcombe and Kramer, 2003; Smith et al.,
2010; Liu-Ambrose et al., 2018). Most studies have examined a single
measure of exercise, and so cannot distinguish which aspects of
increased exercise might be most beneficial; however, some recent
reports suggest that the duration of exercise may be less important than
its intensity (Angevaren et al., 2007; Brown et al., 2012) or variety
(Angevaren et al., 2007). In the Cam-CAN study, we had access to ques-
tionnaire measures that distinguished the variety, frequency, and dura-
tion of self-reported physical recreational activities, allowing us to
investigate which of these different aspects of exercise might have the
greatest impact on age-related decline in fluid intelligence.

Measures of recent physical recreational activities were taken from a
self-completion questionnaire, completed during Stage 1 (within 2 years
of Stage 2), based on the recreation section of the EPIC-EPAQ2 ques-
tionnaire (Wareham et al., 2002), which was derived, in turn, from the
Minnesota Leisure Time Activity questionnaire (Richardson et al.,
1994). Questions included the approximate frequency (on a 7 point
scale) and duration (in hours and minutes) of each of 35 recreational
and DIY activities in which people had participated over the last year
(e.g., cycling, mowing the lawn, dancing, golf). We considered just “reg-
ular” activities, which we defined as those occurring at least monthly.
“Variety” of regular activities was measured as the number of different
activities, “frequency” per regular activity was measured as the mean
number of episodes in a year, and “duration per episode” was also meas-
ured as the mean across regular activities; “total duration” was calculated
by multiplying the frequency and duration of each activity and summing
over regular activities. In this way, we sought to address the question: if
someone were to devote a fixed amount of time to extra physical activity,
might it be better to perform their current activities for longer, to per-
form their current activities more often, or to engage in a greater range
of activities?

To assess whether the results for the variety of physical activities gen-
eralized to more intellectual activities, we derived a similar measure for
the variety of recent “nonphysical” activities. For these activities, dura-
tion was never reported, and for most of them frequency was not
reported, so variety was the only measure. The variety of recent non-
physical activities was quantified by summing the number of mental and
social activities reported across two sources: (1) The “recent activities”
portion of the self-completion questionnaire (based on elements of the
Lifetime of Experiences Questionnaire) (Valenzuela and Sachdev, 2007)
provided 38 items, including mental activities in a typical week (e.g.,
reading, art, crossword puzzles), events or entertainment in the last 2
months (e.g., cinema, pub, concert), usual means of acquiring informa-
tion (e.g., TV, newspapers, Internet), and kinds of materials read on a
regular basis (e.g., newspaper, novels, magazines); and (2) from a home
interview at Stage 1, we included self-reports of 22 types of social interac-
tions (e.g., phone friends, email friends, attend social clubs). As for the
physical activity measures, for all questions where frequencies were
reported, we only counted regular nonphysical activities (i.e., those that
occurred at least monthly).

MRI acquisition.MRI was performed on a 3 Tesla Siemens TIM Trio
System, using a 32 channel head coil.

A high-resolution 3D T1-weighted structural image was acquired using
an MPRAGE sequence, with the following parameters: TR=2250ms;
TE=2.99ms; TI=900ms; flip angle=9 degrees; FOV=256� 240 � 192
mm; voxel size=1 mm isotropic; GRAPPA acceleration factor=2.

fMRI used a T2*-weighted gradient-echo EPI sequence with the follow-
ing parameters: 32 axial slices (acquired in descending order); slice thickness
of 3 mm, with an interslice gap of 25%; TR=2 s; TE=30ms; flip angle=78
degrees; FOV=192� 192� 120 mm; voxel-size=3� 3� 3.75 mm.

fMRI task. During fMRI, participants performed a nonverbal reason-
ing task (see Fig. 1A) that has been previously shown to activate the fron-
toparietal MDN (Duncan et al., 2000; Woolgar et al., 2013) and is based
on the odd-one-out subtest of Cattell’s Culture Fair test (Cattell and
Cattell, 1973). The task consisted of a series of problems in which partici-
pants were presented with a horizontal display of four panels and were
instructed to select the panel that differed in some way from all of the

others. The horizontal extent of each display was approximately 12
degrees of visual angle. The task used a block design, with alternating
blocks of easy and difficult problems. In the easy blocks, three panels
were identical and the fourth was clearly different, rendering each deci-
sion trivial; in the difficult blocks, the four panels in each problem dif-
fered in many ways, requiring the identification of abstract patterns to
select the odd-one-out. Participants completed four easy blocks and four
difficult blocks, each preceded by a 3 s cue indicating whether the
upcoming problems would be “Easy” or “Hard.” Each problem remained
on the screen until the participant responded, whereupon the next
problem was presented after a 500 ms blank interval. Problems
were presented in fixed order, drawn from a pool of 320 easy and
25 difficult problems. If a participant completed all problems of a
given difficulty, problems were recycled from the beginning. (Across partici-
pants, the mean percentage of repeated problems was 0.2% for easy prob-
lems, and 12.5% for difficult problems.) Each block automatically ended
after 30 s. Participants were encouraged to puzzle over each problem for as
long as necessary, only responding when confident of the correct answer.
Thus, the number of trials per block varied, while the time spent on each
type of problem (easy and difficult) was held constant. The task was pre-
sented using E-Prime (Psychology Software Tools) and stimuli were back-
projected onto a screen that was viewed through a mirror mounted on the
head coil. Responses were made using a button box.

Before entering the scanner, participants were shown examples of
the types of problems that they would encounter, and they practised
selecting the odd-one-out until both they and the experimenter were
happy that they understood the instructions.

fMRI preprocessing. Data were analyzed using “automatic analysis”
software (Cusack et al., 2015) in MATLAB (The MathWorks), which
called relevant routines from SPM12 (Wellcome Department of Imaging
Neuroscience, London).

Easy

z = -4 mm

Cohen’s d
(Difficult - Easy)

0.5 > 1.5

-0.5 < -1.5

z = 28 mm

A

B

Difficult

4

Figure 1. fMRI task, and response to difficult versus easy problem-solving. A, Examples of
easy and difficult problems. In both examples, the second item is the correct answer. B,
Regions significantly more active in the difficult than the easy condition (warm colors) and
vice versa (cool colors), shown overlaid on surface renderings (top) and horizontal slices (bot-
tom). N= 252. Slice positions are labeled in MNI coordinates and marked on the right hemi-
sphere rendering. Activations are shown to a depth of 15 mm. Color scales indicate Cohen’s
d, thresholded at |d|. 0.5. (All effects greater than |d|. 0.13 are significant when control-
ling the FDR at, 0.05.)
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Each participant’s structural volume was segmented into probabilis-
tic maps of six tissue classes. Gray and white matter maps of all Cam-
CAN Stage 2 participants whose structural volumes passed quality con-
trol (272, including 20 participants not reported here) were nonlinearly
aligned using diffeomorphic registration (DARTEL) (Ashburner, 2007)
to create a group template volume, which was then normalized to the
MNI template via an affine transformation.

Functional volumes were rigidly realigned to correct for motion, and
slice-time corrected. They were then coregistered to the structural vol-
ume, and normalized to template space using the combined transforma-
tions (native to group template, and group template to MNI template)
derived from the structural volume. Functional volumes were spatially
smoothed using a Gaussian kernel of 8 mm FWHM.

For each participant, at each voxel, a GLM was used to contrast the
BOLD response to difficult versus easy problem-solving. One regressor
for each condition was constructed by convolving the duration of each
block with the canonical HRF. Additional covariates of no interest
included the six movement parameters from the realignment step, and
a constant regressor to model the session mean. The model and data
were high-pass filtered with a cutoff of 1/128Hz. Estimation of the
model produced b maps for each of the easy and difficult conditions.
The difference map (DBOLD, difficult minus easy) summarized the
BOLD response to difficult problem-solving for each participant. The
mean group effect was assessed using a t test per voxel.

ROIs and voxel-wise analyses. For the analysis replicating the media-
tion observed by Samu et al. (2017), the fMRI response was summarized
within each of 12 cortical networks reported by Ji et al. (2019), based
on the multimodal parcellation from the Human Connectome Project
(Glasser et al., 2016). Parcels were generated from https://neurovault.
org/images/30759/, dilated to fill a gray-matter mask, and combined
into one ROI per network. The core MDN regions, areas consistently
and strongly activated by multiple cognitive demands, have been
shown to comprise a subset of the larger frontoparietal resting state
network (Assem et al., 2020a), so these regions were added as an extra
“core MDN” ROI, expected to be most strongly responsive to the diffi-
culty contrast. Similarly, a core DMN ROI was constructed using
the same data and approach as in Assem et al. (2020a), but revers-
ing the sign of the contrast (i.e., selecting parcels consistently most
active in easier compared with harder conditions across a set of
tasks). This identified a midline subset of the broader DMN network
parcels. The response within each ROI was summarized by the mean
across voxels.

Subsequent analyses used a voxel-wise approach to precisely identify
those voxels where the mediation model was significant, and to assess
the association between the strength of the mediation effect and the
strength of the response to cognitive demand. Across most of the brain,
fMRI data were available from all 252 participants; however, toward the
edges of the brain data were missing from some participants depending
on the position of the acquisition bounding box. We analyzed all voxels
within an MNI template brain mask for which fMRI data were acquired
from at least 100 participants. The sample size thus ranged from 100 to
252 across voxels (73% of voxels within the mask had data from all 252
participants; 90% of voxels had data from at least 90% of participants;
98% of voxels had data from.100 participants).

The set of voxels exhibiting both significant mediation and signifi-
cant activation by cognitive demand (and with data from all 252 partici-
pants) then served as a functional ROI across which the BOLD response
was averaged to fit a summary mediation model. This summary model
was used in further analyses to examine robustness to unmodeled con-
founders, estimated causal direction, and moderated mediation.

For both ROI-based and voxel-based analyses, multiple com-
parisons were accounted for by controlling the false discovery rate
(FDR) at, 0.05 (Benjamini and Yekutieli, 2001). Brain renderings
are displayed using MRIcroGL software (https://www.nitrc.org/
projects/mricrogl).

Mediation analyses. The mediation model tested whether the rela-
tionship between age and fluid intelligence could be (at least partially)
accounted for by the relation between age and the brain response to dif-
ficult problem-solving. Mediation was assessed in MATLAB using a set

of linear regressions (Baron and Kenny, 1986; MacKinnon et al., 2007).
The first equation below expresses the total linear relation between age
and IQ; the second equation expresses the unique linear relation between
age and IQ when also modeling the effect of the BOLD response on IQ
as follows:

C ¼ i1 1 cA1 e1 (1)

C ¼ i2 1 bB1 c9A1 e2 (2)

B ¼ i3 1 aA1 e3 (3)

where the variable A is age, B is the brain’s BOLD response at a given
voxel or ROI, and C is Culture Fair IQ; the coefficient a reflects the effect
of age on the brain response, b reflects the effect of the brain response on
IQ while controlling for age, c reflects the total effect of age on IQ, and c9
reflects the “conditional direct” effect of age on IQ while controlling for
the brain response; e1-3 are residuals and i1-3 are intercept terms.

Where the data are consistent with mediation, c9 would have reduced
magnitude compared with c; that is, the inclusion of the brain response
in the model explains some of the variance in IQ that would otherwise
have been explained by age. For a linear model, the difference between c
and c9 is equivalent to the product of a and b (MacKinnon et al., 2007),
which describes the “indirect” effect of age on IQ as the effect of age on
the brain response combined with the (age-adjusted) effect of the brain
response on IQ.

Mediation is traditionally tested and easiest to interpret when there is
no interaction between the mediator and independent variable in pre-
dicting the outcome variable (as assumed in Eq. 2, above). Therefore,
before testing for mediation, we tested for ROIs or voxels where age and
the fMRI response interact in predicting IQ, which would suggest that
the brain response moderates (buffers or exacerbates) the direct effect of
age on IQ. That is, we tested the interaction term (d) in the model as
follows:

C ¼ i4 1 bB1 c9A1 dAB1 e4 (4)

The significance of mediation can be assessed by separately testing
the significance of a and the significance of b, or by testing the signifi-
cance of the product of a and b directly (Baron and Kenny, 1986;
MacKinnon et al., 2002). While the latter approach is more powerful
under the null hypothesis that both a and b are zero, it has inflated
Type I error rates compared with a null hypothesis that either a or b
might be zero (MacKinnon et al., 2002). We therefore used the more
conservative conjunction of tests, which also allowed an efficient hier-
archical approach in the context of testing multiple voxels across the
brain. Specifically, we first identified voxels where the strength of the
brain response (the potential mediator) showed a significant bivariate
association with age (significant a coefficient in Eq. 3), thresholding for
significance at p, 0.05, two-tailed, while correcting for multiple com-
parisons (FDR). Of these voxels, we retained only those where there
was also no evidence of moderation, defined as the interaction term (d)
being both small (Cohen’s f2 , 0.02) and nonsignificant (p. 0.05,
two-tailed, without correction for multiple comparisons). This gener-
ated a conservative set of voxels within which classical mediation could
then be tested based on additional significance of the b coefficient (Eq.
2). Since IQ has a negative relation with age, and we are interested in
“consistent” mediation (where the direct and indirect effects have the
same sign, such that modeling the mediator reduces the size of the total
effect) (MacKinnon et al., 2000), we used a one-tailed test that b had
the opposite sign to a (i.e., IQ increases with brain response, which
decreases with age, or vice versa). Multiple comparisons were again
accounted for by controlling the FDR ,0.05, based on the conjunction
of the tests for a and b (maximum p) (Heller et al., 2007).

Correlation of mediation effect size with strength of BOLD response
to cognitive demand, across voxels. Testing whether voxels with the
strongest mediation are also those most strongly activated by cognitive
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demands is complicated by spatial autocorrelation across the brain.
Nearby voxels tend to have similar responses, so standard significance
tests that assume independence of samples are invalid. We therefore
tested significance using a Monte Carlo approach based onMoran eigen-
vector spectral randomization (Wagner and Dray, 2015). The eigenvec-
tors of a scaled proximity matrix derived from the Euclidian distance
between voxels (Dray et al., 2006) comprehensively describe the spatial
autocorrelation structure across all scales (Griffith and Peres-Neto, 2006).
These eigenvectors were used to create a null model of the distribution of
correlations that would be expected by chance, given the measured autocor-
relation structure (Wagner and Dray, 2015). We used the MATLAB imple-
mentation in the Brainspace toolbox (Vos de Wael et al., 2020), using the
“singleton” procedure and 10,000 random permutations.

Diagnostic analyses of summary mediation model. For maximum
sensitivity, diagnostic analyses of the mediation model were run using
the mean BOLD signal across all voxels with significant mediation, data
from all 252 participants, and a preferential response to difficult prob-
lem-solving. To confirm correct specification of the functional form of
Equations 1–3 (i.e., that additional nonlinear functions of the independ-
ent variables are not required to fit the data), we used the RESET test
(Ramsey, 1969), as implemented in the Panel Data Toolbox (Alvarez et
al., 2017). To test for heteroscedasticity of residuals from Equations 1–3
(i.e., whether residual variance varied as a function of the independent varia-
bles), we used the version of theWhite test proposed byWooldridge (2012).

Being based on regression between observed variables, relationships
in the mediation model could potentially be induced indirectly by
unmodeled variables that drive covariation between the observations.
For example, if some participants were more distracted in the scanner,
this would likely lead to both lower performance and weaker task-
induced BOLD signal. By using a measure of fluid intelligence acquired
in a previous session, we avoid confounders that could affect simultane-
ous measures of performance and BOLD signal, and so ensure that the
results generalize to a standard measure of fluid intelligence that is stable
over time. Nonetheless, other potential confounds remain (e.g., general
predisposition to distraction) and cannot be exhaustively excluded.
Therefore, to assess the robustness of the mediation result to unmodeled
confounders, we performed a sensitivity analysis using the Left Out
Variables Error method (Mauro, 1990; MacKinnon and Pirlott, 2015).
This analysis asks how much the observed mediation strength might be
overestimated in the presence of hypothetical confounders that correlate
to varying degrees with the modeled variables. We expect age to be a
cause rather than an outcome, and so to be unaffected by unmodeled
variables. In this analysis, we therefore focused on potential confounding
of the relationship between the brain and fluid intelligence measures.
The analysis was implemented in MATLAB based on the example in
Valente et al. (2017).

The mediation analyses test whether the data are consistent with the
hypothesized causal model (i.e., IQ and neural responsiveness are both
affected by age, and IQ is also affected by neural responsiveness); how-
ever, they cannot distinguish between alternative causal models (Fiedler
et al., 2011). We therefore estimated the causal relationship between each
pair of variables using a “linear non-Gaussian acyclic model” (LiNGAM),
which can recover the causal directions under the additional assumptions of
an acyclic model with no more than one error term being perfectly
Gaussian (Shimizu et al., 2006). Briefly, the method starts from the observa-
tion that the matrix description of the linear relations between a set of cen-
tred random variables X:

X ¼ BX1E;

where B is a coefficient matrix and E are independent error terms, can
be rearranged to the following:

X ¼ ð1� BÞ�1E:

If E are assumed to be not perfectly Gaussian, then independent
component analysis (ICA) (Comon, 1994; Hyvarinen, 1999) can be used
to decompose X into the independent error components multiplied by a

mixing matrix, up to an undetermined scaling and permutation. The
coefficient matrix B can then be derived from the mixing matrix, with
the correct permutation and scaling determined from the assumptions
that the model is linear and acyclic, and so B should be lower-triangular.
The model was estimated with an algorithm based on this ICA-plus-per-
mutation approach, using the MATLAB LiNGAM package (https://sites.
google.com/view/sshimizu06/lingam). Since ICA-LiNGAM is not scale
invariant, all variables were standardized to unit variance. The model
was first estimated using the mean BOLD signal averaged across media-
ting voxels as defined above. Directionality of each path was defined as
the estimated absolute connection strength in the hypothesized direc-
tion, minus the absolute connection strength in the reverse direction (of
which only one is non-zero, given the acyclicity assumption). Thus, posi-
tive values would reflect causality in the hypothesized direction. The reli-
ability of this estimate was assessed using bootstrap (15,000 resamples).
Since the bootstrapped sampling distribution was found to be biased
with respect to the observed statistic, and far from Gaussian, it was not
conducive to constructing CIs. We therefore used the watershed algo-
rithm to split the mediating voxels into 77 clusters (one per local mini-
mum), ran LiNGAM on each cluster, discarded clusters where the sign
of any undirected coefficient did not match that estimated from the all-
voxel model (mean 44% across bootstrap resamples) or the LiNGAM
algorithm warned that the coefficient matrix was not lower-triangular
(mean 26% across bootstrap resamples), and calculated the mean direc-
tionality estimates across remaining clusters. This procedure was again
repeated across 15,000 bootstrap resamples. In line with the central-limit
theorem, using this mean estimate of directionality produced an approx-
imately normal sampling distribution, which allowed a bias-corrected
95% CI to be constructed.

Moderated mediation analyses. We ran moderated mediation analy-
ses to test whether the coefficients of the proposed mediation model
depended on the level of a fourth variable (see Lifestyle activities meas-
ures). We used the approach of Edwards and Lambert (2007), allowing
the moderator to affect any of the paths in the model, and testing for
moderation of both single and compound paths. The analysis was imple-
mented in MATLAB, based on the example in Edwards and Lambert
(2007). Simple effects were calculated for levels of the moderator 1 SD
above and below the mean. Differences between levels of the moderator
were tested using standard parametric tests for the single paths (a, b, c9),
and using bias-corrected percentile bootstrap (15,000 resamples) for the
compound paths (indirect and total effects of age on fluid intelligence).

Control analyses adjusting for head motion.Head motion is expected
to increase with age and to decrease with fluid intelligence (Siegel et al.,
2017), and is therefore a potential confound as well as a source of noise.
While this is of particular concern for measures of functional connectiv-
ity (Ciric et al., 2018; Parkes et al., 2018), it can also degrade task fMRI
data (Siegel et al., 2014). Therefore, on the suggestion of a reviewer, all
analyses were repeated after regressing summary measures of individual
differences in head motion. Two measures of head motion were calcu-
lated, using SPM Utility Plus (Pernet, 2021): the mean frame-wise dis-
placement (FD) across the fMRI scan (Power et al., 2012) and the
proportion of high-motion frames (FD. 0.9 mm, with this threshold
being suitable for task-based fMRI in cohorts with moderate motion)
(Siegel et al., 2014). All analyses were repeated after regressing these
measures from the key variables of age, IQ, and the BOLD response at
each ROI/voxel, as well as lifestyle measures in analyses of moderated
mediation. This carries a risk of removing actual effects of interest, to the
extent that they happen to covary with head motion (Power et al., 2014);
however, as a supplementary analysis it can identify results where head
motion may be (or is unlikely to be) a confound, and could unmask
results that might otherwise be obscured by the variance that head
motion shares with other variables.

Results
Behavior
Fluid intelligence (IQ), measured using the Culture Fair test
(Cattell and Cattell, 1973), had a mean of 106.6 and SD of 19.5
(N= 252; range 47-158 using the conversion in the manual, and
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43-142 when estimated as a latent variable; see Materials and
Methods). Since the test was originally constructed to have a
population mean of 100 and SD of 16, our higher mean may
reflect the Flynn effect (Colom and Garcia-Lopez, 2003), while
the higher variance may reflect our wide age range. It is unclear
whether the lowest values reflect genuinely low fluid intelligence
in older participants, or a qualitative difference in their ability
to understand or perform the tasks. Since we had no principled
reason to exclude the lowest performers, all participants were
included in the analysis. However, on the suggestion of a re-
viewer, all analyses were repeated after excluding participants
whose latent IQ score was .3 SDs below the mean (one partici-
pant in the ROI analysis plus a second in the subsequent analy-
ses; manual-normed IQ scores 47 and 57; latent IQ scores 43 and
48; ages 71 and 86). The main conclusions were unchanged.

For the fMRI task, reaction time (RT) was calculated as the
median time spent on each accurately answered problem at first
attempt, per condition and participant. Participants were, as
expected, substantially faster on the easy (mean RT=1.02 s) than
the difficult (mean RT=4.83 s) problems (t(251) = 37.9; p=7.4�
10�106). Participants were also substantially more accurate on the
easy (mean accuracy=97.6%) compared with the difficult (mean
accuracy=56.2%) problems (t(251) = 34.2; p=2.4� 10�96).

fMRI difficulty contrast
The group mean BOLD response associated with difficult versus
easy problem-solving is shown in Figure 1B. As expected, the dif-
ficult condition produced greater activation of the MDN bilater-
ally, extending into occipital cortex which may reflect enhanced
attention to the visual stimuli. The difficult condition was also
associated with reduced response of the DMN, auditory, and
sensorimotor cortex. Reduced responses in sensorimotor cortex,
especially in the left hemisphere, are expected because of the less
frequent (right-hand) button presses; reduced activation in audi-
tory cortex may reflect attentional suppression of the scanner
noise with increased focus on the visual modality.

Bivariate relationships between age, fMRI, and fluid
intelligence
We start by describing the three bivariate relationships in the full
sample. First, the association between age and fluid intelligence
(Fig. 2, bottom) showed strong and approximately linear cross-
sectional decline across the age range, as reported previously
using related measures and overlapping samples of Cam-CAN
participants (Kievit et al., 2014; Samu et al., 2017). The Pearson
correlation coefficient (r = �0.66) corresponded to an average
loss of 7.2 IQ points per decade of age.

Second, we assessed how the fMRI response to difficult prob-
lem-solving depended on the age of the participants (Fig. 2, left).
To a first approximation, the results corresponded to a weaken-
ing of the typical response, as age increased: regions that were
activated by the difficult condition on average (Fig. 1B, warm
colors) showed less activation (Fig. 2, left, cool colors), while
DMN regions that were typically suppressed in the difficult con-
dition showed less suppression. We note two partial exceptions
to this general pattern: auditory and sensorimotor cortex, which
were strongly suppressed in the difficult condition, showed rela-
tively less difference across age, or even increased suppression
(anterior IPS); similarly, parts of the basal ganglia showed in-
creasingly negative response to difficulty with age, despite the
difficulty response being nonsignificant (caudate) or weakly neg-
ative (putamen) on average.

Third, we assessed how the fMRI response to difficult prob-
lem-solving correlated with individual differences in fluid intelli-
gence (Fig. 2, right). The pattern was remarkably similar to the
correlation with age, but inverted in sign. That is, regions whose
activity was associated with higher fluid intelligence tended to
be those with the greatest age-related decline in activity, and
vice versa. One exception was again auditory and sensorimotor
regions: although these were suppressed in the difficult condi-
tion, and suppression somewhat reduced with age, we saw little
association with IQ, consistent with the expectation that these
regions are responding to specific sensory and motor aspects of

Figure 2. Bivariate relationships between age, fMRI response, and fluid intelligence (N= 252). Voxel-wise correlation coefficients are thresholded based on significance at FDR, 0.05. Slice
positions are labeled in MNI coordinates and marked on the right hemisphere rendering. Surface renderings show activations to a depth of 15 mm. The gray band in the scatter plot represents
the 95% CI of the fitted line.
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the particular task design, rather than having a more general role
in fluid intelligence.

Mediation of age-related differences in IQ by neural
response to cognitive demand: network-based replication
Given the pattern of bivariate relationships, it is possible that, for
some voxels, age independently impacts fluid intelligence and the
BOLD response. To identify regions where a reduced response to
difficult problem-solving potentially mediates the effect of age on
fluid intelligence, we jointly predict IQ from both age and the
fMRI response, and test for a decrease in the remaining (direct)
effect of age on IQ, relative to the total effect of age on IQ when
modeled alone. In other words, we identify regions where varia-
tion in IQ is partly explained by an indirect path of age affecting
the brain, which has a consequent effect on IQ. This also entails
the relationship between the fMRI response and IQ remaining sig-
nificant when controlling for age.

We first sought to replicate the recent finding that the respon-
siveness of frontoparietal regions is consistent with such media-
tion of age differences in fluid intelligence (Samu et al., 2017).
For this analysis, we thus restricted ourselves to the independent
subset of participants who were not included in the preceding
study (N=154), and we summarized the brain response accord-
ing to major cortical networks (Ji et al., 2019) plus more focused
definitions of core MDN (Assem et al., 2020a) and DMN. An ini-
tial test for an interaction between age and brain response in
predicting IQ found no significant effects for any network after
adjusting for multiple comparisons (all FDR-adjusted p. 0.64).
Therefore, consistent with Samu et al. (2017), there was no evi-
dence that the relationship between the neural response and fluid
intelligence differed with age.

We then probed neural mediation of the age effect on fluid
intelligence. Significant mediation was observed in four net-
works: Dorsal-attention, Secondary-visual, Frontoparietal, and
the Core MDN (which is a subset of the Frontoparietal network),
confirmed by joint significance of their a and b paths (Table 1)
as well as bootstrapped CIs around their product (Fig. 3A). We
therefore replicate the mediation observed by Samu et al. (2017),
link it to particular functional networks, and extend it from
mediation of concurrent task performance to mediation of par-
ticipants’ fluid intelligence more generally. The mediation effect
size (ab) is plotted against the group-average fMRI response to

difficult versus easy problem-solving in Figure 3A. The same
data are plotted a different way in Figure 3B, breaking down
each mediation effect into the magnitude of the a and b coeffi-
cients. This shows that the core DMN is impacted by age (a) at
least as strongly as the networks activated by the difficult condi-
tion (red); the reason that it does not significantly mediate the
decline in IQ is because of its small effect on IQ after controlling
for age (b), again replicating Samu et al. (2017). Overall, it is
striking that evidence for mediation is specific to those networks
responding most positively to task difficulty. This is consistent
with correlation of the BOLD response with the a and b paths
separately, reported across ICA components by Samu et al.
(2017).

The mediation results considered so far are at a relatively
coarse spatial scale, using combined ICA-based brain-wide spa-
tial components (Samu et al., 2017) or functional/anatomic net-
works (our replication). Next, we combine both samples to
increase power and precisely localize the mediation effect on a
voxel-wise basis. This also allows us to quantify the degree to
which mediation is associated with voxels that respond posi-
tively to task difficulty, separately for voxels activated and vox-
els suppressed by cognitive demand, and accounting for spatial
autocorrelation.

Voxel-wise localization of mediation effect, and its
association with voxels most responsive to cognitive demand
To identify mediating voxels in a conservative but efficient man-
ner, we took a hierarchical approach where we first tested for sig-
nificance of the a path, and used significant voxels (after FDR
correction) to define an analysis mask within which to test for
voxels where the b path was also significant. We further re-
stricted the analysis mask to voxels where there was no evidence
of an interaction between age and brain response in predicting
IQ. Consistent with Samu et al. (2017) and with our independent
replication at the network level, no voxels showed such an inter-
action after correcting for multiple comparisons (all FDR-
adjusted p. 0.32). Nonetheless, to be conservative, we excluded
voxels based on uncorrected significance (p, 0.05) or more than
“small” effect size (Cohen’s f2 . 0.02) of the interaction term.

The resultant analysis mask is shown as the blue and red
overlays in the second row of Figure 4A, where the color repre-
sents the sign of the difficulty contrast (red represents difficult.

Table 1. BOLD response to cognitive difficulty, and its moderation and mediation of age effects on fluid intelligence, for cortical network ROIs (N= 154)

DBOLD response (difficult – easy) Moderation (age:DBOLD interaction) Mediation (age ! DBOLD ! IQ)

Network Cohen’s d p FDR-adjusted p Cohen’s d p FDR-adjusted p ab p (a and b) FDR-adjusted p (a and b)

Core multiple-demanda 1.282 ,0.001 ,0.001b 0.163 0.045 0.636 �0.076 ,0.001 0.002b

Frontoparietal 1.026 ,0.001 ,0.001b 0.097 0.228 0.800 �0.049 0.004 0.015b

Dorsal-attention 0.849 ,0.001 ,0.001b 0.043 0.593 0.980 �0.087 ,0.001 0.002b

Secondary visual 0.822 ,0.001 ,0.001b �0.019 0.815 0.980 �0.067 ,0.001 0.002b

Primary visual 0.425 ,0.001 ,0.001b �0.103 0.205 0.800 �0.024 0.200 0.399
Ventral multimodal 0.219 0.007 0.011b �0.033 0.687 0.980 �0.023 0.032 0.089
Language 0.179 0.027 0.035b �0.018 0.823 0.980 �0.004 0.778 0.980
Orbito-affective 0.052 0.520 0.520 �0.006 0.939 0.980 �0.017 0.090 0.211
Posterior multimodal �0.126 0.120 0.129 0.002 0.980 0.980 0.010 0.980 0.980
Cingulo-opercular �0.135 0.095 0.111 �0.006 0.944 0.980 ,0.001 0.972 0.980
Default �0.180 0.027 0.035b 0.010 0.901 0.980 0.023 0.964 0.980
Core default-modea �0.572 ,0.001 ,0.001b �0.016 0.846 0.980 0.026 0.856 0.980
Auditory �0.722 ,0.001 ,0.001b �0.079 0.331 0.928 0.017 0.938 0.980
Somatomotor �1.018 ,0.001 ,0.001b �0.126 0.120 0.800 0.007 0.910 0.980
aNetworks defined based on conjunction of response to easy/difficult conditions using data from three Human Connectome Project tasks as presented in Assem et al. (2020a); remaining networks are defined from functional
connectivity as presented in Ji et al. (2019).
bSignificant results after FDR correction (adjusted p, 0.05).
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easy; blue represents easy. difficult). Green
represents voxels with significant mediation
after correcting for multiple compari-
sons within this mask (FDR, 0.05). In-
terestingly,.90% of voxels with significant
mediation responded more to difficult than
to easy problem-solving. Identified voxels
show a close relationship to MDN regions,
including key foci along the precentral sul-
cus and middle frontal gyrus, and within
the intraparietal sulcus, anterior insula, and
anterior cingulate cortex. Mediating voxels
are also observed in lateral occipital cortex
and subcortical structures, including the
basal ganglia, thalamus, and cerebellum,
which are often coactivated with the corti-
cal MDN (Assem et al., 2020a).

The relationship between neural medi-
ation of fluid intelligence and a voxel’s av-
erage response to difficult problem-solving
is illustrated in Figure 4B, where the medi-
ation effect size is plotted against the
response to difficult versus easy problems.
The overall relationship across voxels is
highly significant (Pearson correlation, r =
�0.57; p, 0.001; Fig. 4B,C, purple) after
using a permutation test with Moran spec-
tral randomization to comprehensively
account for spatial autocorrelation in the
maps (Wagner and Dray, 2015; Vos de
Wael et al., 2020). We also test the correla-
tion separately within voxels significantly
activated by difficult versus easy problem-
solving, and within voxels significantly
suppressed by difficult versus easy prob-
lem-solving. The correlation is again sig-
nificant within positively activated voxels
(r = �0.41; p, 0.001; Fig. 4B,C, red),
whereas there is no evidence that mediation is correlated
with the level of difficulty-induced suppression (r = �0.04;
p = 0.52; Fig. 4B,C, blue).

A summary mediation model, and diagnostic analyses:
robustness to confounders and a test of causal direction
To summarize and illustrate the localized mediation effect, we
averaged across those voxels with significant mediation, data
from all 252 participants, and a preferential response to diffi-
cult problem-solving. For these voxels, the mediation model is
depicted in Figure 5A. Figure 5B illustrates the mediation
effect in terms of the underlying relationships as suggested by
MacKinnon et al. (2007), where the green triangles highlight
the reduction of the total effect of age when modeling the neu-
ral response (c-c9).

Since the mediation effect rests on standard assumptions of
linear regression, we next confirmed that the model is appropri-
ate. We used the RESET test (Ramsey, 1969) to confirm correct
specification of functional form (i.e., that nonlinear functions of
the independent variables were not required to fit the data). For
Equations 1–3, we found no evidence of misspecification (all
F(3, 246-7), 2.23, all p. 0.08). Although the linearity of relation-
ships with age may break down at the extremes of the lifespan, ap-
proximate linearity is common for accuracy-based performance
measures (Salthouse, 2011a) and BOLD responses (Grady et al.,

2006) during healthy aging. Next, we used the White test
(Wooldridge, 2012) to assess whether the residual variance varied
as a function of the independent variables. For Equations 1–3, we
found no evidence against homoscedasticity (all x 2

(2), 4.36, all
p. 0.11). We also note that any violation of the assumption that
variables are measured without error would underestimate the
magnitude of the true mediation effect (Pieters, 2017).

The mediation analysis assumes that there are no confound-
ing variables omitted from the model (MacKinnon and Pirlott,
2015). Potential unmeasured confounders, however, are plausi-
ble, if not inevitable, in practice. Assuming that chronological
age must be a cause rather than a consequence, the main concern
is that an unmodeled variable could produce a spurious media-
tion effect by covarying with both IQ and the neural measure
(Salthouse, 2011a). Using a trait measure of fluid intelligence
rather than concurrent performance avoids some potential sour-
ces of shared variance, but others will remain. Therefore, to infer
a direct relationship between neural responsiveness and fluid
intelligence, and to establish the validity of the mediation model
as a potential mechanistic explanation, it is important that the
mediation result is robust to possible unmodeled covariates. To
address this, we used sensitivity analysis (Mauro, 1990; Valente
et al., 2017) to estimate how strong any unmodeled confounders
would need to be to fully explain the observed mediation rela-
tionship. Figure 5C plots the size of the true mediation effect as a
function of an unknown confounder’s correlation with the fMRI
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Figure 3. BOLD response to cognitive difficulty, and its mediation of age effects on fluid intelligence, for cortical network
ROIs (N= 154). A, Overall mediation effect size versus group average BOLD response. Error bars are 95% CIs derived from the
associated t test (BOLD contrast) or bias-corrected bootstrap (mediation). Green represents networks with significant media-
tion after FDR correction (adjusted p, 0.05). B, The b coefficient (reflecting the age-adjusted effect of the BOLD response
on IQ) is plotted versus the a coefficient (reflecting the effect of age on the BOLD response), with group-mean BOLD response
represented by color. Inset, Mediation model. The area of each rectangle conveys the mediation effect size (ab) for the corre-
sponding network. Solid and dashed lines indicate significant and nonsignificant mediation, respectively. Asterisks indicate
networks defined from their conjunction response to easy/difficult conditions using data from three Human Connectome
Project tasks as presented in Assem et al. (2020a); remaining networks are defined from functional connectivity as presented
in Ji et al. (2019).
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response and with IQ. This shows that, for there to be no true
mediation (at points along the black line), the correlations of
any confounder with both the fMRI response and IQ would
need to exceed 0.43 on average (and at least one must exceed
0.45). While this cannot be ruled out, it provides reassurance
that the mediation result is robust to the possibility of moderate
confounding.

Although the mediation analyses confirm that the data are
consistent with the hypothesized causal model, without experi-
mental manipulation of the variables, the data are equally con-
sistent with alternative causal models (Fiedler et al., 2011;
Salthouse, 2011a; MacKinnon and Pirlott, 2015). The various
possible causal orderings are statistically equivalent, having the
same covariance matrix and global model fit, and one cannot ad-
judicate between them based on the size or significance of their
mediation effect (Thoemmes, 2015). To assess causal directional-
ity, we therefore used a LiNGAM (Shimizu et al., 2006). By

making additional assumptions that no
more than one error term is perfectly
Gaussian, and that the model is acyclic,
LiNGAM uses ICA to estimate the generat-
ing causal model based on purely observa-
tional data (see Materials and Methods).
Using the mean across mediating voxels, as
defined above, LiNGAM estimated the
causal directions to be in line with the
assumed model (Fig. 5D, dashed red lines).
Bootstrap resampling, however, revealed
the sampling distribution to be biased and
far from multivariate normality. We there-
fore split the mediating voxels into local
clusters, applied LiNGAM to each cluster,
discarded clusters where a causal model
could not be reliably identified or whose
undirected model coefficients differed in
sign from the all-voxel model, and averaged
directionality estimates across the remain-
ing clusters. Again, estimated causal direc-
tions were all in line with the assumed
model (Fig. 5D, solid red lines), now with
approximately Gaussian bootstrapped sam-
pling distributions (gray histograms) from
which 95% bias-corrected percentile CIs
were constructed (pink bands). The boot-
strap distributions remain shifted with
respect to their observed direction esti-
mates (solid red lines), suggesting that the
observed estimates are similarly biased
with respect to their true population val-
ues; therefore, the bias-corrected CIs do
not lie on the percentiles of the sampling
distribution but are shifted in the opposite
direction to compensate (Hesterberg, 2015).
None of the intervals spans zero, suggesting
confidence in the estimated directions under
the assumptions of the model, although the
interval for the brain-behavior relation is
close to zero and the assumptions in this
case are questionable (see Discussion).

Moderation of the mediation model by
a varied active lifestyle
Finally, in exploratory analyses, we tested
whether any path in the observed media-

tion model might be moderated by self-reported regular physical
activities, in terms of their variety (number of different activities;
range 0-14), mean frequency per activity (episodes per year;
range 12-365), mean duration per episode (range 4-415min), or
total duration (range 10-3240 h per year). We found that the va-
riety of physical activities significantly moderated the path from
the brain response to IQ, but not the effect of age on the brain
response or the conditional direct effect of age on IQ (Table 2).
This carried through to a significant moderation of the overall
indirect effect of age on IQ, although moderation of the total
effect of age was not significant. In contrast to the moderating
effect of the variety of activities, the mean frequency and dura-
tion of each activity had no significant effect on any path in the
model, nor did the total duration of activity.

Some dependence between the four activity measures is
expected. We therefore repeated the analyses using the residuals
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Figure 4. Voxel-wise mediation analyses. A, Regions with significant mediation (FDR, 0.05 within analysis mask) are
shown in green, overlaid on surface renderings (top) and horizontal slices (bottom). Slice positions are labeled in MNI coordi-
nates and marked on the right hemisphere rendering. In the bottom row, the analysis mask is shown by the blue/red over-
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renderings represent activations to a depth of 30 mm. B, Scatterplot represents the relationship between the size of the
mediation effect and the group-mean difficulty contrast. Each point is a voxel within the analysis mask, colored green where
mediation is significant (FDR, 0.05). C, Pearson correlations (vertical lines) between the size of the mediation effect and
the difficulty contrast, compared with permutation null distributions constructed using Moran spectral randomization. The
correlation is separately tested across all voxels (purple), only voxels with a positive response to task difficulty (red), and only
voxels with a negative response to task difficulty (blue), corresponding to the lines of best fit in B.
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for each measure after regressing out the
other three. The results were largely simi-
lar, again with an effect of variety, but no
effects of frequency, mean duration, or
total duration. Now the total effect of age
on IQ was also significantly moderated
by the variety of activities, driven, as
before, by reduction of the effect of brain
response on IQ, although moderation of
the compound indirect path no longer
reached significance. The moderating
effect of the variety of regular physical
activities is illustrated in Figure 6, show-
ing the change in simple slopes for each
single and compound path (Edwards and
Lambert, 2007). The substantial media-
tion effect for people engaging in rela-
tively few regular physical activities (solid
lines) is abolished for people engaging
in a larger variety of activities (dashed
lines), due primarily to decoupling of the
relation between the neural response to
task difficulty and fluid intelligence (blue
lines).

In addition to physical exercise, engage-
ment in socially and intellectually stimulat-
ing leisure activities is also thought to be
beneficial for cognitive aging (Hughes et
al., 2010; Kuiper et al., 2015; Yates et al.,
2016; Borgeest et al., 2020). Therefore,
given the significant moderating effect of
the variety of regular physical activities, we
next asked whether this generalizes to the
variety of regular nonphysical activities,
again measured by questionnaire, as well
as in a home interview (number of social
or intellectual activities; range 4-43). This
time there was no moderating effect on
any path in the model (Table 2).

Control analyses adjusting for head
motion
Individual differences in head motion
can covary with both age and fluid in-
telligence (Siegel et al., 2017), and de-
grade task fMRI data (Siegel et al.,
2014). Therefore, the potential contri-
bution of head motion was assessed
by repeating all analyses after regress-
ing summary measures of mean FD
across the fMRI scan, and the proportion
of high-motion frames. These measures
were highly related (r = 0.91) and they
both correlated substantially with age
(r. 0.42, p, 1.4� 10�12) and IQ (r , �0.39, p, 5.3�
10�13). After regressing both motion measures from all key
variables (age, IQ, BOLD response per ROI/voxel, and lifestyle
measures), conclusions were largely unchanged, except as follows.
In the ROI analysis, the mediation effect in the Frontoparietal
Network ROI became nonsignificant, although the effect in the
Core Multiple-Demand network remained. The percentage of
significantly mediating voxels that were more active in the diffi-
cult condition increased from 90% to 95%. The size of the voxel-

summary mediation effect increased from 19.6% to 22.8% of the
total effect. In the LiNGAM analysis, estimated mean causal
directions remained in the hypothesized direction, although the
age–IQ directionality no longer differed significantly from zero.

The largest differences were in the analysis of moderation by
everyday activities. Here, the variety of physical activities contin-
ued to significantly moderate the second stage of the mediation
path (p=0.010 when modeled alone; p=0.033 after covarying
the other measures), but now alongside additional moderation
by the residual duration of activity per episode (p=0.043), and
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Figure 5. Summary and assessment of the localized mediation effect, averaged across voxels where mediation is significant,
data are available from all participants (N= 252), and the difficult–easy contrast is positive. A, Fitted mediation model. B,
Illustration of the mediation effect and underlying relationships. Vertical dashed lines indicate Equation 3 at the first and third
quartiles of the age distribution (purple represents 39 years; orange represents 71 years). Horizontal dashed lines indicate
Equation 1 at the same ages. Solid lines indicate Equation 2 at the same ages, with their slope equal to coefficient b. Gray
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without significant moderation of the total effect (p= 0.137).
Most interestingly, the first stage of the mediation path was now
significantly moderated by the number of nonphysical activities
(p=0.008). This latter effect reflected an exacerbated age effect
for people reporting more activities: the BOLD response to
difficult problems increased with the number of activities for
younger people (,;50 years old), whereas it decreased for
older people who reported more activities. This effect of
nonphysical activities therefore differed from the effect of
physical activities in two ways: it was associated with a differ-
ent stage of the mediation pathway, and instead of flattening
the age effect (Fig. 6, blue lines), it steepened it (see https://
osf.io/xgw56/ for results tables from these analyses).

In summary, the key conclusions were unchanged, suggesting
that head motion is unlikely to explain the mediation of age-
related IQ decline by MDN responsiveness, the association of
mediation with voxels responding positively to cognitive chal-
lenge, or its moderation by the variety of physical recreation. The
emergence of additional lifestyle moderators in this control anal-
ysis suggests that head motion may act as a suppressor variable
in these cases (MacKinnon et al., 2000), being associated with
multiple other variables in opposite directions that can cancel
out if not statistically adjusted. This suggests, in turn, that future
studies would benefit from careful control of head motion, and
that to further understand the complicated relationships that
underlie the moderated mediation results it would be useful to
replicate them, ideally via direct experimental manipulation.

Discussion
This paper presents five key results. First, we provide an inde-
pendent replication that responsiveness of multiple-demand cor-
tex to cognitive demand partially mediates age-related decline in
fluid intelligence. Second, strongest mediation is specific to vox-
els most activated by cognitive demand, and not those sup-
pressed by cognitive demand. Third, the summarized mediation
effect is robust to moderate confounding by unmodeled varia-
bles. Fourth, assuming unidirectional causality, differences in
brain response more likely drive IQ differences than vice versa.
Finally, diversity of physical activity moderates the summarized
mediation effect, through decoupling of IQ from neural respon-
siveness to cognitive demand.

Table 2. Moderated mediation resultsa

First stage of
mediation path

Second stage of
mediation path Direct effect

Indirect effect
(mediation) Total effect

Moderator N Da p Db p Dc9 p D(ab) p D(ab1c9) p

Physical activities
Variety 239 �0.000046 0.983 �17.1 0.0061* 0.0077 0.941 0.157 0.0095p 0.165 0.146
Frequency per activity 231 �0.00033 0.876 4.67 0.499 �0.081 0.501 �0.048 0.495 �0.128 0.206
Duration per episode 220 �0.0028 0.276 �7.52 0.189 �0.015 0.921 0.037 0.587 0.023 0.888
Total duration 220 0.00035 0.854 �7.30 0.229 �0.745 0.424 0.074 0.309 �0.00072 0.811
Varietyb 220 �0.00093 0.701 �15.7 0.022* 0.134 0.244 0.138 0.076 0.272 0.011*
Frequency per activityb 220 �0.0013 0.531 �4.88 0.502 �0.020 0.857 0.031 0.678 0.010 0.930
Duration per episodeb 220 �0.0032 0.211 �10.1 0.096 0.089 0.519 0.057 0.522 0.146 0.295
Total durationb 220 0.0013 0.499 5.42 0.373 �0.087 0.348 �0.036 0.586 �0.123 0.342

Nonphysical activities
Variety 237 �0.0040 0.101 �11.5 0.074 �0.087 0.500 0.049 0.468 �0.038 0.769

aModeration of each single and compound path in the mediation model, by various moderator variables. D indicates the change in coefficients across 2 SDs of the moderator variable. Following Edwards and Lambert (2007),
p values for single paths are based on standard errors from the regression model; p values for compound paths (indirect and total effect) are based on bias-corrected CIs derived from bootstrap resampling. Sample size (N)
varies because not all participants answered all activities questions.
bModerators that are residualized with respect to each other.
*Significant results at p, 0.05.
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The specificity of mediation to the MDN and associated
regions is notable, supporting previous hypotheses that “deterio-
ration in DLPFC may (at least partially) underlie the relationship
between adult age and abstract reasoning ability” (Phillips and
Della Sala, 1998). However, MDN and DMN responses often
anticorrelate (Fox et al., 2005), and this anticorrelation can
positively or negatively relate to intelligence (Hearne et al.,
2016; Santarnecchi et al., 2017b). Task-induced DMN sup-
pression also reduces with age (Grady et al., 2006; Turner and
Spreng, 2015), as does its coupling with frontoparietal atten-
tion networks (Spreng et al., 2016), while maintenance of
DMN deactivation may explain cross-domain differences in
cognitive aging (Samu et al., 2017). Although DMN suppres-
sion in this task indeed reduced with age, we found, matching
Samu et al. (2017), no evidence that this mediated age-related
IQ differences. With mediation strength selectively associated
with voxels most activated, but not those most suppressed, by
cognitive demand, reduced MDN function appears more im-
portant than altered DMN function in explaining age-related
differences in IQ, while links between DMN activity and IQ
may reflect confounding variables, such as age. It remains pos-
sible that altered DMN activity may mediate age-related dif-
ferences in other cognitive domains for which this network is
specialized.

We observed no reliable indication that age moderates the
association between neural responsiveness and IQ. This is per-
haps surprising given the wide age range examined and the
expected plasticity of neural recruitment and cognitive strat-
egy (e.g., Cabeza, 2002; Davis et al., 2008; Park and Reuter-
Lorenz, 2009), but matches previous observations using this
task (Samu et al., 2017). Plausibly, neurocognitive shifts might
primarily occur in more domain-specific tasks, when recruit-
ment of domain-general MDN regions is not essential, but
offers an optional compensatory strategy. Conversely, fluid
intelligence may be especially susceptible to normal aging
because of limited capacity for functional plasticity of the net-
works involved.

Multiple mechanisms undoubtedly link aging and fluid
intelligence (Kievit et al., 2016). Indeed, the observed partial
mediation explains ;20% of the relationship between age and
IQ, leaving much room for additional mechanisms, alongside
neural responsiveness to cognitive demand. For example, vari-
ous aspects of structural brain integrity may play mediating
roles (Salthouse, 2011a; Kievit et al., 2014). Network connec-
tivity is also associated with fluid intelligence (Cole et al.,
2012; Barbey, 2018; Dubois et al., 2018; Hilger et al., 2020) and
changes with age (Tsvetanov et al., 2016; Bethlehem et al.,
2020). Lifespan differences in cerebral vascularization may
further influence neural function and neurovascular coupling
(West et al., 2019; Tsvetanov et al., 2021), although blood flow
variation explains relatively little covariance between age,
BOLD response, and performance on this task (Wu et al.,
2021). Future work could usefully address the relative impor-
tance of multiple mediators, and the relationships between
them (Hedden et al., 2016).

While mediation analysis can suggest a mechanistic expla-
nation for an observed relationship, it tests consistency with a
hypothesized causal model, rather than inferring the causal
structure itself (Fiedler et al., 2011; MacKinnon and Pirlott,
2015; Thoemmes, 2015). Although the LiNGAM method esti-
mated directionality matching the hypothesized model, its
assumption of nonreciprocal influences is tenuous in practice,
and significance was sensitive to control analyses. Longitudinal

data would provide another means to strengthen causal inter-
pretations; if correlated changes are temporally separated, the
preceding change may be the more likely cause. Although cross-
sectional age-related differences sometimes mirror within-indi-
vidual longitudinal changes, especially in healthy populations
(Salthouse, 2011a), this need not be so (Raz and Lindenberger,
2011), and cross-sectional samples of an underlying longitudinal
process may either overestimate or underestimate mediation
effect sizes (Maxwell and Cole, 2007). While longitudinal studies
present their own challenges (Salthouse, 2011b), the cross-sec-
tional nature of the current dataset imposes interpretational limi-
tations, which would benefit from examination in longitudinal
cohorts.

Even assuming a causal role of age, questions remain regard-
ing the relationship between neural responsiveness and IQ.
Sensitivity analysis indicated robustness to moderate confound-
ers, suggesting a direct effect, although with uncertain direction.
We chose to treat IQ as the outcome variable because this is
what we would ultimately hope to improve and because lesion
and neuro-stimulation studies suggest that the integrity and
function of frontoparietal networks do causally influence IQ
(Glascher et al., 2010; Woolgar et al., 2010; Barbey et al., 2014;
Momi et al., 2020; Smith et al., 2022). Although it is hard to
imagine experimental manipulations of IQ that are not cau-
sally dependent on neural responses, we would not claim that
the neural response to cognitive demand is unaffected by IQ.
Reduced IQ might either increase MDN responsiveness, if puz-
zles are experienced as more challenging, or reduce responsive-
ness, if people confidently select incorrect responses or disengage
from the task, making the sign of any reverse relationship diffi-
cult to predict. Nonetheless, some combination of reciprocal
relationships between IQ and MDN function remains likely, and
challenging to disentangle.

Finally, we consider the association between more varied
physical activity and attenuation of the dependence of IQ on
BOLD responsiveness. While this was consistent across con-
trol analyses, the other moderated mediation results should
be viewed cautiously as they were affected by covarying head
motion. Again, the nature of the causal links is difficult to
determine. First, there are various biological mechanisms by
which an active lifestyle might moderate effects of age on the
brain, or brain function on cognition (Cotman and Berchtold,
2002; Cotman et al., 2007; Barnes, 2015). Here, the observed
moderation altered the second of these links: that is, although
engaging in diverse exercise did not reduce the effect of age on
the MDN response, it did buffer its cognitive impact, so the
reduced MDN response was less strongly associated with
reduced IQ. This is consistent with evidence that exercise may
support cognition by improving the efficiency of neural function
(Neubauer and Fink, 2009; Voss et al., 2011). Indeed, while people
with higher IQ may plausibly seek out more activities, better han-
dle a busier routine, or recall more activities, the literature gener-
ally supports a causal effect of exercise on cognition (Smith et al.,
2010; Liu-Ambrose et al., 2018).

Assuming a causal benefit of physical activity, it is interesting
that its variety appears more important than its frequency or du-
ration, consistent with a previous report (Angevaren et al., 2007),
and echoing a role of task-novelty in protecting against cognitive
decline (Oltmanns et al., 2017). An additional residual effect of
exercise duration emerged after covarying head motion, although
this was weaker and less consistent. This finding could provide
a principle for designing activity-based interventions with a
focus on variety, which may help older adults who are unable
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or unwilling to perform single, intensive physical activities.
Increasing the variety of activities would represent a lifestyle
modification that could be made relatively easily, regardless of
specific interests or abilities. Since we examined recent activ-
ities, within the preceding year, increasing their variety might
be beneficial at any age (but see Chan et al., 2018).

Interestingly, we did not find that the variety of more intel-
lectual and social activities moderated the same brain–IQ
pathway. This null result could reflect insensitivity of the par-
ticular nonphysical measures, or a unique role of physical
activities in boosting neural efficiency, perhaps via growth-
factor-mediated neurogenesis and angiogenesis (Cotman and
Berchtold, 2002; Cotman et al., 2007), and consistent with
mouse models (Kobilo et al., 2011). Other evidence in humans
suggests that the conjunction of physical exercise and mental
engagement may especially benefit cognitive function during
healthy aging (Fabre et al., 2002). Assuming that monotonous
activity is less cognitively stimulating, our measure of variety
in exercise may be one way to capture this combination of
physical and mental engagement. An effect of nonphysical
activities did emerge after covarying head motion; however,
this moderated the preceding age–brain pathway and so may
reflect a different mechanism to varied physical exercise.
More nonphysical activities were associated with stronger
brain responses at younger ages but weaker responses at older
ages (crossing at ;50 years). Both observations support previ-
ous suggestions that physical and nonphysical activities differ-
entially impact late-life cognition, with the latter benefitting
more at younger ages (Gow et al., 2017).

In conclusion, we confirm and characterize a neural mechanism
that partially explains age-related differences in fluid intelligence,
namely, reduced responsiveness of the frontoparietal multi-
ple-demand network to cognitive challenge. Specification of
such a neuro-cognitive mechanism may facilitate design of
targeted interventions to maintain fluid intelligence into
healthy old age. As one example, we identify a widely appli-
cable candidate lifestyle strategy: variety of regular physical
activity, which might buffer age-related cognitive decline by
decoupling one link in this putative causal pathway.
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