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Abstract

Background: It waswell known that the human bodywould produce an uncomfortable

sensation when the fabric exerted a certain amount of pressure irritation on the skin.

The amygdala had long been thought to be the source of negative emotion perception.

However, up to now, the brain signal changes in the amygdala evoked by skin exposure

pressure had not been known.

Materials and methods: In this work, a series of gradually increasing contact pres-

sure stimulus from boneless corsets was repeatedly applied to the body’s waist and

abdomen, and the technology of functional magnetic resonance imaging (fMRI) was

adopted to detect the brain response synchronously.

Results: The results shown that both subjective comfort score and percent signal

changes (PSCs) of amygdala decreased with the increase of skin contact pressure.

When the skin pressure applied to thewaist and abdomenof thehumanbodyexceeded

about 1 kPa, blood oxygen level dependent signal in the amygdala was negatively acti-

vated. Besides, the degree of response of PSCswas intense than subjective evaluation,

and the standard deviations of PSCs between individuals were much smaller than

subjective evaluations.

Conclusion: It was suggested that skin contact pressure stimulus caused the attention

of the amygdala brain area. The greater the stimulus, the higher the attention, but such

attention was caused by negative activation of the amygdala induced by skin discom-

fort. In addition, skin comfort representationbasedonbrainperceptionwas superior to

subjective representation due to its higher response sensitivity and antipsychological

interference ability.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
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1 INTRODUCTION

Aiming at the problem of uncomfortable perception caused by the

stimulation of contact pressure on human skin evoked by fabric, sub-

jective comfort evaluation system deemed that when the various

subjective evaluation scores under wearing state, such as sense of

roughness, restraint, oppression, smoothness, itching, softness, thick-

ness, comfort, were lower than a certain value (generally was zero),

it could be regarded as uncomfort.1,2 But, there was no doubt that

this method of representation could be disturbed by individual psy-

chological factor. Therefore, it was important to identify the root brain

region of skin contact discomfort and its relationship with skin irri-

tation. Amygdala brain region had long been recognized as the root

brain region of negative perception of fear,3 tactile discomfort,4,5 and

even pain.6,7 Previous research about the processing of the unpleas-

antness of resistive load-induced dyspnea by using functionalmagnetic

resonance imaging (fMRI) hadproved theaffectivedimension (unpleas-

antness) of perceived breathing uncomfortableness in humans was

processed in the right anterior insula and the amygdala.8 Kanosue9

found blood oxygen level dependent (BOLD) signal of fMRI on bilat-

eral amygdala were enhanced when human body felt more thermal

tactile uncomfortable during the cooling process. Tan10 studied and

analyzed the fMRI of human brain under the stimulation of fabric con-

tact thermal pain, obtained that contralateral amygdala was activated

at 41◦C, and bilateral amygdala were activated at 51◦C. In the previ-

ous study, we also found that amygdala brain regions would produce

a certain amount of negative activation under large fabric pressure

stimulation.11 Wang12 found that repetitive prickling stimulation from

the single fiber applied to the volar forearm aroused activation in

amygdala.

In addition, studies on emotions also indicated that the amygdala

was the key brain area for the generation and regulation of cognitive

function and emotional behavior, which always responsible for fear,13

phantom limb pain,14 anxiety,15 mental stress,16 and so on. According

to the general theory, when people were in the state of “mindful-

ness,” which was a kind of concentrated and peaceful mind, bilateral

amygdala activitywould be reduced.17 Moreover, themindfulness trait

was negatively correlated with bilateral amygdala activity, and the

depressive symptoms were positively correlated with right amygdala

activity.18 Liu19 and Duan20 successively found that amygdala brain

region had significant changes in the perception of heat pain and nega-

tive emotions. Activation intensity and range of amygdala brain regions

increased with the increase of stimulus intensity, and functional con-

nectivity also changed longitudinally.21 After amygdala was removed,

no discomfort was felt.22

To sum up, although a minority of studies had suggested a corre-

sponding role on the amygdala in appetitive and affectively positive

emotion,23 the critical functional role of the amygdala was still

often characterized as negative, which had been frequently proved

by numerous studies based on fMRI, electroencephalogram,24 sin-

gle photon emission computed tomography,25 positron emission

tomography26 as well as vivo brain morphometry using structural

MRI.27 The most typical case was that a significantly stronger acti-

vation in amygdala would occurred when uncomfortable visceral

sensations produced.28 Furthermore, even uncomfortable residential

environments could also induced significant activation in amygdala.29

In one word, “the amygdala: sensory gateway to the emotions,” as

Aggleton andMishkin said.30 All of above suggested that the amygdala

played a critical role in the origin of fabric tactile uncomfort in all prob-

ability. Therefore, the present neuroimaging study had examined the

neuronal mechanisms associated with skin oppressing uncomfortable

perception by exploring the relationship between amygdala and skin

pressure.

2 MATERIALS AND METHODS

2.1 Participants

The study included six healthy female volunteerswith nomental illness

and no metal implants. They were of similar age and body size, with an

average age of 25. The average height was 1.54 cm, the averageweight

was48.74kg, the averagebodymass indexwas20.6kg/m2, theaverage

abdominal fat thickness was 0.95 cm, the average lower chest circum-

ference was 74 cm, the average waist circumference was 69 cm, and

the average abdominal circumferencewas 74 cm. All participants had a

full understanding of the experimental procedure after the fMRI scan-

ning procedure training, and voluntarily signed the informed consent.

The study was approved by the ethics committee of Zhejiang Sci-Tech

University.

2.2 Materials and contact pressure test

Five types of boneless corsets were used as the experimental samples.

The length and width of the corsets were 50 and 25 cm, respectively.

When the fixed elongation was 20%, the elastic recovery rates were

94.55%, 91.45%, 87.82%, 94.75%, and 93.19%, respectively, which

proved all of them had a good elastic recovery. The experimental

corsets could be stretched or relaxed to control continuous and uni-

form changes in clothing pressure, easy to operate, and sustainable and

smooth.

Clothing pressuresweremeasured byAMI3037Air-pack TypeCon-

tact Pressure Measurement System, ranging from 0 to 34kpa, output
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F IGURE 1 Z score subjective rating scale

voltage 0–3.4v, accuracy ± 0.2–0.45kpa. The pressure value of the

measuring point was controlled by adjusting the length of the adhesive

belt, which was successively 0 kpa, 0.5 kpa, 1 kpa, and 1.5 kpa, and the

markswere recorded on the sample clothes, and themeasurementwas

repeated for three times.

2.3 Subjective questionnaire survey of fabric
samples

The subjective questionnaire was conducted 30 minutes after the

participants entered the laboratory to ensure that their bodies had

adjusted to the ambient temperature and humidity. The participants

were asked to put on the sample. Different pressures of 0 kpa, 0.5 kpa,

1 kpa, and 1.5 kpa were applied through tightening the magic tape.

Each pressure test lasted 1min, and the pressures were averaged after

removing the maximum and minimum values. Simultaneously, a sub-

jective evaluation questionnaire survey was conducted as shown in

Figure 1.

2.4 FMRI scanning

FMRI scanning were conducted on the Ingenia 3.0T medical fMRI

equipment. TE=30 s, TR=3 s, and layer thickness=3mm in functional

and structural images, the total functional and structural images scan-

ning timewere 190 s (prescanning time=10 s and scanning time=180

s) and 300s, respectively. 3D - Gradient echo (GRE) T1WI sequence

structure image scanning was from left to right. As for fMRI experi-

ments, a block design31 was adopted. Under fabric pressure of 0 kPa,

0.5 kpa, 1 kpa, and 1.5kpa, respectively, each subject was asked lying

flatwith her eyes closed but keeping brain awake. To avoid the interfer-

ence of noise, the subjects were also given earplugs. After resting for

30 s, the fabric pressurewas applied and lasted for 30 s, repeating each

process for three times.

2.5 Data analysis

Anatomy32 was used to select the amygdala brain region to make a

region of interest (ROI). The so-called ROI brain region referred to a

mask file, which was used to filter and remove all the activated areas

that were not in this brain region. The remaining activation clumps

within the mask brain region were analyzed.33 In other words, all the

analysis of this topic was only conducted in this ROI. SPM12 (Statisti-

cal Parametric Mapping) was used for image preprocessing, individual

analysis and group analysis.34 Finally, Marsbar was utilized to extract

the percent signal changes (PSCs, Percent BOLD Signal Changes or

Percent fMRI Signal Changes) of all subjects under different fabric

contact pressures.

The so-called PSCs were calculated through the time series, which

could be simply equivalent to dividing the average value of a certain

section (for block design) or the value of a certain point (for event-

related design) of the entire time course by the average value of the

entire time course, and multiplying by 100. This experiment was a

block design experiment. Therefore, the average value of blood oxygen

level dependent (BOLD) signals in a certain period (pressure stage)was

selected for calculation. The calculation formula35 was:

PSC =
𝛽task ×max (HRF) × 100

𝛽const

PSC: Percent Signal Change

𝛽task: A signal estimate of a task time series in the ROI

max(HRF): Themaximum regression of task events

𝛽const: An estimated constant value for the signal of the particular

ROI within the entire range of the sequence

Obviously, the PSC itself was calculated relative to the baseline

(which could be the mean of the entire time period) and thus con-

tained the concept of the baseline itself. Therefore, there was no need

for the control condition, which was more intuitive and understand-

able than the activation intensity value obtained by the comparison

calculation.36 The practical significance was that in the ROI, the BOLD

signal values of all voxels in the task time period accounted for the per-

centage of BOLD signal values of all voxel in the whole time series. The

greater the absolute value of the PSC, the higher the attention of the

ROI to the stimulus task.33 The positive value of PSC represented the

BOLD signal during the period of the task stimulation was positive in

the ROI. Under the stimulation condition, the ROI was excited, and the

brain activity was intense, while the opposite was inhibited.

3 RESULTS AND DISCUSSION

3.1 Making the amygdala into ROI

In order to avoiding the interference effect of other brain regions,

the amygdala was made into a brain ROI, named ROI-amygdala, and

all analysis was only performed in ROI-amygdala, rather than in the

whole brain. The ROI-amygdala shown in Figure 2 was made, calcu-

lated and depicted by Anatomy, Marsbar,37 and BrainNet Viewer,38

respectively.

3.2 The results of PSCs in ROI-amygdala under a
series of increasing fabric pressures

By SPSS test, after eliminating outliers, the average PSC value and sub-

jective evaluation value of comfort of each fabric under the stimulation
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F IGURE 2 (A) Full view of ROI-amygdala on a transparent brain background. (B) Anatomical map of brain region of ROI-amygdala.

TABLE 1 Percent signal changes in region of interest (ROI)-amygdala and subjective evaluation score Z under fabric contact pressure
stimulation at 0 kpa, 0.5 kpa, 1 kpa, and 1.5 kpa

Percent signal change/% Subjective evaluation score Z

Subjects 0 kpa 0.5 kpa 1 kpa 1.5 kpa 0 kpa 0.5 kpa 1 kpa 1.5 kpa

1 0.381 0.149 0.277 −0.854 −4.667 −2.667 4.000 2.667

2 0.554 0.329 −0.144 −1.478 −0.667 −0.667 −2.667 −5.333

3 0.401 0.927 −0.959 −1.059 −2.000 −2.000 −3.333 −6.000

4 0.202 -0.018 −0.313 0.799 0.667 −2.667 −3.333 −6.000

5 0.384 0.54 −0.128 0.469 2.667 0.000 −1.333 −3.333

6 0.439 −0.074 −0.377 0.032 4.667 4.000 0.667 −3.333

Average 0.394 0.250 −0.241 −0.627 0.111 −0.667 −1.000 −3.556

Standard Deviation 0.104 0.208 0.107 0.273 3.041 2.309 2.632 2.998

of incremental contact pressure were obtained, and the results were

shown in Table 1 and Figure 3.

Combined with Figure 3 and Table 1, we found that the amyg-

dala exhibited some unique features when fabric contact pressure was

applied to the skin.

Firstly, it could be seen that there was a consistent trend between

subjective comfort and PSCs in ROI- amygdala, indicating that there

was a certain correlation between the amygdala brain region and

the perceived comfort of fabric touching skin, suggesting that the

perceived pressure of fabric touching skin successfully attracted the

attention of the amygdala brain region, which provided a good basis for

using the amygdala as the characteristic sensing brain region for the

comfort of fabric contact pressure.

Secondly, with the increasing of exposure pressure, the score of

subjective comfort and PSCs in ROI-amygdala decreased continuously,

indicating that the increase of exposure pressure caused discomfort,

especially when the pressure exceeded 1 kPa, the PSC in the amygdala

brain region changed from about zero to negative. According to the

definition formula of PSC, this might be caused by the negative activa-

tion of the amygdala brain region causedby excessive contact pressure.

On one hand, the anatomical evidence suggested that somatic infor-

mation was processed in a serious of parallel pathways that originated

in the fields comprising Primary sensory cortex (SI) and eventually

converge in Secondary sensory cortex (SII), which also accessed to

the amygdala complex through the granular and dysgranular fields of

the insula.39 On the other hand, a large proportion of neurons in and

around Central amygdala had the ability to receive somatosensory

information of a nociceptive nature. Eighty-one percent neurons in

human amygdala cortex were exclusively inhibited by noxious stimuli,

such as pinch, squeeze, thermal (>44◦C), etc.40 Nociceptive informa-

tion carried alongAδ-Fibers andC-Fiberswas sent from the spinal cord

to thalamus and hypothalamus by the spinothalamic tract. After pro-

cessed, polymodal information then reached the lateral amygdala via

the granular and dysgranular insular cortex, or the anterior cingulate

cortex.41

Thirdly, by comparing the PSC of 0.5 kpa, 1 kPa, and 1.5kpa

pressure stimulation, the Z value of the amygdala decreased more

than that of the subjective evaluation. It could be seen that the

attention of the amygdala to contact pressure increased with the

increase of pressure stimulation, and the response degree was more

intense than that of the subjective evaluation. This might be because

the body’s final subjective evaluation was being interfered with by
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F IGURE 3 Mean (± SD) percent signal
changes (PSCs) of region of interest
(ROI)-amygdala and subjective evaluation
score Z of comfort under increasing contact
pressure

psychological effects, so the subjective tolerance was higher, but in

fact, the brain had been already reacting violently. This result demon-

strated the antipsychological interference function and authenticity of

brain perception compared with subjective evaluation of skin tactile

comfort.

Finally, Standard Deviation (SD) values of subjective evaluation

were all larger than SD of PSCs in ROI-amygdala, indicating that

interference of individual differences was more obvious in subjec-

tive evaluation, reflecting the superiority of using brain perception for

comfort evaluation.

4 CONCLUSIONS

As could be seen from above, the amygdala brain region, which

cognized and regulated pain and various negative emotions, had a sig-

nificant correlation between PSCs and the fabric contact pressure,

which implied that the attention of the amygdala brain region to

skin perception with a negative effect increased significantly with the

increase of fabric pressure. The finding suggested that the amygdala

might be the characteristic assessment area of the nociceptive tactile

pressure perception (such as: oppressive feeling and pressure-pain).

In the future, the fabric factors and human factors affecting this brain

region will be further explored.
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