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Abstract

Background: Line-field confocal optical coherence tomography (LC-OCT) is an imaging

technique providing non-invasive “optical biopsies” with an isotropic spatial resolu-

tion of ∼1 µm and deep penetration until the dermis. Analysis of obtained images is

classically performed by experts, thus requiring long and fastidious training and giving

operator-dependent results. In this study, the objective was to develop a new auto-

mated method to score the quality of the dermal matrix precisely, quickly, and directly

from in vivo LC-OCT images. Once validated, this new automated method was applied

to assess photo-aging-related changes in the quality of the dermal matrix.

Materials and methods: LC-OCT measurements were conducted on the face of 57

healthy Caucasian volunteers. The quality of the dermal matrix was scored by experts

trained to evaluate the fibers’ state according to four grades. In parallel, these images

were used to develop the deep learningmodel by adapting aMobileNetv3-Small archi-

tecture. Once validated, this model was applied to the study of dermal matrix changes

onapanel of 36healthyCaucasian females, divided into threegroups according to their

age and photo-exposition.

Results: The deep learning model was trained and tested on a set of 15 993 images.

Calculated on the test data set, the accuracy scorewas0.83. As expected,when applied

to different volunteer groups, the model shows greater and deeper alteration of the

dermal matrix for old and photoexposed subjects.

Conclusions: In conclusion, we have developed a new method that automatically

scores the quality of the dermal matrix on in vivo LC-OCT images. This accuratemodel

could be used for further investigations, both in the dermatological and cosmetic fields.
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1 INTRODUCTION

Like other human organs, the skin undergoes intrinsic chronologi-

cal aging. In addition, due to its nature as a protective barrier from

the environment, skin is the target of extrinsic aging. Among envi-

ronmental factors involved, sun exposure is the main cause of skin

damage.1 Regardless of the origin of skin aging, the most visible

changes associated with an aged face are pigmented spots, sagging,

and the emergence of wrinkles.2 Thanks to histological analyzes, it is

now assumed that the main alterations in aged skin are localized in the

dermis, with disorganization of its specific architecture.3 Indeed, col-

lagen and elastin, that are the two major fibrous proteins of the skin

dermis, undergo reduced biosynthesis as well as fragmentation across

aging. Visually, abundant, tightly packed, and well-organized young

fibers became sparse, fragmented, and disorganized.4,5 The matrix

takes on a spongy appearance as the network loses its typical “spider-

web” architecture.6 Hence, visualizing the structural changes of the

dermis across aging is of important need in different domains, both

dermatological and cosmetic research.

As an alternative to classical invasive biopsies, modifications of der-

mal architecture may now be visualized in vivo using non-invasive

devices.7 Dermoscopy, photoacoustic tomography, reflectance confo-

cal microscopy (RCM) and optical coherence tomography (OCT) are

emerging tools acting as optical biopsies.8–10 All these devices have

limited characteristics and allow either in-depth analyzes with low

resolution or cellular resolution but for shallow depths.11,12 Recently

developed, line-field confocal OCT (LC-OCT) is an innovative tech-

nology combining conventional OCT and RCM.13 In comparison with

previously described technologies, LC-OCT provides the best trade-

off in terms of spatial resolution (∼1 µm) and deep penetration for

the study of skin structures located in the dermis.14–17 Indeed, we

demonstrated in a previous study that LC-OCT can be used as a new

method for the quantification of superficial dermis thickness in vivo

and non-invasively.18

Analysis of obtained images is classically performed by experts,

trained to decipher such images. In addition to requiring long and fas-

tidious expert training, results remain operator-dependent. Moreover,

as hundreds of images can be analyzed to generate significant results,

this process is time-consuming.19 For several years, deep learning-

based image analysis became highly beneficial, both in terms of speed

of analysis and reduced error accumulation.20 Such methods are used

in themedical field for image segmentation, prediction, or classification

for several years, thus helping in the diagnosis of clinicians.21 Recently,

deep learning reveals useful to analyze RCM images in the derma-

tological field.22 It is thus of interest to develop a new method that

automatically and quickly classifies LC-OCT images, in a standardized

manner, free from human assessment.

In this context, this researchwork aims to develop a new automated

method to score precisely the quality of the dermal matrix with the

goal to characterize the age-related changes directly from in vivo

LC-OCT images. For this purpose, LC-OCT measurements were con-

ducted on the face of young, aged, and non-photo-exposed or aged

and photo-exposed volunteers. The quality of the dermal matrix was

firstly scored by experts trained to evaluate both the state of the fibers

according to four grades and the global texture of the matrix. Their

comparisons with data obtained from deep learning-based automated

classification of LC-OCT images are reported in the present paper.

The use of deep learning as a new method that automatically scores

dermal matrix quality on in vivo LC-OCT images has been validated

and applied to the assessment of photo-aging-related changes in this

area.

2 MATERIALS AND METHODS

2.1 LC-OCT image acquisition

LC-OCT device, deepLiveTM, was developed by DAMAE Medical.15 A

stack of grayscale en face images of 1224× 500 µmwas acquired from

the skin surface down to 300 µm depth. The resulting volume has an

isotropic resolution of about 1 µm.

Since acquired volume contains not only the dermis but also the

epidermal layer of the skin, a sub-volume starting from the dermal-

epidermal junction (DEJ) andwith a depth of about 70 µmwas selected

by the experts as the volume of the dermis that could be visually

exploited (the thickness of the volume depends on the skin of each

volunteer which impacts the signal differently in depth).

2.2 Development of the deep learning
classification method

2.2.1 Panel

Image acquisitionwas performedon the cheeks of a panel of 57healthy

Caucasian female volunteers between 22 and 79 years (mean= 56).

2.2.2 Database

To obtain a representative sampling of the dermal matrix and limit

redundancy, images were extracted from the volume of 70 µm, every

5 µm in depth by dividing the image alternately into two or three sub-

images of size 400 × 400 µm, carrying the set of data to 1 777 images

in total.

Images were labeled by six experts as one of the following four

states of dermal quality as illustrated in Figure 1.

The scoring scale was established by consensus among experts and

is designed to represent the gradual change in fiber shape from coarse

and fragmented to elongated and reticulated. As the score increases,

the fibers tend to organize into a reticulate network typically seen

on younger panels. All experts for this study were trained beforehand

and were required to make their scoring independently with no com-

munication. If the labeling between the experts was inconsistent, the

selected score corresponds to the most frequent score attributed by

theexperts. Table 1details the total numberof labeled imagesper class.
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F IGURE 1 Score scale of dermis quality
from in vivo line-field confocal optical
coherence tomography (LC-OCT) images The
scoring scale used by experts to score LC-OCT
images is divided into 4 stages, according to the
quality of the dermis. (A) Representative image
of score 1: bad quality of dermis with coarse
and fragmented fibers, sponge like network. (B)
score 2 image: low quality of dermis with small
fibers appearing unevenly. (C) score 3 image:
good quality of dermis with partially
reticulated network and (D) score 4
corresponding to excellent dermis quality with
web-like pattern, elongated and reticulated
fibers.

TABLE 1 Summary of the labeled dataset

Class #Labeled images

Stage 1 399

Stage 2 678

Stage 3 586

Stage 4 114

Total 1777

2.2.3 Deep learning techniques

Automatic image classification was tackled by using adapting a

MobileNetv3-Small architecture23 from the TensorFlow python

open-source software library.24 The Tensorflow platform offers a

MobileNetV3 architecture with pre-trained weights on the famous

ImageNet database. It was used as a base model and adapted to our

needs of a 4 classes classification by adding on top of the base model

a global average pooling layer and a dense output layer which trades

the features into 4 classes prediction thanks to a SoftMax activation

function.

As we choose to keep the dimension used for the MobileNetV3

training with ImageNet (224 × 224 × 3 pixels RGB images) we had

to adapt the original grayscale images from the LC-OCT database

described above, that have each a dimension of 400 × 400 × 1 pix-

els. Images of neighboring altitudes (above and below) were added

to the images we use. Given an altitude z, among the three chan-

nels, the red image channel corresponds to the gray levels image of

the altitude z – 1 µm, the green channel to the image of the posi-

tion z, and the blue one to the grayscale image of the altitude z +

1 µm. We thus obtained 400 × 400 × 3 pixels images composed of

three adjacent altitudes allowing us to integrate more information

in each data feeding the model. These images were then rescaled to

224 × 224 × 3 pixels as needed as input for the model. Finally, the

dataset has been augmented to 15 993 images by applying rotations

and vertical mirroring. Two-thirds of the data were randomly dedi-

cated to training while the remaining, which consists of 4 797 images

(1 127 class 1 images, 1 835 class 2 images, 1 529 class 3 images, and

306 class 4 images), was used for assessing the performance of the

algorithm.

Regarding the training process, we took advantage of the pre-

trained model as a feature extractor by using transfer learning and

training only the last two layers of the model. The model was trained

using an Adam optimizer with a learning rate of 0.001, decreasing at

a rate of 0.5 every five consecutive epochs with no loss reduction.

The loss function used was a sparse categorical cross entropy, adapted

to convert the SoftMax output to a one-hot encoded one. We fed

the model with batches of 32 images and stopped training when 15

consecutive epochs had elapsed with no loss reduction. The weights

corresponding to the epoch producing the minimum validation loss

were kept.

The model was then fine-tuned, by training again only part of it

(keeping the first 100 layers frozen). The parameters were the same

as in the first training except for a learning rate of 0.0001 for the opti-

mizer. The loss obtained at the end of the fine-tuning process was

0.53.



4 of 8 BREUGNOT ET AL.

2.2.4 Evaluation of the performance of the model

The accuracy score was defined as the ratio of the number of images

correctly classified by the model over the total number of images clas-

sified. Themodel assigned a quality score ranging from 1 (poor quality)

to 4 (good quality) to each image.

A confusionmatrix that compared the score predicted by themodel

with the actual score was calculated to better assess the performance

of the model for each score. Based on the confusion matrix, precision

and recall metrics were calculated for each score using the following

formula where TP is true positive (model correctly predicts positive

score), TN is true negative (model correctly predicts negative score),

FN is a false negative (model incorrectly predicts negative score), and

FP is false positive (model incorrectly predicts the positive score):

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Since there are four scores in this classification problem, we used

the One-versus-Rest approach which decomposes this problem into

four binary classification problems. After calculating the individual

performance metric of each score, the overall performance is cal-

culated by taking an average of the performance metrics of all the

scores.

2.3 In vivo studies

2.3.1 Panel

LC-OCT acquisitions were performed on the cheeks of 36 healthy

Caucasian female volunteers, divided into three groups: (I) 12 young

subjects between 22 and 32 years (mean 28), (II) 12 old and not

photoexposed subjects between 62 and 70 years (mean 66), and (III)

12 old and photoexposed subjects between 62 and 71 years (mean

67). Photoexposition was determined through a survey established

from literature and analyzing the level of exposition during childhood,

adolescence, and adulthood.25–27

2.3.2 Image analysis

Three images of dimension 400 × 400 pixels were extracted from each

of the 70 layers of the volume, prepared, and analyzed thanks to the

deep learningmodel.

2.3.3 Statistical analysis

On each layer, the mean value of the scores for the three images was

computed. Themean and the standard deviation of quality scoreswere

F IGURE 2 Confusionmatrix comparing experts’ scores to those
predicted by themodel Each row corresponds to a score according to
experts. Each column corresponds to a predicted score according to
themodel. Each box corresponds to the percentage of images
classified in this score by themodel. The intensity of the blue color
depends on the quality of themodel prediction.

computed for each group. One-way ANOVA followed by Tukey’s HSD

multiple comparison test was used to compare the mean quality score.

p-Values of less than 0.05 were considered significant. *: p < 0.05, **:

p< 0.01, ***: p< 0.001.

3 RESULTS

3.1 Prediction potential for the deep learning
model

In order to determine the performance of the classification model, it

was assessedon4797 images, previously classifiedbyexperts. Figure2

shows the confusion matrix which compares the true label (according

to the experts) to those predicted by the model. Each box corresponds

to the percentage of images classified in this score by the model. The

intensity of the blue color depends on the quality of the model predic-

tion. Hence, dark blue values present on the diagonal indicate that the

model makes good predictions whatever the class. As a result, among

1 127 images scored at 1 by experts (upper line), the model ranks 927

with a score 1 (82%), 169 with a score 2 (15%), 31 with a score 3 (3%)

and none with a score 4 (0%). In the second line, among 1 835 class 2

images, the model makes a good prediction for 1 564 images, only 151

were predicted with a score 1, 118with a score 3, and 2with a score 4.

In the third line and the lower line respectively, 1 271 of the 1 529 class

3 images and 242 of the 306 class 4 images were well predicted by the

model. Finally, the calculated accuracy score on the test data set was

0.83.
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TABLE 2 Precision and recall metrics for each class and average
values of performancemeasures. Support is the number of instances
of each actual class of the test dataset

Precision Recall Support

Class 1 0.83 0.82 1127

Class 2 0.81 0.85 1835

Class 3 0.86 0.83 1529

Class 4 0.90 0.79 306

Average 0.85 0.82

To better assess the prediction quality of each score, the precision

and recall metrics are calculated for each score and averaged to obtain

an overall score (Table 2). All values were above 80% except for the

class 4 recall score having a value of 79.

Taken together, the results show that the prediction performance of

the deep learningmodel is satisfactory.

3.2 In vivo evaluation of photo-aging related
changes of dermal fibers state

In order to validate the use of the deep learning model as a new

method that automatically scores dermal matrix quality on in vivo LC-

OCT images, it was applied to the assessment of photo-aging-related

changes.

Figure 3A shows the mean profile of the dermal matrix computed

for each group. The value mentioned at each micron corresponds to

the mean of the scores obtained for all the volunteers in the group.

The color scale highlights that the profiles differ according to age

and photoexposure, with a greater and deeper alteration for old and

photoexposed subjects.

Statistical analysis of the average scores obtained over the entire

volume of the dermis (Figure 3B) confirms that young subjects had

a significantly (p < 0.0001) better quality of the whole dermis (mean

2.77 ± 0.33, n = 12) than elderly subjects photoexposed (mean 1.68 ±

0.37, n = 12) or not photoexposed (mean 2.04 ± 0.36, n = 12). Among

the old subjects, the photoexposed group had a significantly more

altered dermal matrix than the non-photoexposed group (p< 0.05).

As expected, results confirmed the impact of chronological aging

and photoexposure on the quality of the dermal matrix.

4 DISCUSSION

In the present study, we developed a new automated method to

precisely score the quality of the dermal matrix directly from in

vivo LC-OCT images. LC-OCT is an innovative technology allowing in

vivo optical biopsies, in real-time and with high resolution and deep

penetration.28 Its application was mainly described for the analysis of

skin lesions, such as carcinomas andmelanomas, that are located in the

epidermis.13 In a previous study, we demonstrated that LC-OCT allows

non-invasive quantification of superficial dermis thickness.18 Beyond

this global analysis, images could be more informative after an accu-

rate analysis of the state of the dermis. To go even further, it was thus

of interest to classify LC-OCT images according to the score of dermal

quality.

Investigation of modified skin components was classically deter-

mined by experts after a long and fastidious training to analyze

such images.29 Moreover, scoring many images is laborious and time-

consuming, thus subjected to operator-dependent results. Hence, as

seen in similar technologies like RCM,30,31 deep learning can be use-

ful for identifying structures or classifying states usually only evaluated

by experts. Neural networks such as Resnest bring good results when

it comes to classifying textures as reported in the work of Malciu and

colleagues,22 andoften comparable to clinician level. Very recently, epi-

dermal lesions were quantified directly on in vivo 3D LC-OCT images,

thanks to a deep learning algorithm.32

For this study, LC-OCT images were classified according to 4 differ-

ent states, depending on the quality of the dermal matrix (i.e., score 1

for a low matrix quality to 4 for the highest matrix quality). As most of

the information within the LC-OCT images lies in the architectural and

morphological features,33 texture analysis-based methods have been

our focus. In this research, we examined two different features used

for classification decisions, namely the texture of the dermal matrix

and the fragmentation of dermal fibers, both of which are obviously

closely related.6,4 The model was trained on images previously scored

by 6 different experts, each scoringwith its sensitivity to texture varia-

tions. To overcome this inter-expert subjectivity, themost represented

score is used for the learning of the model. This is the advantage of

such an approach, to develop a model which gives an entire note and

not a decimal score which would be the average of the appreciations

of several human readers. Ourmodel based onMobileNetV3 exhibited

good performance (accuracy: 83%, precision: 85%, recall: 82%) in scor-

ing the state of the dermal matrix, which satisfies the requirements of

the dermatological and cosmetic fields.34

This model has optimized performances in terms of accuracy and

latencywith a contained number of parameters. This reduces the over-

all network sizewhen compared to classic big architectures likeVGG19

or ResNet, with a limited state-of-the-art drop of accuracy.35The archi-

tecture of the model is well adapted to the need of the study, thus

allowing a satisfying accuracy. To obtain an even more robust model,

we plan to increase the number and variety of labeled images and

optimize the parameters of the algorithm. Moreover, this relatively

simple model is the first step in the development of an automated

method to classify images obtained by LC-OCT. Obviously perfectible,

its complexity could improve accuracy. Finally, the detection of DEJ

on LC-OCT images was manually performed by experts before auto-

matic classification. Since thedevelopmentof thismodel, the automatic

detection of DEJ on images has been added. As already demonstrated

for RCM images,36,37 such a segmentation improves the time-saving

as well as sensitivity and specificity of the classification results, by

overcoming inter-expert variability.

Thanks to this approach, we are now able to go further in the

analysis of dermal images acquired by LC-OCT. Firstly, we rank the
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F IGURE 3 Application of themodel to the scoring of dermis quality across (photo-) aging (A)Mean profile of the dermal matrix in the three
age groups. The value of eachmicron at depth represents the average quality score computed on all the subjects. The depth 0 corresponds to the
dermal-epidermal junction (DEJ). The color represents the intensity of dermis quality with a score 1 or altered dermis quality in red and a score 4
or good dermis quality in green. (B) Comparison of themean score of dermis quality on all the depths, between the three age groups. The score of
quality of the dermal matrix (mean± SD) for each group. n= 12 for each group. **: p< 0.05; ***: p< 0.001

state of the dermal matrix across aging. As expected, we scored a

significant alteration in the state of the dermal matrix in the older

age group. These observations are in agreement with the literature

where it is commonly accepted that dermal fibers undergo progressive

degradation during aging.38 Now that this automatic method for

quantifying the state of the dermis has been validated, it could be used

to assess the anti-aging effect of dermo-cosmetic products targeting

the dermis. This study also proves that the precision of our model

allows discriminating chronological aging-related dermal changes

from those due to photo-aging. Hence, the model could help the

diagnosis of solar elastosis following long-term exposure.39 Beyond

healthy skin, this automatic and quantified analysis of in vivo LC-OCT

images could also be applied for clinical investigations to improve

understanding and/or diagnosis of skin disorders targeting the dermis,

such as stretch marks,40 scars from different origins,41,42 or skin

fibrosis.43

In conclusion, the results confirm that a deep learning technique can

provide an efficient and objective assessment of the quality of the der-

mal matrix, thus reducing the workload of experts. This new approach

could be used to demonstrate the beneficial and progressive changes

brought by dermo-cosmetic treatments aimed at improving the dermal

matrix.
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