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Abstract 
Previously, a Saccharomyces cerevisiae fermentation product (SCFP) was shown to positively alter fecal microbiota, fecal metabolites, oxidative 
stress, and circulating immune cell function of adult dogs. The objective of this study was to measure the effects of SCFP on fecal character-
istics, serum oxidative stress biomarkers, and whole blood gene expression of dogs undergoing transport stress. Sixteen adult pointer dogs 
[8M, 8F; mean age = 6.7 ± 2.1 yr; mean body weight (BW) = 25.5 ± 3.9 kg] were used in a randomized crossover design study. All dogs were 
fed a control diet for 4 wk, then randomly assigned to a control or SCFP-supplemented diet (formulated to include approximately 0.13% of the 
active SCFP ingredient) and fed to maintain BW for 11 wk. A 6-wk washout preceded the second 11-wk experimental period with dogs receiving 
opposite treatments. After 11 wk, fresh fecal and blood samples were collected before and after transport in a van for 45 min. Change from 
baseline data (i.e., before and after transport) were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and 
P < 0.10 being trends. Change in serum malondialdehyde concentrations increased (P < 0.05) and serum 8-isoprostane concentrations tended 
to increase (P < 0.10) in dogs fed SCFP, but decreased (P < 0.05) in control dogs after transport. Other serum markers were unaffected by diet 
during transport stress. Fecal dry matter percentage tended to be affected (P < 0.10) by diet during transport stress, being reduced in control 
dogs, but stable in dogs fed SCFP. Other fecal characteristics were unaffected by diet during transport stress. Genes associated with activation 
of innate immunity were impacted by diet in response to transport stress, with blood cyclooxygenase-2 and malondialdehyde mRNA expression 
being increased (P < 0.05) in control dogs, but stable or decreased in dogs fed SCFP. Expression of other genes was unaffected by diet during 
transport stress. These data suggest that the benefits of feeding a SCFP during transport stress may be mediated through suppression of innate 
immune cell activation.

Lay Summary 
Saccharomyces cerevisiae fermentation product (SCFP) is a yeast product containing bioactive fermentation metabolites, residual yeast cells, 
and yeast cell wall fragments. In this study, SCFP was investigated for its impacts on fecal characteristics and oxidative stress of dogs undergo-
ing transport stress. Using a randomized crossover study design, 16 adult pointer dogs were used to compare changes in fecal characteristics, 
oxidative stress marker concentrations, and gene expression when fed a SCFP-supplemented diet or control diet. After transport, change in 
serum malondialdehyde concentrations increased and serum 8-isoprostane concentrations tended to increase in dogs fed SCFP, but decreased 
in control dogs. Fecal moisture percentage tended to be affected by diet during transport stress, being reduced in control dogs, but stable 
in dogs fed SCFP. Blood cyclooxygenase-2 and myeloperoxidase mRNA gene expression was affected by diet during transport stress, being 
increased in control dogs, but stable or decreased in dogs fed SCFP. In conclusion, these data suggest that the benefits of feeding a SCFP during 
transport stress may be mitigated through suppression of innate immune cell activation rather than through suppressing oxidative damage to 
lipids.
Key words: canine nutrition, postbiotic, yeast product
Abbreviations: AAPH, 2,2ʹ-azobis-2-methyl-propanimidamide, dihydrochloride; BW, body weight; CAP-e, cell-based anti-oxidant protection in erythrocytes; CNS, 
central nervous system; COX-2, cyclooxygenase-2; DM, dry matter; GI, gastrointestinal; IgA, immunoglobulin A; MDA, malondialdehyde; MPO, myeloperoxidase; 
SCFP, Saccharomyces cerevisiae fermentation product; SOD, superoxide dismutase; TEAC: Trolox equivalent anti-oxidant capacity

Received September 29, 2022 Accepted November 10, 2022.

© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, 
please e-mail: journals.permissions@oup.com.

https://orcid.org/0000-0003-2473-1791
https://orcid.org/0000-0001-5518-3076
mailto:ksswanso@illinois.edu
journals.permissions@oup.com


2 Journal of Animal Science, 2023, Vol. 101 

Introduction
Stress refers to any external or internal stimulus that evokes a 
biological response, and this response to a perceived stressor 
is known as a stress response (Yaribeygi et al., 2017). The 
stress response, which is largely dependent on the type, dura-
tion, and severity of the stressor, can lead to a variety of events 
within the body, from disruptions in homeostasis to the devel-
opment of life-threatening diseases. Acute stress is character-
ized as adaptive because it quickly responds to defend the 
organism from danger (Selye, 1956). Acute stress elicits hor-
mone release by the sympathetic nervous system and hypo-
thalamic-pituitary-adrenocortical axis to make energy stores 
available for the body’s immediate use, diverting energy to the 
tissues that become more active during stress (e.g., skeletal 
muscles and the brain). Acute stress also activates the innate 
immune system, causing cells to migrate to the tissues most 
vulnerable to assault, such as the skin, to aid in pathogen 
clearance and wound healing (Dhabhar and McEwen, 1997). 
Cyclooxygenase-2 (COX-2) and myeloperoxidase (MPO) are 
key genes involved in innate immunity and are involved in 
this response (Feng et al., 1995; Arnhold, 2020).

Although the body can adapt to short-term stress, the acute 
stress response can become chronic and maladaptive when 
activated repeatedly (Selye, 1956; Ketchesin et al., 2017). 
Chronic stress has been shown to suppress the immune sys-
tem (Khansari et al., 1990) and adversely affect the gastro-
intestinal (GI) tract’s absorptive capabilities, permeability, 
mucus secretion, and inflammation (Collins, 2001). Previous 
research investigating the impacts of stress in canines has 
demonstrated that transportation- and/or exercise-induced 
stress modulates oxidative stress responses, GI inflammation, 
hematological parameters, immune cell trafficking and effec-
tor function, and enzyme and hormone activities (Ochi et al., 
2013; Ferreira et al., 2014; Fazio et al., 2015; Dhabhar, 2018; 
DeClue et al., 2020; Zannoni et al., 2020). Transportation, 
exercise, and other naturally occurring stressors (e.g., loud 
noises, new places, changes in routine) are common in today’s 
world and inevitable events for most dogs, which can lead to 
both acute and chronic stress.

While there is little research specifically investigating 
dietary interventions to reduce transportation stress in dogs 
at the molecular level (e.g., biomarkers in feces and blood), 
diet has been previously shown to impact behavioral signs 
of stress and anxiety in dogs (DeNapoli et al., 2000; Beata et 
al., 2007; Cracknell and Mills, 2008; Landsberg et al., 2015; 
Pike et al., 2015; Titeux et al., 2021). Moreover, it has been 
shown that dietary supplementation with functional ingredi-
ents, such as plant-based compounds and dietary fibers, can 
support GI health (Swanson et al., 2002), promote changes in 
biochemical parameters (Spears et al., 2004; Pasquini et al., 
2013; Cortese et al., 2015), or improve brain function that 
may increase longevity and reduce behavioral disorders (Sechi 
et al. 2015, 2017) in dogs.

Saccharomyces cerevisiae fermentation product (SCFP) is 
a functional ingredient that may have the potential to ame-
liorate oxidative stress and inflammation during periods of 
acute stress, as it has been previously shown to positively 
impact GI health, immune function, and oxidative stress in 
adult dogs (Lin et al., 2019; Varney et al., 2021; Wilson et 
al., 2022). SCFP is a dry product produced via S. cerevisiae 
fermentation and includes residual yeast cells, yeast cell wall 
fragments, bioactive fermentation metabolites, and media 
used during fermentation. The exact composition of SCFP is 

proprietary; however, yeast products are commonly known 
to include components of the yeast cell wall, such as man-
nanoligosaccharides and β-glucans, which have been shown 
to improve intestinal health and barrier function by increas-
ing fecal Bifidobacterium and Lactobacillus populations, 
elevating ileal IgA concentrations, inhibiting the expression 
of inflammatory mediators, and enhancing the expression of 
tight junction proteins associated with intestinal permeabil-
ity (Swanson et al., 2002; Grieshop et al., 2004; Han et al., 
2017). Furthermore, mannan oligosaccharides and β-glucans 
within the cell wall and metabolites from fermentation have 
been implicated in yeast’s immunomodulatory properties. 
Through digestion, these components encounter the gut-asso-
ciated lymphoid tissue, influencing its immune function and 
systemic immunity (Field et al., 1999). Finally, mannans iso-
lated from S. cerevisiae have been shown to possess anti-oxi-
dant properties in vitro (Krizková et al., 2001), and zymosan 
derived from glucans in the yeast cell wall have been shown 
to increase anti-oxidant function in tumor-bearing mice (Liu 
et al., 2011). Thus, the composition of S. cerevisiae and bio-
active yeast fermentation metabolites have the potential to 
support GI health, immunity, and oxidative stress parameters. 
Further investigation is warranted to determine if SCFP may 
mitigate cellular damage or disruptions to homeostasis during 
periods of acute stress.

The objectives of this study were to determine the effects 
of an SCFP-supplemented diet on fecal characteristics, fecal 
immunoglobulin A (IgA) and calprotectin concentrations, 
serum anti-oxidant status and oxidative stress biomarkers, 
and whole blood gene expression of dogs undergoing trans-
port stress. We hypothesized that, without negatively impact-
ing fecal characteristics, dogs fed the SCFP-supplemented diet 
would have enhanced anti-oxidant status and reduced con-
centrations of serum oxidative stress markers after transport 
stress compared with dogs fed the control diet.

Materials and Methods
All experimental procedures were approved by the Ken-
nelwood Inc. IACUC prior to experimentation and were 
performed in accordance with the U.S. Public Health Service 
Policy on Humane Care and Use of Laboratory Animals.

Animals and housing
Sixteen adult pointer dogs [8 intact males, 8 intact females; 
mean age = 6.7 ± 2.1 yr; mean BW = 25.5 ± 3.9 kg] were 
used in a crossover design. All dogs were housed individu-
ally (inside run = 1.17 m × 1.42 m; outside run = 1.08 m × 
3.05 m) at Kennelwood, Inc. (Champaign, IL). Dogs had free 
access to fresh water and were fed once daily to maintain BW 
throughout the study. The amount of food offered was based 
on previous feeding records and the estimated caloric content 
of the diets.

Experimental timeline and diets
Before the study, blood samples were collected for serum 
chemistry measures and complete blood count to confirm 
health. A crossover study began with a 4-wk adaptation 
phase followed by two 11-wk experimental periods. After 
11 wk, fasted (12 h overnight) blood samples were collected 
immediately before and after canines were transported in 
carriers (0.9 m × 0.6 m × 0.7 m) with 3 to 4 dogs per van 
for 45  min. Fresh fecal samples were collected from each 
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dog before and within 1 d after transport. There was a 6-wk 
washout phase between experimental periods to decrease 
the possibility of treatment carryover effects. Given recent 
data from our laboratory (Lin et al., 2022), this period of 
time should have provided plenty of time for gut adapta-
tions and microbiota to stabilize prior to the start of the next 
experimental period. Dogs were fed the control diet during 
the adaptation and washout phases, then randomly allotted 
to a SCFP-supplemented or control diet. Both dietary treat-
ments tested were extruded kibble diets formulated to meet 
all Association of American Feed Control Officials (AAFCO, 
2020) nutrient profiles for adult dogs at maintenance and 
were formulated with similar ingredients and nutrient 
targets (Blue Buffalo Co. Ltd., Wilton, CT; Table 1). The 
SCFP-supplemented diet was formulated to include approx-
imately 0.13% of the active SCFP ingredient (0.4942% of 
TruMune; Diamond V Mills, Inc., Cedar Rapids, IA). Based 
on the food intake measured in the study, this inclusion level 
resulted in an average intake of 30.1 ± 3.5 mg SCFP/kg BW 

per day (range: 21.7 to 37.9 mg SCFP/kg BW). Dogs were 
weighed and body condition scores were assessed using a 
9-point scale (Laflamme, 1997) once per week prior to the 
morning feeding.

Fecal scoring, sample collection, and analysis
Fresh fecal samples were collected for scoring, pH, dry matter 
(DM), IgA, and calprotectin at week 11 (before and within 1 
d after transport stress) of each experimental period. All fecal 
samples collected were scored according to the following 
scale: 1) hard, dry pellets, small hard mass; 2) hard, formed, 
dry stool, remains firm and soft; 3) soft, formed, and moist 
stool, retains shape; 4) soft, unformed stool, assumes shape 
of container; 5) watery, liquid that can be poured. Fecal pH 
was measured immediately using an AP10 pH meter (Denver 
Instrument, Bohemia, NY) equipped with a Beckman Elec-
trode (Beckman Instruments Inc., Fullerton, CA), and then 
aliquots were collected. One aliquot of fresh feces was col-
lected for IgA and calprotectin analysis. These samples were 
immediately transferred to sterile cryogenic vials (Nalgene, 
Rochester, NY), quickly frozen in dry ice, and stored at −80 
°C for later analysis. Another aliquot was used for fresh fecal 
DM determination and was measured according to AOAC 
(2006) using a 105 °C oven.

Fecal protein extraction
Fecal proteins were extracted according to Vilson et al. (2016). 
Fecal samples (500 mg) were vortexed with 1.5-mL extraction 
buffer containing 50 mM-EDTA (ThermoFisher, Waltham, 
MA) and 100 μg/L soybean trypsin inhibitor (Sigma, St. 
Louis, MO) in 1X PBS/L percent bovine serum albumin (Toc-
ris Bioscience, Bristol, UK). Phenylmethanesulphonyl fluoride 
(12.5 μL, 350 mg/L; Sigma, St. Louis, MO) was added into 
each tube, followed by centrifugation at 10,000 × g at 25 
°C for 10 min. The supernatants were collected for measure-
ments of IgA and calprotectin using commercial ELISA kits 
(IgA: #MBS018650; calprotectin: #MBS030023, MyBio-
Source, San Diego, CA).

Blood sample collection
Fasted (12  h overnight) blood samples were collected for 
anti-oxidant status and oxidative stress measures after week 
11 of each experimental period (before and after transport in 
a van for 45 min). Blood samples were collected via jugular 
or cephalic puncture. Samples were immediately transferred 
to appropriate vacutainer tubes, with some blood going into 
BD Vacutainer Plus plastic whole blood tubes (#363706; 
Lavender with K2EDTA additive; Becton Dickinson, Franklin 
Lakes, NJ), some blood going into BD Vacutainer SST tubes 
(#367988 and #367983; Becton Dickinson) for serum sep-
aration, and some blood going into PAXgene Blood Tubes 
(#762165; Qiagen, Valencia, CA). Serum was isolated by cen-
trifugation at 2,000 × g at 4 °C for 15 min (Beckman CS-6R 
centrifuge; Beckman Coulter Inc., Brea, CA). Once serum was 
harvested, it was aliquoted to cryovials and stored at −80 °C 
until analysis.

Serum oxidative stress markers
Circulating oxidative stress markers [8-isoprostane, Trolox 
equivalent anti-oxidant capacity (TEAC); malondialdehyde 
(MDA); and superoxide dismutase (SOD)] concentrations 
were measured using commercial ELISA kits (8-isoprostane: 
#MBS2611970, TEAC: # MBS169313, MDA: #MBS2605193, 

Table 1. Ingredient and analyzed chemical composition of experimental 
diets tested

Ingredient Control SCFP 

--- %, as-basis ---

Chicken, deboned                 18.23 18.23

Chicken meal 18.05 18.05

Barley 18.05 18.00

Oats 18.05 18.00

Brown rice 16.58 16.54

Chicken fat 4.79 4.79

Liquid digest 1.71 1.71

Powdered cellulose 1.61 1.61

Powder digest 0.86 0.86

Potassium chloride 0.52 0.52

SCFP1 - 0.49

Calcium carbonate 0.36 -

Salt                          0.42 0.42

Trace mineral mix           0.23 0.23

Vitamin mix             0.23 0.23

Choline chloride       0.19 0.19

Mixed tocopherols 0.07 0.07

DL-methionine 0.07 0.07

Analyzed composition

Dry matter (DM), % 90.97 90.59

--- %, DM basis ---

Acid-hydrolyzed fat 12.81 12.62

Crude protein 25.61 25.32

Total dietary fiber 14.03 12.94

 Insoluble fiber 9.50 7.91

 Soluble fiber 4.53 5.03

Ash 8.76 8.34

Nitrogen-free extract2 38.79 40.61

Gross energy, kcal/kg 5,076 5,125

Calculated metabolizable energy3, kcal/kg 3,342 3,386

1TruMune; Diamond V Mills, Inc., Cedar Rapids, IA.
2Nitrogen-free extract % = 100 % – (% acid-hydrolyzed fat + % crude 
protein + % moisture + % ash + % total dietary fiber).
3Metabolizable energy estimated with modified Atwater factors: 10 × 
[(3.5 × % crude protein) + (8.5 × % crude fat) + (3.5 × % nitrogen-free 
extract)].
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SOD: #MBS2104718, MyBioSource, San Diego, CA) accord-
ing to the manufacturer’s instructions. Remaining serum 
samples were shipped overnight on dry ice to Michigan State 
University Veterinary Diagnostic Laboratory (Lansing, MI) 
for serum α-tocopherol analysis and to NIS labs (Klamath 
Falls, OR) for the cell-based anti-oxidant protection in eryth-
rocytes (CAP-e) assay.

CAP-e assay
 To test for anti-oxidants in serum that were likely to be 
bio-available at the cellular level in vivo, serum samples were 
tested ex vivo using the CAP-e assay (Jensen et al., 2008; 
Phillips et al., 2019). Human erythrocytes were purified and 
washed four times in phosphate-buffered saline, and stored at 
4 °C until use, and used for testing within 4 d. For the CAP-e 
cellular anti-oxidant protection assay, each canine serum sam-
ple was tested in quadruplicate, using human erythrocytes to 
detect anti-oxidant compounds present in canine serum. The 
canine serum samples were kept at −80 °C until testing. All 
long-term samples from each dog were tested in the same run, 
and all acute samples from each dog were tested in a parallel 
run using the same batch of human erythrocytes. Serum sam-
ples were thawed, briefly vortexed, and kept at 4 °C until test-
ing was initiated within the hour. To avoid antibody-mediated 
lysing of the human erythrocytes by Ig present in the canine 
serum samples, a 10x solution of EDTA buffer was added to 
each serum sample immediately prior to testing. The erythro-
cytes were treated with the canine serum samples in quadru-
plicate for 20 min. During this incubation time, anti-oxidant 
compounds are able to cross the cell membrane and enter the 
erythrocyte cell. Following the incubation of erythrocytes 
with serum, the erythrocytes were washed twice with PBS to 
remove any compounds from the test products that were not 
absorbed by the cells. Cell cultures were then treated with 
the indicator dye 2ʹ,7ʹ-dichlorofluorescein diacetate, which 
becomes fluorescent when oxidized. The peroxyl-free radical 
generator 2,2ʹ-azobis-2-methyl-propanimidamide, dihydro-
chloride (AAPH) was added to trigger oxidation. Control cul-
tures were performed in hexaplicate and included untreated 
erythrocytes as a negative control (not exposed to serum or 
AAPH) and erythrocytes treated with AAPH in the absence of 
serum (positive control). After exposure to AAPH for 1 h, the 
fluorescence intensity was measured at 488 nm using a Tecan 
Spectrafluor plate reader (Tecan, Männedorf, Switzerland). 
When a reduction of fluorescence intensity was observed in 
erythrocytes exposed to a serum sample prior to exposure to 
AAPH, this was indicative that the serum contained anti-ox-
idants that were able to penetrate the erythrocyte cells and 
protect them from AAPH-mediated oxidative damage.

Whole blood gene expression
Total RNA from blood cells were isolated using a PAX-
gene Blood RNA Kit (#762331; Qiagen, Valencia, CA) 
according to the manufacturer’s instructions. RNA con-
centrations were determined using a ND-1000 spectropho-
tometer (Nanodrop Technologies, Wilmington, DE). cDNA 
were synthesized using SuperScript III reverse transcriptase 
(Invitrogen, Carlsbad, CA). Gene expression was measured 
by real-time two-step RT-qPCR using an Applied Biosys-
tems 7900HT real-time PCR system (Applied Biosystems, 
Waltham, MA) and was carried out with SYBR Green chem-
istry (Bio-Rad Laboratories, Hercules, CA) in a QuantStu-
dio 7 instrument (Thermo Fisher Scientific, Waltham, MA) 

using validated forward and reverse primers (Bio-Rad Lab-
oratories). Genes of interest included the following: gluta-
thione peroxidase (UniqueAssayID: qCfaCED0030791), 
glutathione reductase (UniqueAssayID: qCfaCED0031064), 
catalase (UniqueAssayID: qCfaCED0028561), SOD 
(UniqueAssayID: qCfaCED0038911), MPO (UniqueAs-
sayID: qCfaCID0034597), and COX-2 (UniqueAssayID: 
qCfaCED0024663) (PrimePCR SYBR Green Assay, Bio-
Rad Laboratories). All gene expression data were analyzed 
using the 2−ΔΔCt method, represented as gene expression rel-
ative to the housekeeping gene (RPS5, UniqueAssayID: 
qCfaCED0028510).

Diet chemical analyses
Both diets were ground in a Wiley mill (model 4, Thomas 
Scientific, Swedesboro, NJ) through a 2-mm screen and then 
analyzed for DM and ash according to AOAC (2006; meth-
ods 934.01 and 942.05), with organic matter being calcu-
lated. Crude protein was calculated from Leco (FP2000 and 
TruMac) total nitrogen values according to AOAC (2006; 
method 992.15). Total lipid content (acid-hydrolyzed fat) 
was determined according to the methods of the American 
Association of Cereal Chemists (1983) and Budde (1952). 
Total dietary fiber was determined according to Prosky et al. 
(1988). Gross energy was measured using an oxygen bomb 
calorimeter (model 6200, Parr Instruments, Moline, IL).

Statistical analyses
Data were analyzed using the Mixed Models procedure of 
SAS 9.4 (SAS Institute, Inc., Cary, NC). The fixed effect of 
treatment was tested, and dog was considered a random 
effect. Change from baseline (i.e., before and after transport) 
differences between treatments (16 replicates per treatment) 
were determined using a Fisher-protected least significant 
difference with a Tukey adjustment to control for experi-
ment-wise error. A probability of P < 0.05 was accepted as 
statistically significant and P < 0.10 being trends. Reported 
pooled standard errors of the mean were determined accord-
ing to the Mixed Models procedure of SAS 9.4.

Results
One dog was removed from the study immediately following 
the washout phase for medical reasons (pain and enlarged 
mammary tissue). Therefore, one less dog was allotted to the 
control group before the second treatment period began. The 
remaining 15 dogs completed the study. Clinical signs (e.g., 
vomiting) were not observed during transport. Dogs main-
tained their BW, food intake, and health throughout the study, 
but two dogs were administered oral antibiotics during the 
study period: cephalexin (525  mg, twice per day) for 10 d 
during the adaptation phase to treat an infected wound in one 
dog, and enrofloxacin (136 mg, twice per day) for 15 d during 
the first treatment period to treat a urinary tract infection in 
the other dog allotted to the SCFP group.

Fecal characteristics and fecal protein 
concentrations
Change from baseline values (i.e., before and after transport 
stress) were used to evaluate the impacts of transport stress on 
outcomes in the present study. Most of the fecal characteris-
tics measured, including fecal pH, fecal score, and concentra-
tions of fecal IgA and calprotectin were not different between 
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treatments when challenged with transport stress (Table 2). 
Change in fecal DM %, however, tended to be lower (P < 
0.10) in dogs fed the control diet than dogs fed the SCFP 
diet. The LS means of the variables analyzed are presented in 
Supplementary Table S1.

Serum oxidative stress markers
Change from baseline serum MDA concentrations were 
higher (P < 0.05) and change from baseline serum 8-iso-
prostane concentrations tended to be higher (P < 0.10) in 
dogs fed the SCFP-supplemented diet than those fed the 
control diet (Table 3). The other serum markers of anti-oxi-
dant status (i.e., α-tocopherol, TEAC, CAP-e) and oxidative 
stress marker (i.e., SOD) responses to transport stress were 
not affected by supplementation with SCFP. The LS means 
of the variables analyzed are presented in Supplementary 
Table S2.

Whole blood gene expression
Change from baseline mRNA expression of COX-2 and 
MPO were affected by diet (Table 4). Change from baseline 
mRNA expression of MPO decreased (P < 0.05) in dogs fed 
the SCFP-supplemented diet, but increased in those fed the 
control diet. Change from baseline mRNA expression of 
COX-2 remained stable after transport in SCFP-fed dogs, 
but increased (P < 0.05) in the control group. The mRNA 
expression of glutathione peroxidase, SOD, catalase, and 
glutathione reductase was not affected by diet in response to 

transport stress. The LS means of the variables analyzed are 
presented in Supplementary Table S3.

Discussion
Our previous study reported changes in circulating immune 
cell percentages and effector function, anti-oxidant status 
and oxidative stress marker concentrations, and measures 
of skin and coat health of adult dogs fed an SCFP-supple-
mented extruded diet under normal conditions (no stressor; 
Wilson et al., 2022). This study was done to test whether 
long-term SCFP consumption could also provide benefits to 
healthy adult dogs during an acute stress challenge in the 
form of transport stress, with fecal characteristics, fecal pro-
tein concentrations, markers of antioxidant status, and oxi-
dative stress markers being the primary outcomes. Change 
in fecal DM percentage tended to decrease in control dogs, 
but remained stable in dogs fed SCFP after transport, sug-
gesting that SCFP may be able to modulate stress-induced 
diarrhea. Change in serum MDA concentrations increased 
and serum 8-isoprostane concentrations tended to increase 
in SCFP-supplemented dogs compared with controls, indi-
cating a higher degree of lipid peroxidation in SCFP-treated 
dogs due to acute stress. Finally, whole blood mRNA gene 
expression of COX-2 and MPO increased in control dogs 
yet remained stable or decreased, respectively, in dogs fed 
SCFP, suggesting that SCFP supplementation may suppress 
activation of the innate immune response during acute 
stress.

The central nervous system (CNS) communicates with 
the GI tract through the gut-brain axis, which refers to the 
bidirectional communication and transfer of information 
from the CNS to the enteric nervous system. In response to 
environmental stress, including transportation, the CNS reg-
ulates enteric immunity through the activation of leukocytes, 
expression of inflammatory mediators, and synthesis of secre-
tory IgA to protect the intestinal lumen from bacteria, viruses, 
and tissue trauma (Campos-Rodríguez et al., 2013; de Jonge, 
2013; Jukic et al., 2021). Although the stress coming from 
transportation may often lead to loose stools or diarrhea in 
dogs and domesticated livestock, most of the fecal character-
istics in the current study were not affected. However, change 
in fecal DM% tended to be lower in dogs fed the control diet 
than dogs fed the SCFP diet post-transport, suggesting that 
SCFP may be able to limit negative changes to stool quality. 
Because the change in fecal DM% was very small and fecal 

Table 2. Change from baseline fecal characteristics of dogs consuming a 
SCFP-supplemented or control diet before and after transport stress

Measure Δ Control Δ SCFP SEM P-value1 

Fecal pH −0.47 −0.15 0.17 0.2063

Fecal score1 −0.33 −0.22 0.19 0.6692

Fecal dry matter, % −1.89 0.06 0.72 0.0653

Fecal IgA, mg/g 1.32 1.02 0.67 0.7561

Fecal calprotectin, 
μg/g

0.09 0.07 0.05 0.7936

1Fecal scores: 1 = hard, dry pellets; small hard mass; 2 = hard formed, 
remains firm and soft; 3 = soft, formed and moist stool, retains shape;4 = 
soft, unformed stool; assumes shape of container; 5 = watery, liquid that 
can be poured.

Table 3. Change from baseline oxidative stress marker concentrations of dogs consuming a SCFP-supplemented or control diet before and after 
transport stress

Measure Δ Control Δ SCFP SEM P-value 

Malondialdehyde, nmol/mL −0.52b 2.52a 0.96 0.0337

Superoxide dismutase, ng/mL 1.10 0.93 1.24 0.9254

8-Isoprostane, pg/mL −13.11 26.54 16.15 0.0935

α-Tocopherol, μg/mL −1.81 −1.63 0.49 0.7883

Trolox equivalent antioxidant capacity (TEAC), μM 
Trolox

−18.51 −3.50 16.83 0.5113

CAP-e1 −173.0 402.8 357.70 0.2646

1 CAP-e: cell-based anti-oxidant protection in erythrocytes assay. Results provided as mean fluorescence intensity, where low fluorescence indicates less 
oxidative stress to red blood cells, and higher fluorescence indicates a higher level of stress to red blood cells.
a,bMean values within a row with unlike superscript letters differ (P < 0.05).

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skac378#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skac378#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skac378#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skac378#supplementary-data
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scores and the inflammatory marker calprotectin were not 
altered with transport stress or due to diet, further investiga-
tion is necessary.

Oxidative stress refers to an imbalance between the gener-
ation of oxidants and their elimination systems (i.e., antiox-
idants) in favor of oxidants, leading to a disruption of redox 
signaling and control and/or molecular damage (Sies et al., 
2017). Recent findings suggest that exposure to acute and 
chronic stressors can increase levels of oxidative stress (Lin 
et al., 2004; Haussmann et al., 2012; Treidel et al., 2013; 
Marasco et al., 2017). In the current study, changes in serum 
MDA and 8-isoprostane concentrations depended on the diet 
fed, with increases in dogs fed SCFP and decreases in dogs fed 
the control diet. This response suggests an increased level of 
lipid peroxidation in SCFP-treated dogs following transport 
stress. MDA and F2-isoprostanes, including 8-isoprostane, 
have been extensively investigated as markers of lipid perox-
idation and are considered reliable biomarkers of oxidative 
stress in vivo (Kadiiska et al., 2005; Niki, 2014). Generation 
of MDA and 8-isoprostane occurs through the peroxidation 
of arachidonic acid, and these harmful end-products are 
often implicated in the pathogenesis of diseases (e.g., cancer, 
diabetes, asthma, atherosclerosis, Alzheimer’s disease, and 
Parkinson’s diseases; Dalle-Donne et al., 2006; Giustarini et 
al., 2009; Tsikas, 2017).

Our data does not reveal a clear explanation as to why sup-
plementation of SCFP resulted in changes to serum MDA and 
8-isoprostane concentrations after transport stress, requir-
ing further investigation. However, measurement of urinary 
rather than plasma or serum markers of 8-isoprostane has 
been proposed as a better indicator of oxidative stress in 
humans because arachidonic acid, their metabolic precursor, 
is widely distributed in cell membranes throughout tissues, 
providing a comprehensive reflection of oxidative stress acti-
vation in the entire body (Montero et al., 2000; Monnier 
et al., 2006). Moreover, pre-analytical factors must also be 
considered when assessing the degree of lipid peroxidation in 
lipid-rich samples such as plasma or serum, as MDA is par-
ticularly sensitive to storage conditions, analytical processes, 
and hemolysis that could lead to artificially high concentra-
tions (Dreissigacker et al., 2010; Yoshida et al., 2013; Tsikas 
et al. 2016, 2017). This is a limitation of our study, as serum 
was the sole biological fluid harvested for the measurement of 
MDA and 8-isoprostane, and samples were stored at -80 °C 
as opposed to immediate analysis following blood sampling.

Similar to oxidative stress marker response, changes in 
whole blood gene expression depended on dietary treatment. 
While mRNA expression of COX-2 remained stable and 
MPO expression decreased in dogs fed SCFP, the expression 
of both genes increased in dogs fed the control diet following 
transport stress. MPO catalyzes the formation of reactive oxy-
gen intermediates that aid in microbial killing by neutrophils 
(Klebanoff et al., 2013), and COX-2 catalyzes the formation 
of prostaglandins and thromboxanes that aid in inducing 
swelling and inflammation at the site of injury. In dogs, trans-
port stress is often perceived as an acute stressor, which can 
lead to frequent activation of the innate immune system in the 
absence of pathogens or tissue damage with repeated car rides. 
This can ultimately lead to chronic inflammation, wherein 
MPO and COX-2 have been shown to act as mediators in the 
development of numerous inflammatory diseases and contrib-
ute to tissue damage through excessive generation of reactive 
oxygen species (Iadecola, 2004; Aratani, 2018). Although cir-
culating immune cell populations and effector function were 
not measured in this study, the observed changes in whole 
blood mRNA gene expression after transport stress provide 
some insight into the modulation of innate immune activation 
due to SCFP supplementation. In future studies, performing 
flow cytometry or hematology may be used to evaluate circu-
lating immune cells before and after transport stress to aid in 
the interpretation of these results.

This study evaluated the impacts of long-term SCFP sup-
plementation to healthy adult dogs during an acute stress 
challenge. We used transport stress as a noninvasive model 
to induce acute stress in dogs, which is a limitation of this 
study due to the physiological and behavioral differences in 
how dogs respond to unfamiliar stimuli. Although the dogs 
used in our study had not previously experienced car rides, 
transportation in a vehicle may have been too mild a stressor 
to detect changes in innate immune activity that may have 
presented under a more severe stress model. Alternative non-
invasive methods, such as exercise or repeated exercise stress, 
may induce stress more effectively in future studies investi-
gating the acute and chronic stress responses in dogs, respec-
tively (Pastore et al., 2011; Zannoni et al., 2020; Elias et al., 
2021; Varney et al., 2021). As discussed above, using serum 
as the primary biological fluid to measure oxidative stress and 
antioxidant status in dogs may have also limited our assess-
ment of the impacts of SCFP supplementation during trans-
port stress, primarily due to the distribution of circulating 
biomarkers within the body and pre-analytical factors. Addi-
tional outcome measures, such as changes in fecal metabolites 
and fecal microbiota, may aid future studies in determining 
the ways in which SCFP may modulate GI health during acute 
stress. Moreover, cortisol measurements (blood or salivary) 
may provide additional insight into the impacts of dietary 
SCFP on the stress response, as elevated cortisol levels reflect 
activation of the hypothalamic-pituitary-adrenocortical axis 
(Vincent and Michell, 1992).

Conclusions
In conclusion, our data suggest SCFP may act as a functional 
ingredient in dog foods to beneficially modulate stress-induced 
diarrhea and suppress innate immune activation after a trans-
port stress challenge. SCFP is suggested to modulate stress-in-
duced diarrhea through the increase of fecal DM%, although 
further investigation is needed as the change in fecal DM% 

Table 4. Change from baseline whole blood gene expression fold change 
of dogs consuming a SCFP-supplemented or control diet before and after 
transport stress

Measure Δ Control Δ SCFP SEM P-value1 

Cyclooxygenase-2 0.20a 0.02b 0.05 0.0461

Glutathione peroxidase −0.15 0.01 0.08 0.5272

Myeloperoxidase 0.70a −0.24b 0.20 0.0383

Superoxide dismutase 0.51 0.32 0.09 0.2372

Catalase 0.34 0.27 0.07 0.7146

Glutathione reductase 0.33 2.33 1.10 0.7629

1Statistics were conducted using ΔΔCt values to generate P-values; data 
are reported as fold change (2^-ΔΔCt) in relation to a housekeeping gene 
(RPS5).
a,bMean values within a row with unlike superscript letters differ (P < 
0.05).
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was minor, and fecal scores and inflammatory fecal markers 
were not altered due to transport stress or diet. Furthermore, 
investigation is necessary to determine how SCFP modulates 
oxidative stress under stressful conditions, as SCFP-fed dogs 
exhibited increased MDA and 8-isoprostane levels, which 
is indicative of lipid peroxidation due to transport stress or 
diet. Use of a different stress model, such as exercise stress, 
to induce acute stress as well as alterations to blood and fecal 
sample analysis may aid in investigation. Finally, SCFP was 
shown to modulate the expression of two key inflammatory 
mediators during acute stress (COX-2 and MPO), suggesting 
SCFP may suppress activation of the innate immune response. 
Our data suggest that SCFP can be included in as a functional 
ingredient in extruded dog foods aimed at reducing stress. 
SCFP may be most beneficial to less adaptable senior and/or 
geriatric dogs, or dogs predisposed to travel anxiety.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online.
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