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Abstract

Microbiome research relies on next-generation sequencing and on downstream data analy-

sis workflows. Several manufacturers have introduced multi-amplicon kits for microbiome

characterization, improving speciation, but present unique challenges for analysis. The goal

of this methodology study was to develop two analysis pipelines specific to mixed-orienta-

tion reads from multi-hypervariable (V) region amplicons. A secondary aim was to assess

agreement with expected abundance, considering database and variable region. Mock com-

munity sequence data (n = 41) generated using the Ion16S™Metagenomics Kit and Ion

Torrent Sequencing Platform were analyzed using two workflows. Amplicons from V2, V3,

V4, V6-7, V8 and V9 were deconvoluted using a specialized plugin based on CutPrimers. A

separate workflow using Cutadapt is also presented. Three reference databases (Ribo-

somal Database Project, Greengenes and Silva) were used for taxonomic assignment.

Bray-Curtis, Euclidean and Jensen-Shannon distance measures were used to evaluate

overall annotation consistency, and specific taxon agreement was determined by calculating

the ratio of observed to expected relative abundance. Reads that mapped to regions V2-V9

varied for both CutPrimers and Cutadapt-based methods. Within the CutPrimers-based

pipeline, V3 amplicons had the best agreement with the expected distribution, tested using

global distance measures, while V9 amplicons had the worst agreement. Accurate taxo-

nomic annotation varied by genus-level taxon and V region analyzed. For the first time, we

present a microbiome analysis pipeline that employs a specialized plugin to allow micro-

biome researchers to separate multi-amplicon data from the Ion16S Metagenomics Kit into

V-specific reads. We also present an additional analysis workflow, modified for Ion Torrent

mixed orientation reads. Overall, the global agreement of amplicons with the expected mock
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community abundances differed across V regions and reference databases. Benchmarking

data should be referenced when planning a microbiome study to consider these biases

related to sequencing and data analysis for multi-amplicon sequencing kits.

Introduction

The length of the bacterial 16S rRNA gene, although slightly variable between different organ-

isms, is approximately 1541 base pairs long (e.g., E. coli; [1]) and contains nine hypervariable

(V) regions that are flanked by conserved regions (Fig 1). The structure of this gene makes it

an ideal target for microbiome research, as the conserved regions of the gene are largely consis-

tent across organisms from the domain Bacteria and therefore are used as targets for polymer-

ase chain reaction (PCR) primers to extend across and amplify the V gene segment/segments

of interest. The V regions that are amplified by polymerase chain reactions are subsequently

sequenced and used to taxonomically classify bacteria based on their genetic signatures. PCR

amplicons are sequenced using different platforms (i.e. Roche 454, Ion Torrent, Illumina,

Oxford Nanopore and Pacific Biosciences) using single-end or paired-end reads to produce

files used for downstream microbiome analysis. Illumina sequencing instruments have the

capability to generate both single-end and paired-end sequences, while Ion Torrent sequenc-

ing platforms generally only create single-end, mixed orientation sequences. Furthermore,

Illumina sequencing technology is highly used across institutions and sequencing cores and

therefore many bioinformatics pipelines are tailored to the paired-end unidirectional

sequences that result from the instrument. Consequently, documentation aimed at bioinfor-

matics analysis using the mixed-orientation reads that result from Ion Torrent sequencing

platforms, including the commonly used microbiome analysis workflow Quantitative Insights

into Microbial Ecology version 2 [QIIME2; 2], is not as readily available for microbiome

researchers to use as a resource. This can create challenges for researchers new to microbiome

Fig 1. Variable regions of the 16S rRNA gene targeted and expected amplicon size. Schematic of the 16S rRNA gene and of the conserved regions (red) that

are targeted by PCR primers to amplify the variable (V) regions (in blue). The Ion 16STM Metagenomics Kit (Thermo Fisher Scientific, Waltham, MA) used in

this analysis includes two primer sets that targets 7 of the 9 V regions of the 16S rRNA gene: primer set A targets V2, V4, and V8 (green) and primer set B

targets V3, V6-7, and V9 (yellow). The numbers inside each green and yellow primer location notation is the length of the V region targeted, as estimated by

[1]. An exception is the V6-7 region, which also includes the conserved region sequence length in between V6 and V7 in the targeted amplicon. Note, the above

numbers do not represent the length of the whole amplicon that is targeted by the primers, as that information is proprietary, but instead represent the length

of the V region.

https://doi.org/10.1371/journal.pone.0280293.g001
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analysis as small differences in certain processing commands can result in drastically different

output [3].

One important decision that researchers must make before beginning a microbiome study

using 16S rRNA sequencing technology is which V region(s) to target for amplification [4].

Many different analytic strategies are available to annotate and characterize microbial commu-

nities and conclusion inference can be biased by the V region targeted [5], among other factors

[4]. Different V regions can classify certain strains of bacteria more accurately or at a higher

taxonomic resolution versus others due to redundancy in base pairs across several species at

certain V regions [6]. Nevertheless, it is of common practice in microbiome studies to choose

one to three V regions for PCR amplification with a single primer set. For example, the

Human Microbiome Project used primers to amplify the V1-V3, V3-V5 and V6-V9 regions in

their sequencing of fecal samples to represent the gut microbiome [7], while other protocols

employ multi-V region primers to target several V regions across the 16S rRNA gene [8,9].

Although long-read sequencing technology (such as methods using PacBio and Oxford

Nanopore sequencing platforms) can reliably quantify sequences at the species or strain level

due to its production of reads long enough to sequence the entire 16S rRNA gene [10], this

technology is not as readily available to microbiome researchers as Illumina or Ion Torrent

sequencing methodologies at this time. Therefore, multi-amplicon kits have been developed in

an attempt to amplify short, but multiple, V regions across the 16S rRNA gene. Some multi-

amplicon panels specific for microbiome research include the xGenTM 16S v2 and ITS1 Ampli-

con Panel (Integrated Data Technologies, Coralville, IA) and the Ion 16STM Metagenomics Kit

(Thermo Fisher Scientific, Waltham, MA). These kits aim to alleviate bias that can be present

from single primer sets [5] and while also potentially increasing specificity to annotate down

to the species level. For example, regions V1-V3 are better for speciating the Staphylococcus
species relative to V4, where no sequence variation between S. aureus and S. epidermidis is

found [6]). Multi-amplicon amplification and sequencing overcomes limitations of single

primer set bias and limited speciation capacity for single amplicons, which theoretically leads

to increased taxonomic resolution when annotating features [9]. However, the multi-amplicon

approach also comes with a unique set of challenges. For example, downstream data analysis

becomes increasingly more complex when the researcher is presented with results from six or

more V regions. Additionally, some manufacturers have chosen not to publish the primer

sequences and therefore workflows that rely on known primer sequences to separate V regions

cannot be employed. This prevents the user from using amplicon deconvolution tools cur-

rently available in QIIME2 (such as Cutadapt), as input of the primer sequences is a require-

ment for these tools to be employed. Previous research by Barb et. al [ref 11] developed a

workaround for this by aligning amplicons to the 16s rRNA gene, while other researchers who

have used the Ion 16S metagenomics Kit rely on the built-in Ion Reporter™ software (https://

ionreporter.thermofisher.com/ir/). In the literature, other researchers reporting Ion Torrent

microbiome sequencing results with known primers targeting a single V region used the origi-

nal version of QIIME [12,13]. Although these are valid options, many users prefer the flexibil-

ity of open-source tools that are available within QIIME2 and want to have the option to

separate reads by the respective V regions amplified when multi-amplicon kits are used. Addi-

tionally, support for QIIME is no longer maintained and the use of QIIME2 for microbiome

analysis is continuously expanding and used by many researchers in the microbiome field

[14–17].

To address the issue of proprietary primers preventing V-specific amplicon deconvolution

for users of the Ion 16STM Metagenomics Kit, Thermo Fisher developed a plugin that uses the

CutPrimers [18] pre-processing amplicon deconvolution workflow while masking the proprie-

tary primers from the user performing the analysis. In this methodology manuscript, a
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microbiome analysis pipeline is presented that first employs this plugin developed by Thermo

Fisher. After the plugin is run and sequences are separated by V region, each respective V

region is imported into QIIME2 where the rest of the analysis pipeline continues.

As we understand that not all users of the Ion Torrent sequencing platform use the Ion

16STM Metagenomics Kit, we also present an alternate pipeline using the currently available

QIIME2 Cutadapt [19] amplicon deconvolution workflow, with adjustments to the standard

Illumina-based documentation that we obtained through extensive testing with Ion Torrent-

generated sequences, along with benchmarking and quality control procedures in our own

analyses. Importantly, this Cutadapt-based pipeline requires knowledge of the exact primer

sequences for read trimming, extraction and deconvolution, and therefore cannot be used

when a kit with masked proprietary primers are used [18].

To date, the commonly used QIIME2 documentation does not include a tutorial for 16S

amplicon data in the mixed-orientation format, nor is there a standard workflow specific to

Ion Torrent data. Because of this, there is a need for a comprehensive QIIME2 workflow

aimed at unique considerations for Ion Torrent-specific mixed orientation single-end reads,

especially those generated from the Ion16STM Metagenomics Kit. The aim of this project is to

document two QIIME2 pre-processing microbiome analysis workflows specific to the single-

end, mixed-orientation reads that result from Ion Torrent sequencing platforms: the first

includes a new pre-processing plugin script that allows for amplicon deconvolution from

sequences generated from the proprietary Ion 16STM Metagenomics Kit, and the second uses

the established QIIME2 documentation. A nested, secondary aim was to investigate how well

each V region (V2, V3, V4, V6-7, V8, V9) and three commonly used reference databases

(Silva, Greengenes and RDP) perform when quantifying the global and taxon-specific bacterial

composition of the mock samples.

Methods

Collection of mock community samples used for analysis

This manuscript outlines a workflow for collected and sequenced mock community samples

and therefore does not contain any form of human data. Given that this work does not include

any data from human participants, we were exempt from patient consent, ethics committee

approval or Institutional Review Board approval. Sequence data from mock community DNA

samples for this study were acquired from our prior studies [8,20] employing the Ion 16STM

Metagenomics Kit (Thermo Fisher Scientific, Waltham, MA) and Ion Torrent Sequencing

Platforms. Additional mock bacterial community sequencing data were identified by searching

the literature for terms such as “Ion Torrent”, “Ion 16S”, and “Ion Torrent Multi-Amplicon

Kit”. A list of studies using the Ion 16STM Metagenomics Kit was compiled and the sequence

read archive was searched to find publicly available sequence files. Authors were contacted to

verify that mock bacterial community samples were used in the study, and verify the DNA

exaction methods, sequencing platform, and lot number of the mock bacterial sample. Addi-

tionally, a single FASTQ file containing sequence data from a mock bacterial community sam-

ple is available for download from the Ion Torrent Suite Software and used in this work.

Table 1 provides author and sample information for all mock bacterial community samples

analyzed. Mock bacterial community samples generally fell into one of two distribution cate-

gories: samples that contained a uniformly distributed (usually 5%) relative abundance (RA) of

each organism, while staggered samples contained RA values that range across taxa from

0.02% to>20%. For the remainder of this work, mock bacterial community samples that are

evenly distributed will be deemed “even mock” and those that are staggered distribution will

be deemed “staggered mock”. Even and staggered mocks from different companies (i.e. ATCC
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Table 1. Metadata and source of mock samples used.

Sample id Even vs. Staggered Distribution Manufacturer Sequencing Platform Total Reads Reference

even_st_01 even ATCC Ion Torrent S5 XL 453,978 [20]

even_st_02 even ATCC Ion Torrent S5 XL 927,504 [20]

even_st_03 even ATCC Ion Torrent S5 XL 791,698 [20]

even_st_04 even ATCC Ion Torrent S5 XL 1,285,466 [20]

even_st_05 even ATCC Ion Torrent S5 XL 1,126,263 [20]

even_st_06 even ATCC Ion Torrent S5 XL 1,628,904 [20]

even_st_07 even ATCC Ion Torrent S5 XL 1,368,188 [20]

even_st_08 even ATCC Ion Torrent S5 XL 362,704 [20]

even_st_09 even ATCC Ion Torrent S5 XL 361,612 [20]

even_or_12 even ATCC Ion Torrent S5 XL 254,347 [8]

even_or_13 even ATCC Ion Torrent S5 XL 1,182,867 [8]

even_or_19 even ATCC Ion Torrent S5 XL 460,848 [8]

even_or_20 even ATCC Ion Torrent S5 XL 537,316 [8]

even_or_21 even ATCC Ion Torrent S5 XL 394,295 [8]

even_out_001 even BEI Ion Torrent PGM 306,935 [21]

even_out_006 even ATCC Ion Torrent PGM 267,880 [22]

even_out_007 even ATCC Ion Torrent PGM 291,418 [22]

even_out_008 even ATCC Ion Torrent PGM 300,469 [22]

even_out_009 even ATCC Ion Torrent PGM 251,620 [22]

even_out_012 even BEI Ion Torrent PGM 165,615 [23]

even_out_013 even BEI Ion Torrent PGM 185,338 [23]

stag_st_01 stag ATCC Ion Torrent S5 XL 461,147 [20]

stag_st_02 stag ATCC Ion Torrent S5 XL 832,836 [20]

stag_st_03 stag ATCC Ion Torrent S5 XL 360,847 [20]

stag_st_04 stag ATCC Ion Torrent S5 XL 1,378,356 [20]

stag_st_05 stag ATCC Ion Torrent S5 XL 1,188,743 [20]

stag_st_06 stag ATCC Ion Torrent S5 XL 1,591,533 [20]

stag_st_07 stag ATCC Ion Torrent S5 XL 1,403,778 [20]

stag_st_08 stag ATCC Ion Torrent S5 XL 829,750 [20]

stag_st_09 stag ATCC Ion Torrent S5 XL 355,202 [20]

stag_or_12 stag ATCC Ion Torrent S5 XL 337,113 [8]

stag_or_13 stag ATCC Ion Torrent S5 XL 950,954 [8]

stag_or_19 stag ATCC Ion Torrent S5 XL 611,115 [8]

stag_or_20 stag ATCC Ion Torrent S5 XL 599,866 [8]

stag_or_21 stag ATCC Ion Torrent S5 XL 430,075 [8]

stag_out_002 stag BEI Ion Torrent PGM 95,023 [24]

stag_out_003 stag BEI Ion Torrent PGM 306,748 [25]

stag_out_004 stag Zymo Ion Torrent PGM 157,630 [22]

stag_out_005 stag Zymo Ion Torrent PGM 151,707 [22]

stag_out_010 stag BEI Ion Torrent PGM 212,471 [23]

stag_out_011 stag BEI Ion Torrent PGM 153,684 [23]

Abbreviations. PGM: Personal Genome Machine. The mock bacterial distribution (evenly spaced versus staggered bacterial relative abundances) and manufacturer

columns were used to create five “mock type” groups to categorize the expected relative abundances of the mock bacterial community samples (see S1 Table for more

information and expected bacterial relative abundance).

https://doi.org/10.1371/journal.pone.0280293.t001
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[Manassas, VA], BEI Resources [Manassas, Virginia], and Zymo Research [Irvine, CA]) were

targeted to create heterogeneity with laboratory environment, if mock communities were pur-

chased as genomic deoxyribonucleic acid (DNA) or cells that require DNA extraction, DNA

extraction methodology (if applicable), sequencing methods and mock bacterial composition.

Mocks were subsequently grouped into “mock type” categories, based on the manufacturer

and expected bacterial RA for each sample (Table 1). Expected bacterial RAs for each mock

type category are shown in S1 Table.

Bioinformatics pipeline using the CutPrimers-based MetagenomicsPP

workflow before QIIME2 import (primer sequences are unknown)

When primers sequences are unknown (due to the proprietary nature of the Ion 16S Metage-

nomics kit), the initial primer deconvolution is performed before importing sequencings into

the QIIME2 environment (Fig 2A).

MetagenomicsPP pre-processing plugin details

The proprietary forward and reverse primer sequences in the Ion 16STM Metagenomics Kit

prevent the user from using primer-based amplicon deconvolution methods like cutPrimers

or Cutadapt [17,18]. Therefore, authors KAM and JJB worked collaboratively with coauthor

LV to develop a plugin for Ion 16STM Metagenomics Kit called the Metagenomics Post Proces-

sor (MetagenomicsPP). The MetagenomicsPP plugin separates amplicons and generates

primer-based V region sub-folders to facilitate downstream 16S amplicon sequencing work-

flows such as QIIME2 [2], mothur [26], or custom microbiome analysis pipelines. The plugin

can be run on the Torrent Suite software directly, or it can be downloaded to the user’s local

computing environment from the Thermo Fisher Scientific plugin library [27]. The use of this

plugin allows the researcher to deconvolute their amplicons by V region target without know-

ing the primer sequences a priori, as the primers are automatically provided to the CutPrimers

workflow by the plugin functions, while keeping them hidden from the user. Please see S1

Appendix for MetagenomicsPP information and a Jupyter notebook with example scripts

associated with the referenced analysis pipelines. As the MetagenomicsPP plugin employs the

CutPrimers workflow for primer identification, trimming and removal, we refer to the analysis

pipeline employing MetagenomicsPP as the CutPrimers-based pipeline (Fig 2A).

QIIME2 import, sequence denoising and taxonomy classification. In QIIME2,

sequence files are imported as a QIIME2 artifact prior to preprocessing and denoising, if appli-

cable [2]. FASTQ files separated into V specific reads were imported and processed using tools

available in QIIME 2 (version 2020.8) (https://qiime2.org). Data were quality filtered and dere-

plicated with ‘q2-dada2’ using the ‘pyro’ flag to account for the Ion Torrent mixed orientation

sequences [11]. Modifications to the DADA2 syntax were made to account for differences in

reads generated from an Ion Torrent Sequencing platform versus those from an Illumina

sequencing platform (Fig 2A). Because DADA2 models error individually per sequencing run

while denoising, the DADA2 script was run separately for each sequencing run. After denois-

ing, run-specific feature tables and representative sequences were merged to generate one mas-

ter feature table and representative sequence list for each V region.

Bioinformatics pipeline using Cutadapt within the QIIME2 environment

(primer sequences are known)

When primers sequences are known (atypical when using the Ion 16S Metagenomics kit), the

entire analysis pipeline can be employed within the QIIME2 environment (Fig 2B). Although
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this workflow is illustrated using a multi-amplicon kit from Ion Torrent, similar workflows

can be employed using amplicons targeting single V regions or using other sequencing tech-

nology with some modifications to the pre-processing, denoising and taxonomy classification

parameters.

QIIME2 import, V-specific sequence separation/adaptor removal and denoising.

Demultiplexed FASTQ files were imported into QIIME2 as artifacts, and the Cutadapt plugin

Fig 2. Microbiome bioinformatics pipeline by differing primer deconvolution method. A. Initial steps for the CutPrimers-based microbiome analysis

pipeline. The steps on the left are performed outside of the QIIME2 environment using the TF plugin, where the demultiplexed FASTQ files are separated into

respective V regions. These separated files are then imported into QIIME2 for denoising and feature/sequencing table merging, if needed. B. The Cutadapt-

based microbiome analysis pipeline is performed exclusively in QIIME2. C. With both the CutPrimers-based pipeline and the Cutadapt-based pipeline, the

feature taxonomy classification steps are the same and performed in QIIME2. Microbiome analysis methods such as alpha/beta diversity and differential

abundance evaluations can be performed within or outside of the QIIME2 environment. Abbreviations. TF: Thermo Fisher Scientific. QIIME2: Quantitative

Insights Insight Microbial Ecology, Version 2. �View MetagenomicsPP README for most current script syntax @Can substitute to OTU clustering at this stage

using other QIIME2 plugins #Need primer sequences to run Cutadapt. For the workflow using the Ion 16STM Metagenomics Kit, run Cutadapt 12 times: 6

forward (V2F, V3F, V4F, V6-7F, V8F, V9F) and 6 reverse (V2R, V3R, V4R, V6-7R, V8R, V9R). Figure created with Biorender.

https://doi.org/10.1371/journal.pone.0280293.g002
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was implemented to split sequences based on known primer sequence into their targeted V

regions (V2 forward, V2 reverse, V3 forward etc.; Fig 2B). Cutadapt allows for multiple

adapter searching where all reads in the FASTQ file are searched for each primer input. This

construct differs from the mutually exclusive workflow used by cutPrimers (i.e., as a primer is

found, the read is removed from the pool to be searched). An important modification to the

Cutadapt script in QIIME2, specific to nested multi-amplicon sequences is to use the “—p-

front” parameter to ensure the script is only searching for sequences of an adapter ligated to

the 5’ end and to also use the “^” symbol before the primer sequence so a primer is only

matched if it is located at the beginning of the read. See S1 Appendix for example scripts and

the documentation resource link. Reads were quality filtered and dereplicated with q2-dada2

using the same pyro flag used in the CutPrimers-based workflow [11]. Because DADA2 mod-

els error individually per sequencing run while denoising, the DADA2 script was again run

separately for each sequencing run. After denoising, run-specific feature tables and representa-

tive sequences were merged to generate one master feature table and representative sequence

list for each V region.

Taxonomy classification. Representative sequence sets for each DADA2 ASV were then

used for taxonomy classification using VSEARCH global sequence alignment (Fig 2C) [28].

VSEARCH was used over the Bayesian q2-feature-classifier, as the q2 feature classifier does

not perform well with Ion Torrent sequences (N. Bokulich, personal communication, March

17, 2020). Three reference databases were used for taxonomic classification. Greengenes [ver-

sion 13.8; 29] and Silva [version 138; 30] databases were imported from QIIME2 data

resources, and the Ribosomal Database Project (RDP; version 16) was modified to QIIME2

expected format with custom scripts and was then imported into QIIME2 as an artifact [31].

See S2–S37 Appendices for genus-level taxonomy tables created using the CutPrimers- and

Cutadapt-based pipelines outlined in Fig 2.

Merging ASV tables across V regions, database and processing workflow at

the genus level (CutPrimers-based pipeline)

Once a count ASV table was generated using the CutPrimers-based pipeline, ASVs were sum-

marized at the taxonomic level of genus and any ASV that was assigned to the same genus was

summed to facilitate cross-V region and database comparisons. If an ASV was assigned to a

higher level than genus, then that ASV was renamed as “Assigned Higher”. The RA values at

the genus level were calculated for each sample and tables were merged. If an ASV was

assigned to Escherichia, then this ASV was renamed as Escherichia/Shigella for consistency due

to anomalous assignment between these two genera; Escherichia is only classified to the family

level in Greengenes [29], named as Escherichia/Shigella in RDP [31], and named as Escheri-
chia-Shigella in Silva [30]. Also, since Propionibacterium has been renamed to Cutibacterium
[32], then any ASV assigned to either one of these genera was renamed to Cutibacterium/

Propionibacterium.

Calculation and comparison of V-specific reads

Total reads from each V regions (and reads with no adapter) over all samples were averaged.

V-specific reads were expressed as a mean across all samples and as a percentage of the total

number of reads obtained per sample (prior to V-specific amplicon deconvolution). To deter-

mine if V region length affected the total number of V-specific reads the total amplicon length

for each V region mapping to the Escherichia coli 16S rRNA gene [1] was compared against

the average number of reads that mapped to same targeted V-region(s) using Spearman corre-

lation coefficients.
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Global similarity and taxon-based accuracy metrics

Bray-Curtis dissimilarity, Jensen-Shannon divergence and Euclidean distance measures were

used to evaluate agreement between the expected distribution and the observed distributions

of the mock communities for all even and staggered samples (see S1 Appendix for source

code) in Python using SciPy (version 1.8.0). The expected RA values at the genus level for each

mock community is provided in S1 Table. Annotation accuracy (calculated as observed/

expected (O/E) ratio) was determined for each genus using customized Python scripts (see S1

Appendix for script). The O/E ratio was calculated by dividing the observed RA (%) from the

feature table by the expected RA (%) of that genus according to the specific mock community

type (S1 Table). A value of 1 indicates perfect agreement between the expected and observed

RA, a value less than 1 indicates the actual RA (%) was less than the expected RA for that mock

bacterial community, and a value greater than 1 indicates the actual RA (%) was higher than

expected the expected RA in the mock community for that individual taxon. For distance met-

rics and the O/E ratio for each taxon, values were summarized by V region (V2, V3, V4, V6-7,

V8 and V9) and reference database (Silva, Greengenes, and RDP) for both pipelines (using

CutPrimers or Cutadapt) in the evenly spaced and staggered mock bacterial communities.

Statistics. Statistical analyses were performed using the JMP™ Statistical Discovery Soft-

ware version 15 (SAS Headquarters, Cary, NC). Differences in total reads extracted were com-

pared across V regions and workflows (i.e. CutPrimers versus Cutadapt) using non-

parametric testing (Wilcoxon Signed rank or Kruskal-Wallis tests). V-region specific amplicon

length was compared to the number of V-specific reads amplified using Spearman correlation

coefficient. Composition of mock bacterial community samples were evaluated by the Shan-

non alpha diversity index to measure the richness and evenness of individual bacterial com-

munities. To evaluate the compositional difference between V regions and reference database

for the CutPrimers-based pipeline, average RA values from the mock communities and the

expected relative abundance for both the even and the staggered mock community samples

were submitted to Principal Component Analysis in the JMP™ Statistical Discovery software.

The first two principal components were plotted in bivariate plots. Differences in global dis-

tance metrics, O/E ratios and alpha diversity were calculated across reference databases and V

regions for the CutPrimers-based pipeline using non-parametric testing (Wilcoxon Signed

rank or Kruskal-Wallis tests). Post-hoc testing with the false discovery rate correction was

applied when appropriate. Results are presented as mean ± standard deviation in tables and

figures. Statistical significance was defined as p< .05.

Results

The final data set used for the analysis in this work consisted of a total of 41 mock community

samples from various labs sequenced using Ion Torrent sequencing platforms. All libraries

were generated using the Ion 16STM Metagenomics multi-amplicon kit (Table 1).

Average sequences per V region does not differ across amplicon

deconvolution workflows

To compare the number of V-specific reads resulting from the CutPrimers and Cutadapt

amplicon deconvolution workflows, reads mapping to the V region(s) targeted by the forward

and reverse primers were averaged (Table 2). There was significant variability in the number

of reads that mapped to specific V region(s) for both the CutPrimers (p< .0001) and Cutadapt

(p< .0001) workflows. The average summed V-specific reads (summed across V2-V9 ampli-

cons) were comparable between the CutPrimers and Cutadapt workflows (89.70 ± 5.86%
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versus 94.03 ± 1.87%, respectively; Table 2). The percentage of V-specific reads were not dif-

ferent for V2 (p = .28), V3 (p = .79), V4 (p = .72), V6-7 (p = .75), V8 (p = .65), or V9 (p = .76)

between CutPrimers versus Cutadapt. For the Cutadapt workflow, a notable consideration was

the need to include the “^” symbol at the beginning of the “—p-front” parameter (Fig 2B, S1

Appendix) otherwise there were large discrepancies between CutPrimers and Cutadapt and

the summed total of V-specific reads greatly surpassed the expected total number of sequenced

reads at 161.71 ± 7.70% (S2 Table).

When holding workflow constant and comparing across V-specific reads, the V2 region

had the smallest percentage of total reads for CutPrimers (5.98 ± 2.63), and was significantly

lower compared to V3 (p< .001), V4 (p< .001), V6-7 (p< .001), and V8 (p< .001). Using

Cutadapt, V9 had the lowest percentage of total reads (6.73 ± 2.39) and was significantly lower

than V3 (p< .001), V4 (p = .001), V6-7 (p = .029), and V8 (p< .001). Like CutPrimers, the

percentage of total reads that mapped to V2 using Cutadapt was also significantly lower com-

pared to V3 (p< .001), V4 (p< .001), V6-7 (p< .001), and V8 (p< .001). V3 had the largest

percentage of V-specific reads for both the CutPrimers (29.19 ± 5.56) and Cutadapt

(29.60 ± 5.65) workflows, and was significantly higher compared to V2 (p< .001), V4 (p<
.001), V8 (p = .001), and V9 (p< .001), and V2 (p< .001), V4 (p< .001), V8 (p = .001), and

V9 (p< .001) for CutPrimers and Cutadapt, respectively. We subsequently investigated

whether the hypothetical nucleotide length of a targeted V region(s) was associated with the

total number of reads that mapped to that V region. The length of the V region targeted by the

multi-amplicon primers was not associated with the number of reads that mapped to the

respective V region in either workflow (CutPrimers: Spearman r = -0.13, p = .811; Cutadapt:

Spearman r = -0.11, p = .831; S1 Fig).

V regions amplified and reference database influence overall agreement

with mock bacterial community samples

The RA of mock bacterial community taxa that were annotated using the CutPrimers-based

pipeline varied greatly across V regions and reference databases (Fig 3). Similar to other

Table 2. Average sequences per V region comparing CutPrimers versus Cutadapt.

V Region Reads CutPrimers Reads

Cutadapt

Total Reads (Sample) % Total Reads CutPrimers % Total Reads Cutadapt

2 32,923.66 ± 21,356.37� 44,598.36 ± 11,615.13� 617,410.80 ± 452,297.61 5.98 ± 2.63 7.49 ± 4.85

3 180,767.93 ± 133,940.63� 181,773.90 ± 133,488.98� 617,410.80 ± 452,297.61 29.19 ± 5.56 29.60 ± 5.65

4 77,965.95 ± 56,527.49� 79,196.95 ± 55,721.23� 617,410.80 ± 452,297.61 12.80 ± 2.01 13.28 ± 2.11

6–7 141,118.29 ± 119,970.73� 144,510.41 ± 121,927.86� 617,410.80 ± 452,297.61 20.40 ± 5.83 21.11 ± 5.91

8 89,393.07 ± 63,675.28� 96,739.80 ± 71,689.65� 617,410.80 ± 452,297.61 14.85 ± 3.67 16.35 ± 6.15

9 41,814.22 ± 33,688.15� 43,038.34 ± 34,245.34� 617,410.80 ± 452,297.61 6.47 ± 2.26 6.73 ± 2.39

No adapter 53,427.68 ± 32897.05 N/A - - -

Summed V Total˚ 563,983.12 ± 423,673.83 582,485.29 ± 431,025.69 - 89.70 ± 5.86% 94.03 ± 1.87%

V: Variable region. Reads are presented as the average absolute number of reads and the percentage of the total reads for each sample. Total reads are the sum of all

sequences/reads for each mock community sample (same for each sample regardless of workflow). Cutadapt searches the entire demultiplexed sequence file for each

primer (forward or reverse) and discards all other reads; therefore, “no adapter” row was unable to be calculated for Cutadapt. ˚Summed V total is the total number of

reads for regions V2, V3, V4, V6-7, V8 and V9 after Cutadapt or cutPrimers, respectively (note- “no adapter” sequences not included as this is not calculated with the

Cutadapt pipeline).

�p< .05 between V regions (holding cutPrimers vs Cutadapt workflow constant)
ǂp< .05 between cutPrimers vs Cutadapt workflows (holding V region constant).

https://doi.org/10.1371/journal.pone.0280293.t002
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analysis pipelines, the CutPrimers-based pipeline produced ASVs that could not be assigned to

the taxonomic level of genus, but the percentage of features that were “assigned higher” varied

across V regions and reference databases (Fig 3, S3 Table). CutPrimers identified a total of 5

additional genera in the even mocks and 11 in the staggered mocks that were not present in

the mock samples. The most notable unexpected bacteria (via a high RA or were annotated

across multiple V regions) were Alistipes, Enterobacter, Finegoldia, Klebsiella, Prevotella, and

Rickettsia (S3 Table). Nevertheless, across all V regions and reference databases, the summed

RA of unexpected taxa at the level of genus were 0.34 ± 0.72% and 0.81 ± 1.53% for CutPrimers

even and staggered samples, respectively. In feature tables created using the CutPrimers-based

processing pipeline, the V9 region was the most notably different from the expected mock bac-

teria community in evenly spaced and staggered samples across all reference databases used

for taxonomy assignment. Most of the taxa for region V9 were not annotated to the genus level

and classified as “Assigned Higher” as the highest resolution many features were assigned were

at the taxonomic level of family, order or phylum.

Global distance metrics (Bray-Curtis, Jensen-Shannon, and Euclidean) were used to assess

overall agreement of observed abundance values with expected abundance values. The V3 fea-

ture tables had the lowest Bray-Curtis distances (best agreement) in both evenly spaced

(0.35 ± 0.08, 0.34 ± 0.07, 0.34 ± 0.07 for Greengenes, Silva, and RDP, respectively) and stag-

gered (0.30 ± 0.09, 0.17 ± 0.12, 0.19 ± 0.17 for Greengenes, Silva, and RDP, respectively) mock

bacterial community samples. Bray-Curtis distances did not differ by reference database in the

even mock samples for V3 (p = .368; Fig 4A); however, in the staggered mock samples, Green-

genes had significantly higher distances compared to RDP and Silva (Fig 4B, S4 Table). V3

feature tables also demonstrated the lowest average Euclidean distance and Jensen-Shannon

Fig 3. Averaged expected and actual mock community abundance by V region and reference database. A. Averaged evenly distributed mock community

samples for the CutPrimers bioinformatics workflow stratified by V region and reference database. B. Averaged staggered mock community samples for the

CutPrimers bioinformatics workflow stratified by V region and reference database. The expected mock community abundance (boxed) is the averaged RA for

expected listed abundance on the package insert for evenly spaced and staggered mock bacterial communities.

https://doi.org/10.1371/journal.pone.0280293.g003
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Fig 4. Overall mock community agreement with expected abundance using CutPrimers. A. Comparison of Bray-Curtis distance in the evenly spaced mock

community samples using the CutPrimers-based pipeline. Scores closer to 0 indicate better agreement with expected abundance, while scores closer to 1

indicate worse agreement. Regions V3, V6-7 and V9 did not have significant differences in average Bray-Curtis distance across reference databases used for

taxonomy classification. In the evenly spaced mock community samples, region V3 had low Bray-Curtis distances across all reference databases indicating

feature tables from the V3 region had the closest agreement with expected mock community annotation and abundance. B. Comparison of Bray-Curtis

distance in the staggered mock community samples using the CutPrimers-based pipeline. All regions with the exception of V9 had significant differences in

average Bray-Curtis distance across reference databases used for taxonomy classification. In the staggered mock community samples, region V3 also had the

lowest Bray-Curtis distances, although feature tables that used Greengenes for taxonomy classification had higher average distances, compared to Silva and

RDP. Differences in Bray-Curtis distance across reference databases for each V region were tested using non-parametric testing Kruskal-Wallis tests. �p< .05.

https://doi.org/10.1371/journal.pone.0280293.g004
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divergence metrics across both even and staggered mock samples (S2 Fig, S4 Table). In the

staggered mock samples, more variance was present in Bray Curtis distances, and database-

specific differences were present in all V regions except V9 (Fig 4B). Region V9 performed the

worse on both the even and staggered samples with the highest distances for all three measures

compared to the other V regions (Figs 4 and S2 and S4 Table). Interestingly, there were not

database-specific differences for any of the V9 global metrics using CutPrimers.

To visualize similarities and differences across V regions and reference databases, alpha and

beta diversity metrics were calculated and visualized in the evenly spaced and staggered mock

community samples. Shannon index did not significantly differ across reference databases in

V2, V3 or V9 in the even mock community samples (S3 Fig). Shannon index was significantly

lower in RDP in regions V4 and V8, while mock samples classified using Silva were signifi-

cantly lower versus RDP and Greengenes in V6-7. Conversely, in the staggered mock commu-

nity samples, alpha diversity only differed by reference database in region V8, where RDP was

significantly lower versus Greengenes and Silva (S3 Fig). When samples were clustered on

Principal Components Analysis plots (S4 Fig), mock samples classified using RDP were less

similar versus mock samples classified using Silva or Greengenes, and this was most notable in

the staggered mock community samples.

Taxon-specific classification accuracy is dependent on V region amplified

and reference database

O/E ratios were calculated for each genus to assess genus level agreement with the expected

RA using the CutPrimers-based pipeline. Neisseria had the best O/E ratio for the even mock

samples at regions V2 and V3, and the ratios were consistent across reference databases (Fig

5E, S5 Table). Conversely, for Staphylococcus and Streptococcus, the V6-7 region had acc O/E

ratios close to 1 for the even mock samples (Fig 5F and 5G). In the staggered mock samples,

Bacteroides, Neisseria, Streptococcus and Staphylococcus (S5 Fig) had O/E ratios close to 1, but

the V3 region had trouble annotating Actinomyces and Bifidobacterium with O/E ratios close

to 0 (S5 Fig). This could be due to the sensitivity of the sequencing assay since both of these

genera are represented at extremely low abundance of 0.02 or lower in the staggered mock

samples. Clostridium was not annotated using the RDP or Silva reference databases for region

V3, but Greengenes showed over-representation with ratios more than twice the expected

(2.72 ± 0.71; S5 Fig, S6 Table). The V8 and V9 regions had O/E ratios close to 0 for most taxa

in the evenly spaced and staggered mock bacterial community samples, with some exceptions

(Figs 5 and S5, S5 and S6 Tables). See S7–S12 Tables for distance and O/E metrics, stratified

by mock type.

Discussion

In this manuscript we present two processing pipelines for microbiome data of mixed orienta-

tion, multi-V region amplicons from the Thermo Fisher Ion Metagenomics™ kit used on the

Ion Torrent Sequencing platform. One pipeline (CutPrimers-based) presents a workflow for

users of the kit with no knowledge about the primer sequences, while the other pipeline (Cuta-

dapt-based) is used in cases when primer sequences are known. The two pipelines utilize the

QIIME2 open-source platform for microbiome analysis, with some pre-processing steps out-

side of QIIME2 in the CutPrimers-based pipeline. Known mock communities were used in

this work for benchmarking the accuracy of the two pipelines along with other specific vari-

ables such as V region V region and reference database. This work was developed in an effort

to shed light on contributing biases that one might consider when designing future micro-

biome analysis pipelines. Previously, researchers using the Ion 16S Metagenomics™ multi-
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amplicon kit were unable to easily separate amplicons into specific V regions since the primer

sequences used were proprietary and therefore traditional adapter removal workflows like

Cutadapt or CutPrimers could not be applied. However, now, for the first time, we present the

Metagenomics PP plugin, which allows researchers to separate amplicons into their respective

V regions in order to facilitate typical downstream analyses such denoising and taxonomic

classification can be employed.

As more bioinformatics tools for processing microbiome data become available, there is an

increased need for researchers to be able to customize analysis pipelines to address the aims of

the research study while controlling for variables of interest. While this work introduces the

MetagenomicsPP plugin as a way to deconvolute multiple V region amplicons into their

respective V regions, another aim was to illustrate a pre-processing workflow for Ion Torrent

specific data which was not readily available as a tutorial in the QIIME2 environment.

Although the overall analysis steps are similar to pipelines specific to Illumina data, there are

some modifications that are made for optimal performance at the denoising step and taxon-

omy classification step. Namely, for Cutadapt (V-specific amplicon deconvolution) the -p

front flag and “^” symbol prior to the primer sequence are necessary to prevent matching to

nested primers and double counting amplicons matching to specific primers (see S1 Appendix

for code syntax). Additionally, for denoising in DADA2, the “pyro” flag is employed and the

accepted read length in our pipeline was shorter than it may be for other Ion Torrent-based

pipelines due to the multi-amplicon sequencing data. Furthermore, for taxonomy classifica-

tion, VSEARCH taxonomy alignment is preferable for Ion Torrent reads [28], as compared to

the q2-feature-classifier plugin [33] due to the mixed orientation format that comes from Ion

Torrent sequencing data.

Both the CutPrimers-based pipeline and Cutadapt-based pipeline have similar analysis

steps (Fig 2), but a major difference between the two is where the adapter removal step occurs

and whether the researchers knows the primer sequences or not. In the Cutadapt-based pipe-

line, the forward and reverse reads are run separately through Cutadapt and DADA2, since the

forward and reverse V-specific primers generated unique sequence amplicons. In the CutPri-

mers-based pipeline, all V regions and runs were processed separately, however, since the

Metagenomics PP plugin generates split V region specific reads combining both forward and

reverse reads together, the combined V region subsets were run through DADA2 together.

Nevertheless, the principle of running each sequencing run separately through DADA2 still

remains, so sequencing error can be independently modeled for each run [11]. In both

Fig 5. Observed/Expected ratio differences in evenly distributed mock bacterial community samples with

CutPrimers workflow. A. Average O/E ratio of Actinomyces in evenly distributed mock community samples stratified

by V region and reference database. All V-region specific feature tables, with the exception of V9, had significant

differences across reference databases. B. Average O/E ratio of Bacteroides in evenly distributed mock community

samples stratified by V region and reference database. There were no significant O/E ratio differences across reference

databases in any of the V region-specific feature tables. C. Average O/E ratio of Bifidobacterium in evenly distributed

mock community samples stratified by V region and reference database. All V-region specific feature tables, with the

exception of V9, had significant differences across reference databases D. Average O/E ratio of Clostridium in evenly

distributed mock community samples stratified by V region and reference database. All V-region specific feature

tables, with the exception of V9, had significant differences across reference databases E. Average O/E ratio of Neisseria
in evenly distributed mock community samples stratified by V region and reference database. The V2, V4, V6-7 and

V9 feature tables had significant observed/expected ratio differences across reference databases. F. Average O/E ratio

of Staphylococcus in evenly distributed mock community samples stratified by V region and reference database. The

V3, V4, V6-7 and V9 feature tables had significant O/E ratio differences across reference databases. G. Average O/E

ratio of Streptococcus in evenly distributed mock community samples stratified by V region and reference database.

The V4, V6-7, V8, and V9 feature tables had significant O/E ratio differences across reference databases. Differences in

O/E ratio values across reference databases for each V region were tested using non-parametric testing Kruskal-Wallis

tests. �p< .05.

https://doi.org/10.1371/journal.pone.0280293.g005
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pipelines, the separate feature tables and sequences are merged after DADA2, to generate one

combined feature table for taxonomy assignment and downstream analyses. The Cutadapt-

based pipeline can also be used as a guide for single amplicon data from Ion Torrent reads, as

the main requirement for this pipeline is that the sequences for the primers are known. Simi-

larly, these microbiome analysis pipelines are also relevant for Illumina sequences, but

researchers with sequences generated from Illumina platforms should also reference the freely

available tutorials on the QIIME2 user guide aimed specifically for Illumina or paired-end

sequences.

The total number of V region-specific reads generated from the CutPrimers and Cutadapt

workflows were largely similar. An important caveat is that when the “^” symbol was not

placed at the beginning of the primer sequence for the Cutadapt workflow (see S1 Appendix

for code), which allowed matches only when the primer was at the beginning of a sequence,

the percentage of summed V-specific reads largely outnumbered the total expected number of

reads and total reads for CutPrimers at>150% (S2 Table). When Cutadapt was allowed to

search the pool of demultiplexed amplicon sequences, a primer sequence could match the

query even if associated with the preceding or subsequent V-specific amplicon (based on the

primer location on the 16S gene) causing duplicate matches and the same amplicon to be

assigned to multiple V regions. With the “^” symbol and Cutadapt only searching at the begin-

ning of a read, there were not significant differences in the total number of reads summed

across V regions or in any percentage of reads mapping to a specific V region. Nevertheless,

holding workflow (Cutadapt or CutPrimers) constant, there were significant differences for

the percentage of V-specific reads across V regions (V2-V9). V3 had the highest percentage of

V-specific reads using both CutPrimers and Cutadapt workflows, and V3 had a significantly

higher percentage of reads compared to V2, V4, V8 and V9. Additionally, the percentage of

reads mapping to V2 was significantly lower compared to all other V regions, with the excep-

tion of V9 for both CutPrimers and Cutadapt both primer deconvolution workflows. Although

these V-region specific differences in average reads were consistent across workflows, this may

be a source of bias in taxonomic annotation of features across V regions, and should be consid-

ered when interpreting microbiome results.

We also demonstrate in the following analysis that taxonomic classification of multi-ampli-

con sequences generated from the Ion 16S™ kit varies based on V region of the 16S gene ampli-

fied and reference database employed, based on the CutPrimers workflow. As anticipated

from our experience with previous analyses [34], the V9 region performed poorly across all

reference databases for both global agreement with the mock bacterial community RA and

with individual taxonomic accuracy statistics. Global distance metrics ranged from 0.69–0.94

in the even mock samples, and was even higher in the staggered mocks. To that note, we cau-

tion any researcher who uses the kit to consider excluding feature tables generated from that

region in downstream analyses.

When global distances were considered, Bray-Curtis metrics ranged between 0.32 to 0.51

from regions V2-4 in the even mock samples, and were 0.17 to 0.71 in the staggered based

communities. The significant differences observed between databases (with the exception of

the V3 region) was likely due to RDP exhibiting higher dissimilarity metrics in the CutPri-

mers-based pipeline. This was almost consistently observed, indicating that it should not be a

preferred reference database for alignment in microbiome studies using that pipeline if target-

ing regions V 2–4. However, if RDP is the reference database of choice, the V3 region may be

the preferred region to target, since this analysis indicated better agreement with the expected

RA and similar metrics to other reference databases in this V region. The V2, V3, V6-7, and

V8 regions had significant Bray-Curtis differences in the staggered mock samples, where

Greengenes had less agreement with the expected mock RA in all cases. As staggered mock
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community samples are more representative of a typical distribution of gut microbiome-asso-

ciated bacteria, Silva may be a preferred reference database, possibly due to the fact it has been

more recently updated and is a larger database encompassing approximately 6,300 genera ver-

sus approximately 2,000 in the Greengenes reference database [24,25]. Further investigation

and benchmarking of this multi-amplicon data will be needed to confirm these findings.

The variance in individual taxa accuracy metrics demonstrated that bacterial taxonomic

classification agreement with expected mock RA varied by V region and occasionally reference

database. Actinomyces and Clostridium were largely underrepresented in the even mock sam-

ples with the exception of Clostridium, demonstrating a more accurate RA representation in

the V2-V4 regions when the Greengenes reference database was used. Conversely, Bacteroides,
for example, had RA values in the feature table that were larger than was expected in regions

V2-V6-7, but had mean accuracy values close to zero in regions V8-9 across all reference data-

bases in both the even and staggered mocks. As specific bacterial taxa are more predominant

in different microbiome habitats, such as the oral and gut microbiome [35], researchers should

consider the research microbiome site sampled in addition to other factors if one individual V

region is emphasized for downstream analysis. The accuracy measure (O/E ratio) used in this

work to reports how close the observed genus relative abundance value was to the expected

value; however, we are unable to report how well these ratios compare to other literature since

there is a scarcity of benchmarking literature targeting the multi-amplicon kits currently avail-

able. Importantly, future benchmarking work using multi-amplicon kits and Ion Torrent

sequences is needed to confirm our results. Furthermore, this variability in taxonomic annota-

tion across V regions supports our view that it is imperative to plan the sequencing strategy in

line with the research questions, the dominant taxa in the microbiome being targeted, and the

available resources [4]. When V-region informed planning is not possible due to lack of previ-

ous data on the taxa of bacteria expected or a need for taxonomic resolution at the level of spe-

cies or strain, full length 16S rRNA gene sequencing with long-read sequencing technology or

shotgun metagenomics sequencing may be desirable [10]. However, when this is not feasible,

using the benchmarking-associated resources presented in this manuscript to target two or

more V regions in a bias-informed manner would be a valuable alternative in order to merge

taxonomy tables and manage this variation in annotation efficiency.

Although we believe this manuscript and the pre-processing pipelines presented make a

valuable contribution to the literature, there are some limitations in this research that we want

to address. First, we present two pre-processing pipelines aimed at amplicon deconvolution

and ASV generation, up to the point of feature or taxonomy table generation. Feature table

combination strategies with multi-amplicon kits are outside the scope of this manuscript, but

many strategies have been employed to synthesize additive information from multiple feature

tables in downstream microbiome analysis [20,36]. Additionally, the benchmarking results

presenting in this manuscript are only comparable to reads generated from the Ion 16S kit and

Ion Torrent sequencing data. This work focused on a finite number of mock samples and as

such, discrepancies in taxa names were accounted for manually. For future work employing a

larger number of samples or taxa, we suggest using the NCBI taxonomy IDs for taxa merging

across many tables. Nevertheless, we believe this workflow and pre-processing pipeline will be

useful for analyzing data in the QIIME2 environment and will allow for flexibility in pre-pro-

cessing and downstream analysis of microbiome sequencing data.

Conclusions

We present a specialized script to allow microbiome researchers to separate multi-amplicon

data from the Ion16S Metagenomics™ Kit into V specific reads, and outline two microbiome
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analysis pre-processing pipelines based on CutPrimers and Cutadapt workflows for amplicon

deconvolution. Although the two workflows had some differences in primer targeting and

removal, along with differences in the number average amplicons generated across V regions,

overall summed reads across V regions were largely similar. Nevertheless, for the CutPrimers-

based pipeline, both global and taxon-specific metrics differed significantly across V regions

and reference databases used for taxonomy classification. There was notable variance with

respect to V region and reference database considered across bacterial taxa with some O/E

ratios being close one and others being close to 0). In conclusion, several factors need to be

considered when performing microbiome analysis. The V region and reference database used

to create the taxonomy table both influenced overall agreement with the mock bacterial sam-

ples, and benchmarking data should be referenced when planning a microbiome study to con-

sider these biases related to sequencing and data analysis.

Supporting information

S1 Fig. Bivariate plot of V region specific average number of reads compared to hypotheti-

cal V region length. The length of each V region-specific amplicon mapping to the Escheri-

chia coli 16S rRNA gene that was targeted by each group of forward and reverse primers in the

Ion 16STM Metagenomics Kit was calculated for each V region(s). Spearman rank correlation

was computed to assess the relationship between amplicon length (x-axis) and the average

number of reads (y-axis) that mapped to targeted V-region(s). Amplicon length was not asso-

ciated with the total number of reads that mapped to a targeted V-region A. CutPrimers (r =

-0.13, p = .811) or B. Cutadapt (r = -0.11, p = .831).

(PNG)

S2 Fig. Distance metrics between expected versus observed abundances using CutPrimers-

Based Pipeline for all V regions and databases. A. Average Euclidean distance from the

evenly distributed mock community feature table to expected bacterial abundance stratified by

V region and reference database. B. Average Jensen-Shannon distance from the evenly distrib-

uted mock community feature table to expected bacterial abundance stratified by V region

and reference database. C. Average Euclidean distance from the staggered mock community

feature table to expected bacterial abundance stratified by V region and reference database. D.

Average Jensen-Shannon distance from the staggered mock community feature table to

expected bacterial abundance stratified by V region and reference database. �p< .05 between

reference database, holding V region constant.

(PNG)

S3 Fig. Shannon index across V regions and reference databases in mock community sam-

ples analyzed with the CutPrimers-based pipeline. A. Comparison of alpha diversity using

Shannon index in the evenly spaced mock community samples using the CutPrimers-based

pipeline. B. Comparison of alpha diversity using Shannon index in the staggered mock com-

munity samples using the CutPrimers-based pipeline. �p< .05 between reference database,

holding V region constant.

(PNG)

S4 Fig. Overall community structure similarities and differences in mock samples analyzed

with the CutPrimers-based pipeline. A. Principal Components Analysis plot of all evenly

spaced mock community samples reduced to one point per reference database and V region

using the CutPrimers-based pipeline. A. Principal Components Analysis plot of all staggered

mock community samples reduced to one point per reference database and V region using the
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CutPrimers-based pipeline.

(PNG)

S5 Fig. Observed/Expected ratio differences in staggered mock bacterial community sam-

ples with CutPrimers workflow. A. Average O/E ratio of Actinomyces in staggered mock

community samples stratified by V region and reference database. V67 and V8 were the only

feature tables that had significant O/E ratios that were significantly different across reference

databases. B. Average O/E ratio of Bacteroides in staggered mock community samples strati-

fied by V region and reference database. The V4 and V67 feature tables had significantly differ-

ent O/E ratios across reference databases. C. Average O/E ratio of Bifidobacterium in

staggered mock community samples stratified by V region and reference database. The V2,

V67 and V8 feature tables had significant O/E ratio differences across reference databases. D.

Average O/E ratio of Clostridium in staggered mock community samples stratified by V region

and reference database. All V-specific feature tables, with the exception of V9, had significantly

different O/E ratios across reference databases. E. Average O/E ratio of Neisseria in staggered

mock community samples stratified by V region and reference database. The V3, V4, and V8

feature tables had significant O/E ratio differences across reference databases. F. Average O/E

ratio of Staphylococcus in staggered mock community samples stratified by V region and ref-

erence database. The V3, V4, V67 and V8 feature tables had significant O/E ratio differences

across reference databases. G. Average O/E ratio of Streptococcus in staggered mock commu-

nity samples stratified by V region and reference database. The V3, V4, V67 and V8 feature

tables had significant O/E ratio differences across reference databases.

(PNG)

S1 Table. Expected relative abundances by mock bacterial community type. Genomic DNA

from American Type Culture Collection (ATCC, Manassas, VA) for even (ATCC1MSA-

1002) and staggered (ATCC1MSA-1003) mock microbiome standard samples were used for

analysis. The mock communities contain 20 common bacterial species [14,15], that include

both gram positive and gram-negative bacteria. Additional mock community sample sequenc-

ing information and expected abundances were compiled using the product information gen-

erously provided the external labs. Evenly distributed ATCC and BEI mock bacterial

community samples, and staggered ATCC, BEI and Zymo mock samples were added to the

even/staggered ATCC mock microbiome standard samples from the external institutions

(Table 1).

(DOCX)

S2 Table. Average sequences per V region comparing CutPrimers versus Cutadapt (For-

ward Primer Amplicons Only and Forward + Reverse Primer Amplicons). V: Variable

region. Reads are presented as the average absolute number of reads and the percentage of the

total reads for each sample. Total reads are the sum of all sequences/reads for each mock com-

munity sample (same for each sample regardless of workflow). Cutadapt searches the entire

demultiplexed sequence file for each primer (forward or reverse) and discards all other reads;

therefore, “no adapter” row was unable to be calculated for Cutadapt. ˚Summed V total is the

total number of reads for regions V2, V3, V4, V67, V8 and V9 after Cutadapt or cutPrimers,

respectively (note- “no adapter” sequences not included as this is not calculated with the Cuta-

dapt pipeline). ¥ Cutadapt workflow performed without the “^” symbol preceding the primer

sequence at the–p front flag (which only matches primers if they occur at the beginning of a

read). �p< .05 between V regions (holding cutPrimers vs Cutadapt workflow constant); ǂp<
.05 between cutPrimers vs Cutadapt workflows (holding V region constant).

(DOCX)

PLOS ONE Multi-amplicon microbiome data analysis pipelines for mixed orientation sequences using QIIME2

PLOS ONE | https://doi.org/10.1371/journal.pone.0280293 January 13, 2023 19 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0280293.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0280293.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0280293.s007
https://doi.org/10.1371/journal.pone.0280293


S3 Table. Bacteria annotated in the mock community feature table that were unexpected

or not classified to the taxonomic level of genus. The average relative abundance of bacteria

at the taxonomic level of genus that were not present in the mock bacterial communities, strat-

ified by V region and reference database for both CutPrimers and Cutadapt-based pipelines.
�Assigned higher is any feature that was annotated at a taxonomic level higher than genus (i.e.

Family, Class etc.). If cell is blank that indicates this taxon was not annotated in that V region

and reference database.

(DOCX)

S4 Table. Global distance metrics using CutPrimers. Even mock samples n = 21 (atcc_even

n = 18; bei_even n = 3). Staggered mock samples n = 20 (atcc_stag n = 14; bei_stag n = 4;

zymo_stag n = 2). Non-parametric tests were run to determine distance metric differences

between V region (Kruskal-Wallis), reference databases (Kruskal-Wallis), and bioinformatics

workflows (Wilcoxon Rank Sum), respectively. �p< .05 between V regions (holding reference

database and workflow constant); Fp< .05 between reference databases (holding V region

and workflow constant); p< .05 between cutPrimers vs Cutadapt workflows (holding V region

and reference database constant). Euclidean, Jensen-Shannon, and Bray-Curtis Dissimilarity

scores range between 0–1 where a score of 0 indicates zero dissimilarity between expected and

actual mock bacterial abundance (or that expected and actual abundance are identical) and a

score of 1 indicates complete dissimilarity between actual and expected abundances.

(DOCX)

S5 Table. Taxon-specific metrics for all evenly-spaced mock bacterial communities evenly-

spaced mock bacterial communities V2, V3, V4, V6-7, V8, V9. Even mock samples n = 21

(atcc_even n = 18 samples; bei_even n = 3 samples). n/a = Bacteria listed was not in the speci-

fied mock community. Values (mean or standard deviation) were rounded to two decimal

places, and values< 0.005 were rounded to 0.0 (not true zero in every case). Taxon-specific

agreement was defined as the observed/expected ratio and calculated as the observed relative

abundance (%) / expected relative abundance (%) for each genus. A value of 1 indicates perfect

agreement, a value under 0–0.999 indicates the actual relative abundance (%) is less than

expected, and a value over 1 indicates the actual relative abundance (%) is higher than expected

in the mock community for that individual taxon. Non-parametric tests were run to determine

precision metric differences between V region (Kruskal-Wallis), reference databases (Kruskal-

Wallis), and bioinformatics workflows (Wilcoxon Rank Sum), respectively, for each individual

genus. �p< .05 between V regions (holding reference database and workflow constant).

(DOCX)

S6 Table. Accuracy metrics for all staggered mock bacterial communities: Staggered mock

communities V2, V3, V4, V6-7, V8, V9. Staggered mock samples n = 20 (atcc_stag n = 14

samples; bei_stag n = 4 samples; zymo_stag n = 2 samples). n/a = Bacteria listed was not in the

specified mock community. Values (mean or standard deviation) were rounded to two deci-

mal places, and values < 0.005 were rounded to 0.0 (not true zero in every case). Taxon-spe-

cific agreement was defined as the observed/expected ratio and calculated as the observed

relative abundance (%) / expected relative abundance (%) for each genus. A value of 1 indicates

perfect agreement, a value under 0–0.999 indicates the actual relative abundance (%) is less

than expected, and a value over 1 indicates the actual relative abundance (%) is higher than

expected in the mock community for that individual taxon. Non-parametric tests were run to

determine precision metric differences between V region (Kruskal-Wallis), reference databases

(Kruskal-Wallis), and bioinformatics workflows (Wilcoxon Rank Sum), respectively, for each

individual genus. �p< .05 between V regions (holding reference database and workflow
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constant); Fp< .05 between reference databases (holding V region and workflow constant).

(DOCX)

S7 Table. Global distance metrics by mock type. Even mock samples n = 21 (atcc_even

n = 18 samples; bei_even n = 3 samples). Staggered mock samples n = 20 (atcc_stag n = 14

samples; bei_stag n = 4 samples; zymo_stag n = 2 samples). Euclidean, Jensen-Shannon, and

Bray-Curtis Dissimilarity scores range between 0–1 where a score of 0 indicates zero dissimi-

larity between expected and actual mock bacterial abundance (or that expected and actual

abundance are identical) and a score of 1 indicates complete dissimilarity between actual and

expected abundances.
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S8 Table. Taxon-specific metrics by mock type: Evenly-spaced ATCC mock bacterial com-

munity samples V2, V3, V4, V6-7, V8, V9. Even mock samples atcc_even n = 18. n/

a = Bacteria listed was not in the specified mock community. Values (mean or standard devia-

tion) were rounded to two decimal places, and values< 0.005 were rounded to 0.0 (not true

zero in every case). Taxon-specific agreement was defined as the observed/expected ratio and

calculated as the observed relative abundance (%) / expected relative abundance (%) for each

genus. A value of 1 indicates perfect agreement, a value under 0–0.999 indicates the actual rela-

tive abundance (%) is less than expected, and a value over 1 indicates the actual relative abun-

dance (%) is higher than expected in the mock community for that individual taxon. Non-

parametric tests were run to determine precision metric differences between V region (Krus-

kal-Wallis), reference databases (Kruskal-Wallis), and bioinformatics workflows (Wilcoxon

Rank Sum), respectively, for each individual genus.

(DOCX)

S9 Table. Taxon-specific metrics by mock type: Evenly-spaced BEI mock bacterial commu-

nity samples V2, V3, V4, V6-7, V8, V9. Even mock samples bei_even n = 3. n/a = Bacteria

listed was not in the specified mock community. Values (mean or standard deviation) were

rounded to two decimal places, and values< 0.005 were rounded to 0.0 (not true zero in every

case). Taxon-specific agreement was defined as the observed/expected ratio and calculated as

the observed relative abundance (%) / expected relative abundance (%) for each genus. A value

of 1 indicates perfect agreement, a value under 0–0.999 indicates the actual relative abundance

(%) is less than expected, and a value over 1 indicates the actual relative abundance (%) is

higher than expected in the mock community for that individual taxon. Non-parametric tests

were run to determine precision metric differences between V region (Kruskal-Wallis), refer-

ence databases (Kruskal-Wallis), and bioinformatics workflows (Wilcoxon Rank Sum), respec-

tively, for each individual genus.

(DOCX)

S10 Table. Taxon-specific metrics by mock type: Staggered ATCC mock bacterial commu-

nity samples V2, V3, V4, V6-7, V8, V9. Staggered mock samples atcc_stag n = 14 samples. n/

a = Bacteria listed was not in the specified mock community. Values (mean or standard devia-

tion) were rounded to two decimal places, and values< 0.005 were rounded to 0.0 (not true

zero in every case). Taxon-specific agreement was defined as the observed/expected ratio and

calculated as the observed relative abundance (%) / expected relative abundance (%) for each

genus. A value of 1 indicates perfect agreement, a value under 0–0.999 indicates the actual rela-

tive abundance (%) is less than expected, and a value over 1 indicates the actual relative abun-

dance (%) is higher than expected in the mock community for that individual taxon. Non-

parametric tests were run to determine precision metric differences between V region (Krus-

kal-Wallis), reference databases (Kruskal-Wallis), and bioinformatics workflows (Wilcoxon
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12. Jačan A, Kashofer K, Zenz G, Fröhlich EE, Reichmann F, Hassan AM, et al. Synergistic and antagonis-

tic interactions between antibiotics and synbiotics in modifying the murine fecal microbiome. Eur J Nutr.

2020; 59(5):1831–44. Epub 2019/07/03. https://doi.org/10.1007/s00394-019-02035-z PMID:

31263983; PubMed Central PMCID: PMC7351849.

13. Terrazzan Nutricionist AC, Procianoy RS, Roesch LFW, Corso AL, Dobbler PT, Silveira RC. Meconium

microbiome and its relation to neonatal growth and head circumference catch-up in preterm infants.

PLoS One. 2020; 15(9):e0238632. Epub 2020/09/22. https://doi.org/10.1371/journal.pone.0238632

PMID: 32956415; PubMed Central PMCID: PMC7505439.

14. Prakash A, Peters BA, Cobbs E, Beggs D, Choi H, Li H, et al. Tobacco Smoking and the Fecal Micro-

biome in a Large, Multi-ethnic Cohort. Cancer Epidemiol Biomarkers Prev. 2021; 30(7):1328–35. Epub

2021/05/23. https://doi.org/10.1158/1055-9965.EPI-20-1417 PMID: 34020999; PubMed Central

PMCID: PMC8254769.

PLOS ONE Multi-amplicon microbiome data analysis pipelines for mixed orientation sequences using QIIME2

PLOS ONE | https://doi.org/10.1371/journal.pone.0280293 January 13, 2023 25 / 27

https://doi.org/10.1073/pnas.75.10.4801
https://doi.org/10.1073/pnas.75.10.4801
http://www.ncbi.nlm.nih.gov/pubmed/368799
https://doi.org/10.1038/s41587-019-0209-9
http://www.ncbi.nlm.nih.gov/pubmed/31341288
https://forum.qiime2.org/t/possible-analysis-pipeline-for-ion-torrent-16s-metagenomics-kit-data-in-qiime2/13476
https://forum.qiime2.org/t/possible-analysis-pipeline-for-ion-torrent-16s-metagenomics-kit-data-in-qiime2/13476
https://doi.org/10.1177/1099800418811639
http://www.ncbi.nlm.nih.gov/pubmed/30409024
https://doi.org/10.1371/journal.pone.0128122
http://www.ncbi.nlm.nih.gov/pubmed/25996930
https://doi.org/10.1038/nature11209
http://www.ncbi.nlm.nih.gov/pubmed/22699610
https://doi.org/10.1080/20002297.2021.2004790
http://www.ncbi.nlm.nih.gov/pubmed/34880965
https://doi.org/10.1038/s41531-021-00254-y
https://doi.org/10.1038/s41531-021-00254-y
http://www.ncbi.nlm.nih.gov/pubmed/34880258
https://doi.org/10.1038/s41467-019-13036-1
http://www.ncbi.nlm.nih.gov/pubmed/31695033
https://doi.org/10.1038/nmeth.3869
http://www.ncbi.nlm.nih.gov/pubmed/27214047
https://doi.org/10.1007/s00394-019-02035-z
http://www.ncbi.nlm.nih.gov/pubmed/31263983
https://doi.org/10.1371/journal.pone.0238632
http://www.ncbi.nlm.nih.gov/pubmed/32956415
https://doi.org/10.1158/1055-9965.EPI-20-1417
http://www.ncbi.nlm.nih.gov/pubmed/34020999
https://doi.org/10.1371/journal.pone.0280293


15. Eun YG, Lee JW, Kim SW, Hyun DW, Bae JW, Lee YC. Oral microbiome associated with lymph node

metastasis in oral squamous cell carcinoma. Sci Rep. 2021; 11(1):23176. Epub 2021/12/02. https://doi.

org/10.1038/s41598-021-02638-9 PMID: 34848792; PubMed Central PMCID: PMC8633319.

16. Maki KA, Burke LA, Calik MW, Watanabe-Chailland M, Sweeney D, Romick-Rosendale LE, et al. Sleep

fragmentation increases blood pressure and is associated with alterations in the gut microbiome and

fecal metabolome in rats. Physiol Genomics. 2020; 52(7):280–92. Epub 2020/06/23. https://doi.org/10.

1152/physiolgenomics.00039.2020 PMID: 32567509; PubMed Central PMCID: PMC7468692.

17. Wu Z, Byrd DA, Wan Y, Ansong D, Clegg-Lamptey JN, Wiafe-Addai B, et al. The oral microbiome and

breast cancer and nonmalignant breast disease, and its relationship with the fecal microbiome in the

Ghana Breast Health Study. Int J Cancer. 2022; 151(8):1248–60. Epub 2022/06/04. https://doi.org/10.

1002/ijc.34145 PMID: 35657343; PubMed Central PMCID: PMC9420782.

18. Kechin A, Boyarskikh U, Kel A, Filipenko M. cutPrimers: A New Tool for Accurate Cutting of Primers

from Reads of Targeted Next Generation Sequencing. J Comput Biol. 2017; 24(11):1138–43. Epub

2017/07/18. https://doi.org/10.1089/cmb.2017.0096 PMID: 28715235.

19. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet jour-

nal. 2011; 17(1):10–2.

20. Ames NJ, Barb JJ, Schuebel K, Mudra S, Meeks BK, Tuason RTS, et al. Longitudinal gut microbiome

changes in alcohol use disorder are influenced by abstinence and drinking quantity. Gut Microbes.

2020; 11(6):1608–31. Epub 2020/07/04. https://doi.org/10.1080/19490976.2020.1758010 PMID:

32615913; PubMed Central PMCID: PMC7527072.

21. Masha SC, Owuor C, Ngoi JM, Cools P, Sanders EJ, Vaneechoutte M, et al. Comparative analysis of

the vaginal microbiome of pregnant women with either Trichomonas vaginalis or Chlamydia trachoma-

tis. PLoS One. 2019; 14(12):e0225545. Epub 2019/12/13. https://doi.org/10.1371/journal.pone.

0225545 PMID: 31830061; PubMed Central PMCID: PMC6907840.

22. Kulecka M, Fraczek B, Mikula M, Zeber-Lubecka N, Karczmarski J, Paziewska A, et al. The composi-

tion and richness of the gut microbiota differentiate the top Polish endurance athletes from sedentary

controls. Gut Microbes. 2020; 11(5):1374–84. Epub 2020/05/14. https://doi.org/10.1080/19490976.

2020.1758009 PMID: 32401138; PubMed Central PMCID: PMC7524299.

23. Ames NJ, Barb JJ, Ranucci A, Kim H, Mudra SE, Cashion AK, et al. The oral microbiome of patients

undergoing treatment for severe aplastic anemia: a pilot study. Ann Hematol. 2019; 98(6):1351–65.

Epub 2019/03/29. https://doi.org/10.1007/s00277-019-03599-w PMID: 30919073.

24. Sperling JL, Silva-Brandão KL, Brandão MM, Lloyd VK, Dang S, Davis CS, et al. Comparison of bacte-

rial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick Borne Dis. 2017; 8(4):453–

61. Epub 2017/02/27. https://doi.org/10.1016/j.ttbdis.2017.02.002 PMID: 28236572.

25. Thermo Fisher Scientific Inc. Torrent Suite™ Software 5.18 User Guide San Francisco, California: Life

Technologies Corporation; 2022 [cited 2022 July 8]. Available from: https://assets.thermofisher.com/

TFS-Assets/LSG/manuals/MAN0026163-Torrent-Suite-5.18-UG.pdf.

26. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-

source, platform-independent, community-supported software for describing and comparing microbial

communities. Appl Environ Microbiol. 2009; 75(23):7537–41. Epub 2009/10/06. https://doi.org/10.1128/

AEM.01541-09 PMID: 19801464; PubMed Central PMCID: PMC2786419.

27. Thermo Fisher Scientific. Ion Torrent Suite Software Plugin Store 2022 [cited 2022 April 1]. Available

from: https://apps.thermofisher.com/apps/spa/#/publiclib/plugins.
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