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Summary

Metazoan tissue specification is associated with integration of macrophage lineage cells in sub-

tissular niches to promote tissue development and homeostasis. Oncogenic transformation, most 

prevalently of epithelial cell lineages, results in maladaptation of resident tissue macrophage 

differentiation pathways to generate parenchymal and interstitial tumor-associated macrophages 

that largely foster cancer progression. In addition to growth factors, nutrients that can be 

consumed, stored, recycled or converted to signaling molecules, have emerged as crucial 

regulators of macrophage responses in tumor. Here we review how nutrient acquisition through 

plasma membrane transporters and engulfment pathways control tumor-associated macrophage 

differentiation and function. We also discuss how nutrient metabolism regulates tumor-associated 

macrophages, and how these processes may be targeted for cancer therapy.

eTOC Blurb

Oncogenic transformation drives maladaptation of resident tissue macrophage differentiation 

pathways to generate tumor-associated macrophages (TAMs) that largely promote cancer 

progression. Zhang, Ji, and Li review how metabolism controls TAM development and function. 

They discuss how nutrients acquired through plasma membrane transporters and engulfment 

pathways are metabolized to control TAMs, and how these processes may be targeted for cancer 

therapy.

Introduction

Metazoan is characterized by cell differentiation and organization as tissues. The tissue mass 

is composed mostly of parenchymal cells that execute tissue-specific functions, such as 
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epithelial cells that make up all body surfaces and many internal glands to mediate filtration, 

absorption, excretion, secretion and barrier protective functions. The interstitial part of tissue 

consists of endothelial cells, fibroblasts, nerves and acellular extracellular matrix (ECM) 

with infrastructural functions that are largely tissue-agnostic. Cells of the hematopoietic 

lineage including macrophages are further recruited, with resident tissue macrophages 

(RTMs) adapted to sub-tissular parenchymal and interstitial niches, promoting tissue 

development and homeostasis aside from the classical roles of macrophages in host defense 

against infections1–9. Parenchymal cells, particularly those of the epithelium lineages, have 

a high turn-over rate, and are susceptible to cell transformation10, accounting for 80–90% 

human malignancies (https://training.seer.cancer.gov/disease/categories/classification.html). 

The macrophage compartment in the tumor tissue can as well undergo dynamic remodeling 

with tumor-associated macrophages (TAMs) making up to 50% of the tumor mass11–14.

Tumors are fast growing and metabolically demanding tissues and rewiring of 

metabolic pathways in genetically altered cancer cells has been well documented15. 

Acquisition of nutrients delivered systematically and generated locally by highly 

adaptable TAMs constitutes another major facet of the metabolic network in the tumor 

microenvironment16–21. Of note, in addition to transporter-mediated nutrient uptake, 

TAMs are highly capable of scavenging nutrients through engulfment that can be further 

associated with their detoxification function, befitting the professional phagocyte identity of 

macrophages. In this review, we will discuss TAM responses from the perspective of cancer 

as a tissue-level disease with a focus on how nutrient uptake and metabolism regulate TAM 

differentiation and function.

TAMs as maladapted RTMs

RTMs and TAMs in healthy and tumorous epithelial tissues have been extensively profiled 

showing cross-tissue transcriptome similarities of macrophage subsets associated with 

parenchymal and interstitial localizations22–26, suggesting that there are unique features 

related to tissue architecture to regulate the differentiation and function of parenchymal 

RTMs or TAMs (pRTMs, pTAMs), and interstitial RTMs or TAMs (iRTMs, iTAMs) (Figure 

1A).

The sub-tissular dichotomous differentiation phenotypes of RTMs and TAMs are best 

demonstrated in mouse mammary gland, where macrophages are dynamically regulated in 

response to tissue remodeling during development, reproduction cycle as well as sporadic 

tumor growth driven by oncogenic cell transformation. In healthy mammary gland, iRTMs 

numerically dominate, while pRTMs are locally enriched alongside epithelial mammary 

gland branches27. iRTMs are initially derived from fetal liver monocytes and are largely 

maintained by self-renewal throughout the postnatal development28. The interstitial region 

is highly enriched for ECM compared to the mammary gland ductal structure formed 

by layers of epithelial cells. Depletion of macrophages by administration of an inhibitor 

against colony stimulating factor 1 receptor (CSF1R) causes increased level of interstitial 

ECM proteins, including collagen and Hyaluronic acid (HA)29. The respective scavenger 

receptors for collagen and HA are mannose receptor C-type 1 (Mrc1) and lymphatic vessel 

endothelial hyaluronan receptor 1 (Lyve1)30,31, markers for iRTMs22,23. Although Mrc1 
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and Lyve1 expression largely overlaps, Mrc1 is more broadly expressed in iRTMs. Of 

note, Mrc1+Lyve1− iRTMs are enriched in interstitial regions close to the mammary gland 

epithelium29, where iRTMs may interact with the Notch receptor ligand delta-like 1 (Dll1) 

expressed by epithelial stem cells32 to suppress Lyve1 expression33. These findings imply 

further heterogeneity of interstitial niches governing the differentiation of iRTM subsets and 

suggest prominent functions of iRTMs in ECM remodeling.

Localized between luminal and basal layers of ductal epithelium, the embryonic monocyte-

derived pRTMs are a rare population in virgin mammary gland27. However, during 

pregnancy and lactation, pRTMs are differentiated from circulating monocytes, and undergo 

massive expansion to accommodate the expanded epithelium27, which is likely because local 

proliferation of pRTMs is outpaced by the expanding parenchyma niche, causing the de 
novo pRTM differentiation from monocytes. Short term depletion of pRTMs results in the 

accumulation of apoptotic alveolar cells and enlargement of mammary gland lumen during 

post-lactation involution, indicating a critical scavenger function of pRTMs and its role in 

tissue remodeling. Together, these studies reveal that iRTMs and pRTMs are differentiated 

in distinct sub-tissular niches of the mammary gland to fulfill specialized functions during 

development and the reproductive cycle.

Before the characterization of mammary tissue iRTMs and pRTMs, the dichotomous 

differentiation of macrophages had been revealed in a transgenic model of mammary tumors 

driven by the polyoma middle T (PyMT) oncoprotein34. Unlike in healthy mammary gland 

of young mice, circulating monocytes contribute to not only the highly expanded vascular 

cell adhesion molecule 1 (Vcam1)+ TAMs but also Mrc1+ mammary tissue macrophages 

in PyMT mammary tumors34, which are localized in the intratumor parenchymal and 

peritumor interstitial regions, respectively35, and herein renamed as pTAMs and iTAMs. 

These findings suggest that the interstitial niche for macrophages undergoes remodeling 

during tumor progression, which is in line with the observation that iTAMs at various 

stages of tumor progression are transcriptionally deviated from iRTMs in mammary tissue22. 

Phenotypically similar iTAMs that express the ECM scavenge receptors MRC1 and LYVE1 

as well as the folate receptor beta (FOLR2) are also present in human breast tumors22, 

which are distinct from pTAMs that express high levels of the lipid endocytosis receptor 

triggering receptor expressed on myeloid cells 2 (TREM2)22. Of note, Trem2 is highly 

induced in pTAMs from PyMT tumors, and is only minimally expressed in pRTMs from 

healthy lactating mammary glands (our unpublished observation), suggesting phenotypical 

adaptation of pTAMs in the tumor microenvironment. Interestingly, Trem2 is also induced 

in macrophages associated with neuronal and metabolic disorders36–40. As damage occurs 

in diseased tissues, it is conceivable that Trem2 is induced in macrophages to facilitate 

the clearance of tissue damage-associated lipids. Thus, pTAM differentiation is not only 

specified by ‘hard-wired’ signals associated with an expanding parenchymal epithelial 

niche similar to that of pRTM, but also regulated by ‘on-demand’ signals such as damage-

associated molecules present in tumorous tissues.

Tissue-level specification of macrophage differentiation underscores the importance of 

using autochthonous tumor models such as transgenic cancer models to study TAM 

responses (Figure 1D). Yet, transplantation tumor models have been widely used in the 
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field. Although these models could recapitulate some aspects of TAM responses including 

Trem2 expression41, they fall short in reproducing critical aspects of human cancer patient 

TAM biology. For instance, transplanted cancer cells, even through the orthotopic route, 

often fail to be integrated to the endogenous tissue that provides critical signals for TAM 

differentiation42. In addition, most of the commonly used murine cancer cell lines of 

epithelial origin show a mesenchymal phenotype43, and will not provide the same niche 

signal for pTAM differentiation. It is also important to note that human cancers are 

genetically heterogeneous, driving distinct immune responses in tumor44. In some cases, 

oncogenic events may disrupt or alter the tissue niche specifying the differentiation of TAMs 

as maladapted RTMs, causing TAM depletion or acquisition of a distinct differentiation 

pathway, and will also be better defined in autochthonous tumor models. Therefore, in order 

to best recapitulate human TAM biology, it is crucial to use autochthonous tumor models to 

preserve tissue-level regulation of macrophage responses in cancer.

Macronutrient uptake and metabolism in control of TAM responses

In addition to growth factor signals that drive tissue niche-associated TAM differentiation, 

nutrients delivered systemically through circulation and generated locally in the tumor tissue 

affect the metabolic and functional states of TAMs (Figure 1B and 1C). Nutrient control of 

TAM responses is affected by several factors including the tumor tissue origin, cancer cell 

oncogenomic profiles and stages of tumor progression, while tumor model choice is another 

confounding factor. In this section, we will discuss how TAM differentiation and function 

are regulated by macronutrients acquired through plasma membrane transporters (Figure 2).

Carbohydrate serves as a major energy and carbon source. Glucose as the most abundant 

monosaccharide undergoes glycolysis to generate adenosine triphosphate (ATP) and carbon 

intermediates to support TAM metabolism45. In vivo glucose uptake assays showed that 

CD11b+ myeloid cells including F4/80+ TAMs have the highest capacity to take up glucose 

in transplantation tumor models46. Consistent with this observation, histological analysis 

showed that glucose transporter 1 (GLUT1) is highly expressed in TAMs localized in 

hypoxic regions of both transplanted and autochthonous murine breast tumor tissues47. In 

human hepatocellular carcinoma (HCC) samples, high GLUT1 expression is also observed 

in TAMs compared to macrophages in nontumor regions48. In an orthotopic murine 

pancreatic ductal adenocarcinoma (PDAC) transplantation tumor model, lysozyme M-cre 

(LysMcre)-mediated GLUT1 depletion in TAMs suppresses tumor development through 

natural killer (NK) cell- and CD8+ T cell-dependent mechanisms49. Although this study 

cannot directly prove that TAM glucose uptake promote cancer progression as LysMcre 

can also target neutrophils, it suggests that the immunosuppressive function of TAMs is 

dependent on GLUT1.

Glucose metabolism initiates with a multi-step process of glycolysis (Figure 2A). 

Glycolytic activities and mRNA expressions of glycolytic enzymes including glucose 

6-phosphate isomerase (GPI), phosphofructokinase-B1 (PFKB1), aldolase-A (ALDOA), 

phosphoglycerate kinase (PGK), and pyruvate kinase-M2 (PKM2) are increased in 

peritoneal macrophages following transplantation of PDAC tumors49. In addition, TAMs 

from PyMT tumors express high levels of hexokinase-2 (HK2) and PFKL50. Furthermore, 
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high glycolytic activities are observed in CD14+ monocytes/macrophages from both tumor 

parenchymal and peritumoral regions of human HCC samples51,52. Enhanced glycolysis 

in TAMs may be induced by cancer cell-derived factors, as both human and murine 

macrophages cultured with cancer cells or cancer cell-derived supernatant display enhanced 

glycolytic activities in several settings50,53,54. More mechanistical studies should be 

performed to further clarify how TAM glycolysis is induced in the afore-described tumor 

models, and whether glycolysis is differently regulated in pTAMs and iTAMs. It is also 

important to note that lower level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

activity is observed in TAMs from human colon tumors than colonic RTMs55. Although 

lack of analysis of the whole glycolytic pathway, this study suggests that TAM glucose 

metabolism varies in different tumor models.

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) catalyzes the conversion 

of fructose-6-phosphate (F6P) to fructose-2,6-bisphosphate (F2,6BP) that functions as 

a potent allosteric activator of the glycolytic enzyme 6-phosphofructokinase-1 (PFK-1). 

Inhibition of PFKFB3 impairs the production of C-X-C motif chemokine ligand 2 (CXCL2) 

and CXCL851 as well as expression of programmed death-ligand 1 (PD-L1)52 in HCC 

supernatant-treated human monocytes in vitro, which has been associated with activation 

of nuclear factor κ B (NF-κB) signaling51,52. Glycolysis-dependent PD-L1 expression in 

human HCC TAMs has also been shown to be dependent on PKM256, which may be 

mediated by the stabilization of hypoxia-inducible factor-1α (HIF)-1α57. These observations 

suggest that TAM glycolysis may promote the immunosuppressive function of TAMs 

through the induction of chemokine and PD-L1 expression by modulating TAM signaling 

(Figure 2B). The signaling regulation function of glycolysis in T cells has recently been 

shown to be rooted in glycolytic ATP production58,59. Whether such mechanisms operate in 

TAMs is also open for investigation.

The end-product of glycolysis, pyruvate, has distinct metabolic fates under different 

conditions. The tumor parenchyma has often low oxygen levels. In this case, pyruvate in 

pTAMs is predicted to be mainly reduced by lactate dehydrogenase (LDH) to generate 

lactate in the cytosol, rather than enter mitochondrion to fuel tricarboxylic acid (TCA) cycle 

or replenish TCA cycle metabolites mediated by pyruvate dehydrogenase (PDH) or pyruvate 

carboxylase (PC), respectively. Under hypoxic conditions, HIF-1α-induced PDH kinase 1 

(PDK1) phosphorylates and inactivates PDH, and thus promotes shunting of pyruvate to the 

lactate pathway. Indeed, increased PDK1 expression was observed in TAMs from human 

HCC samples51,52. In addition, PC expression is diminished in TAMs from both mouse 

and human melanomas, and pharmaceutic activation of PC in TAMs suppresses mouse 

melanoma progression60. These studies imply that mitochondrial pyruvate metabolism is 

attenuated in TAMs, and lactate generation may be the dominant metabolic fate of pyruvate. 

Indeed, increased LDH-A expression was observed in TAMs from both human and murine 

cancers49,51,52. In addition, primary human macrophage co-cultured with MCF-7 cancer 

cells upregulated LDH-A61, suggesting that cancer cell-derived factors could also promote 

pyruvate to lactate conversion. Depletion of LDH-A prevents lactate production in TAMs, 

decreases expression of PD-L1 and the proangiogenic vascular endothelial growth factor-α 
(VEGF)-α, and inhibits tumor progression in a K-Ras-mediated lung cancer model62.
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Lactate can be exported or imported via monocarboxylate transporters (MCTs) belonging 

to the SLC16A family63. MCT1 and MCT2 can transport molecules with one carboxylate 

such as lactate, pyruvate and ketone bodies bidirectionally dependent on the concentration 

gradient of substrates, while MCT3 and MCT4 are efficient lactate exporters63. Histological 

analysis showed that MCT1 and MCT4 expression is positively associated with CD163-

expressing TAMs in tumors from human breast cancer64 and oral squamous cell 

carcinoma65, respectively, but their function remains to be determined. Aside from its 

metabolic function, lactate can act as a signaling molecule sensed by membrane receptors 

expressed on TAMs. G protein-coupled receptor 132 (GPR132) is a pH-sensing GPCR, 

and lactate activation of GPR132 triggers TAM expression of a number of chemokines 

including C-C motif ligand 17 (CCL17) and CCL22 to promote breast cancer metastasis66. 

In addition, the odorant receptor Olfr78 in TAMs can work together with GPR132 to sense 

lactate and promote tumor growth and metastasis in a lung transplantation tumor model67. 

Tumor-derived lactate has also been shown to promote VEGF-α expression in TAMs via 

HIF-1α68. Furthermore, lactate can modify histone and regulate gene expression through 

lactylation69. Those findings suggest that lactate may directly regulate TAM signaling and 

gene expression to promote tumor development.

In addition to glucose catabolism, the metabolic intermediates of glycolysis can be shunted 

towards a number of anabolic pathways (Figure 2A). Of note, G6P can go through the 

pentose phosphate pathway (PPP) to generate nicotinamide adenine dinucleotide phosphate 

(NADPH) as well as ribose 5-phosphate, which is the precursor for de novo purine 

and pyrimidine nucleotide biosynthesis. Single-cell RNA-sequencing (scRNA-seq) studies 

revealed that the terminal differentiated Trem2+ TAMs exhibit high purine metabolism than 

other macrophages in an MC38 liver metastasis model, and high purine metabolism in 

TAMs is associated with poor clinical outcomes70, but whether the PPP pathway supports 

the tumor-promoting function of TAMs remains to be determined.

F6P together with glutamine can be shunted to the hexosamine biosynthesis pathway 

(HBP) and form uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), which acts as 

glycosyl donors in glycosylation reactions including O-linked-N-acetylglucosaminylation 

(O-GlcNAcylation) mediated by O-GlcNAc transferase (OGT). In a B16 transplantation 

tumor model, MHC-IIlow TAMs have high OGT expression. O-GlcNAcylation of 

the protease capthepsin B maintains its high expression and promotes lung cancer 

metastasis and chemoresistance71. TAMs under hyperglycemia conditions promote tumor 

progression in an MC38 transplantation tumor model, which is also likely dependent on 

O-GlcNAcylation as glutamine antagonist or the HBP inhibitor 6-Diazo-5-oxo-L-norleucine 

(DON) can rescue the tumor phenotype72. Of note, in a transplantation mammary tumor 

model, the cellular UDP-GlcNAc level is associated with the immunosuppressive function 

of TAMs, which may be dependent on glycosylation of the transcription factor signal 

transducer and activator of transcription 6 (STAT6)73, implying a signaling function of 

glycosylation in control of TAM responses (Figure 2B).

Another glycolytic intermediate dihydroxyacetone phosphate (DHAP) can be converted 

to glycerol 3-phosphate (G3P) by glycerol-3-phosphate dehydrogenase (GPD1). G3P can 

be further catalyzed by G3P acyltransferases (GPATs) to form phosphatidic acid, which 
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is essential for triacylglycerol (TAG) biogenesis, and the TAG metabolic pathway has an 

important function in TAMs (see below).

The glycolytic intermediate 3-phosphoglycerate (3-PG) can be catalyzed by 

phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT) 

to form serine and participate in the one-carbon metabolism pathway. Compared to 

RTMs, TAMs from human lung carcinoma have elevated activities of the serine/glycine 

one-carbon metabolism pathway74. In a B16-F10 transplantation tumor model, LysMcre-

mediated PSAT1 depletion diminishes the TAM population, and suppresses tumor growth74, 

suggesting that the de novo serine synthesis pathway is critical to support TAM responses.

The mitochondrial TCA cycle serves as a hub to connect several metabolic pathways 

including glucose metabolism (Figure 2A). Completion of the TCA cycle produces 

NADH and flavin adenine dinucleotide (FADH2) that are mostly oxidized through the 

electron transport chain (ETC) with the built-up proton gradient driving mitochondrial 

ATP production through the process of oxidative phosphorylation (OXPHOS)75. As the 

tumor microenvironment is relatively hypoxic, the oxygen level may not be high enough 

to support a robust ETC flow in TAMs76. Yet, in an MC38 transplantation tumor model, 

the abundance of TCA cycle metabolites increases in TAMs during tumor progression77, 

suggesting that high TCA flow in TAMs may provide metabolite intermediates to support 

metabolic events other than OXPHOS. Itaconate is derived from cis-aconitate by aconitate 

decarboxylase 1 (ACOD1), best known as immune-responsive gene 1 protein (IRG1). 

IRG1 expression and itaconate production in peritoneal macrophages are elevated following 

peritoneal tumor inoculation78, which is in line with the observation that IRG1 expression 

in monocytes from human peritoneal tumor ascites is increased78. Knockdown of IRG1 in 

peritoneal macrophages reduces the tumor burden78, supporting a pro-tumor function of 

TAM-produced itaconate. Moreover, elevated IRG1 expression is observed in TAMs isolated 

from GL261 glioma-bearing mice, and IRG1-deficient TAMs from late-stage glioblastoma 

express high levels of transcripts that encode proteins involved in antigen presentation and 

inflammatory responses79. As itaconate can function as an anti-inflammatory metabolite by 

inhibiting succinate dehydrogenase (SDH) activity to prevent mitochondrial reactive oxygen 

species (mROS) production80, future studies will reveal whether similar mechanisms operate 

in TAMs to promote tumor development (Figure 2B). Succinate is another metabolite with 

important immunomodulatory functions. Cancer cell-derived succinate activates succinate 

receptor SUCNR1 to trigger tumorigenic TAM signaling via the PI3K-HIF-1α axis81. In 

addition, intracellular succinate promotes IL-1β production by stabilizing HIF-1α82, and 

enhances mROS production by fueling TCA cycle and ETC through SDH83 in macrophages, 

but its function in TAMs remains to be clarified. Thus, TAMs exhibit enhanced glucose 

consumption to support several metabolic pathways and regulate cell signaling, which 

appears to promote the immunosuppressive function of TAMs.

Lipid droplet formation in TAMs occurs in several human and murine malignancies84–89, 

suggesting that TAMs actively acquire and/or synthesize lipid, but have low lipid 

degradation activity. This is likely because mitochondrion-driven fatty acid oxidation (FAO) 

is not robust in the low-oxygen tumor microenvironment. CD36, also known as fatty acid 

translocase, is a member of class B scavenger receptor family and can directly import 
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multiple substrates including long-chain fatty acids (LCFAs)90. CD36-mediated lipid uptake 

promotes TAM differentiation and supports tumor growth84. In a murine liver metastasis 

model, macrophages in the liver can also take up tumor microvesicles via CD36, which 

may contribute to the establishment of a premetastatic niche91. Cytosolic citrate can be 

converted to acetyl-CoA by ATP citrate synthase (ACLY), which is critical for de novo 
fatty acid synthesis92. In MC38 and 3LLR transplantation tumor models, LysMcre-mediated 

ACLY depletion does not affect tumor growth, and only slightly affects TAM phenotypes93. 

Those observations suggest that fatty acid uptake but not citrate-mediated de novo fatty acid 

synthesis supports the tumor-promoting function of TAMs (Figure 2A).

The imported cytoplasmic LCFAs bind to fatty acid-binding proteins (FABPs) that 

facilitate LCFA transportation to subcellular compartments94. Epidermal FABP (E-FABP, 

or FABP5) and adipocyte/macrophage FABP (A-FABP, or FABP4) are highly expressed 

in macrophages, but they appear to have distinct functions in control of murine breast 

cancer growth and metastasis95,96. FABP5 suppresses E0771 breast cancer growth and 

metastasis through mechanisms that are dependent on TAM expression of interferon-β 
(IFN-β), and the frequency of FABP5-expressing TAMs is negatively associated with 

human breast cancer progression95. On the contrary, FABP4 promotes E0771 and PyMT 

breast cancer progression and metastasis through mechanisms that are dependent on TAM 

expression of interleukin-6 (IL-6)96. Whether the opposing functions of FABP4 and FABP5 

are caused by their distinct roles in different subsets of pTAMs and iTAMs is unknown. 

The underlying mechanisms by which FABPs regulate cytokine expression are also open for 

future investigation.

Peroxisome proliferator-activated receptors (PPARs) including PPAR-α, PPAR-β/δ and 

PPAR-γ are a group of nuclear receptor proteins that bind to cytosolic lipid ligands (Figure 

2B). Once activated, PPARs enter the nucleus and form heterodimers with retinoid-X 

receptor (RXR) to induce expression of target genes including those involved in lipid 

catabolism. Caspase 1 in TAMs could cleave PPAR-γ to inhibit FAO, and caspase 1 

deficiency decreases lipid accumulation in TAMs resulting in diminished PyMT mammary 

tumor growth87. As caspase 1 is produced as a latent enzyme, and can be activated by the 

inflammasome pathway, whether and how inflammasome is induced in TAMs to regulate 

lipid metabolism remain to be determined.

As a major component of lipid droplet, TAG can be broken down into diacylglycerols 

(DAGs) by adipose triglyceride lipase (ATGL), hydrolyzed into monoacylglycerols (MAGs) 

by hormone sensitive lipase (HSL), and further catalyzed into free fatty acids and glycerol 

by monoacylglycerol lipase (MGLL). Low MGLL expression is detected in TAMs, and 

overexpression of MGLL prevents lipid accumulation in TAMs, causing CD8+ T cell-

dependent tumor suppression in an MC38 transplantation tumor model85. MGLL promotes 

the degradation of 2-arachidonoylglycerol (2-AG), a ligand for cannabinoid receptor 2 

(CB2), and thereby reverses the CB2-mediated immunosuppression in TAMs85. MAGs 

can be converted to DAG and TAG by acyltransferases with diglyceride acyltransferase 

(DGAT) catalyzing the formation of TAG from DAG (Figure 2A). DGAT1-mediated TAG 

synthesis enhances the production of proinflammatory mediators including prostaglandins 

E2 (PGE2) and IL-1β in macrophages97. As PGE2 inhibits anti-tumor immune responses 

Zhang et al. Page 8

Immunity. Author manuscript; available in PMC 2024 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(see below), the DGAT pathway in TAMs may have pro-tumor functions. Indeed, liposome-

mediated delivery of a DGAT inhibitor to phagocytes suppresses MCA205 fibrosarcoma 

tumor development, which is associated with reduced lipid droplet formation and increased 

CD8+ T cell proliferation in tumor86. Together, these findings demonstrate an important 

function for TAG biosynthesis in promoting the immunosuppressive function of TAMs.

A number of lipids and lipid derivatives function as important signaling molecules 

(Figure 2). Membrane phospholipids can release arachidonic acids to generate PGE2 

catalyzed by cyclooxygenase (COX) enzymes COX1 or COX2 and PGE synthase (PGES). 

PGE2 binds to PGE2 receptors, and thereby activates the downstream cAMP and Ca2+-

mediated signaling pathways. Expression of genes in the arachidonic acid-PGE2 pathway 

is positively associated with TREM2+ pTAMs in human esophageal squamous cell 

carcinoma (ESCC)98. In addition, COX2 is highly induced in myeloid cells infiltrating 

the transplanted SW780 bladder tumors99, and in CD68+ macrophages infiltrating human 

melanoma100. Administration of microsomal PGES-1 (mPGES-1) and COX2 inhibitors 

or overexpression of the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase 

(15-PGDH) diminishes PGE2 production and inhibits PD-L1 expression in myeloid lineage 

cells in vitro101. In a macrophage T cell co-culture system, PGE2 produced by macrophages 

attenuates CD4+ T cell proliferation102, but the in vivo function of TAM-produced PGE2 

remains to be determined. Furthermore, mPGES-1 is barely detectable in TAMs from human 

neuroblastoma tumors103, suggesting that the COX/mPGES-1/PGE2 pathway may only be 

important in some tumor types. In addition to PGE2, arachidonic acids can be catalyzed by 

lipoxygenase such as 5-lipoxygenase (5-LO) to generate leukotrienes. 5-LO expression in 

TAMs from mouse and human primary breast tumors is lower than that in monocyte-derived 

macrophages generated in vitro, and 5-LO downregulation is dependent on apoptotic cell 

engulfment, which may inhibit T cell recruitment and thus exert an immunosuppressive 

function104. However, high expression of 5-LO and production of leukotriene B4 (LTB4) in 

alveolar macrophages promote HCC metastasis in lung105. Thus, macrophage production 

of leukotrienes may have opposing functions in control of tumor development. Aside 

from phospholipid-derived signaling molecules, cholesterol can be processed to generate 

vitamin D. Vitamin D binds to vitamin D receptor (VDR) and forms a heterodimer with 

RXR to control target gene expression. Inhibition of vitamin D-VDR binding in TAMs 

suppresses tumor progression in a transplantation breast cancer model106, but the underlying 

mechanisms remain to be determined.

Ketone bodies including acetone, acetoacetate and β-hydroxybutyrate (BHB) are derived 

from fatty acids and can be converted to acetyl-CoA and fuel the TCA cycle. Ketogenic 

diets containing BHB target intestinal epithelial cells to suppress colorectal cancer (CRC) 

development107. BHB has also been shown to inhibit inflammatory responses triggered by 

the NLRP3 inflammasome in macrophage108, while hepatocyte-produced acetoacetate can 

be oxidized in macrophages to inhibit the high-fat diet (HFD)-induced liver fibrosis109. Of 

note, BHB can bind to GPR109a and function as a signaling metabolite in macrophages110, 

which promotes tissue repair in injury models including ischemic strokes111, alcohol-

induced liver injury112, and DSS-induced colitis113. Nonetheless, the functions of ketone 

bodies in control of TAM responses have yet to be revealed.
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Amino acids are a special class of macronutrients that are used for protein biosynthesis 

and are converted to other metabolite for cellular regulation. Some cytosolic amino acids 

can also function as signaling molecules, notably, participating in the activation of the 

metabolic regulator mammalian target of rapamycin complex 1 (mTORC1) through a 

lysosomal Rag GTPase-mediated nutrient-sensing pathway114 (Figure 2B). Branched-chain 

amino acids (valine, leucine, isoleucine) and aromatic amino acids are taken up by 

the heterodimer amino acid transporter CD98 composed of the heavy chain SLC3A2 

and the light chain SLC7A5115. As leucine is one of the most critical amino acids 

that activates mTORC1116, pharmaceutical inhibition of SLC7A5 diminishes mTORC1-

mediated glycolysis and inflammatory cytokine production in activated macrophages in 
vitro117. Nonetheless, a role for CD98-mediated leucine uptake in control of mTORC1 

signaling and metabolism in TAMs remains to be determined.

Tryptophan can also be imported through CD98, and further catabolized to kynurenine, with 

indoleamine 2,3-dioxygenase (IDO) being the rate-limiting enzyme (Figure 2). Depletion 

of tryptophan by IDO1-expressing human monocyte-derived macrophages suppresses T 

cell proliferation and activation in vitro118. Macrophage expression of IDO1 has also been 

shown to promote immune tolerance to apoptotic cells119. Nonetheless, whether the IDO1-

meidated tryptophan catabolism non-redundantly contributes to the immunosuppressive 

function of TAMs remains to be determined. Cancer cells can also express IDO and produce 

kynurenine to activate aryl hydrocarbon receptor (AhR) in TAMs120. Kynurenine activation 

of AhR induces Kruppel-like factor 4 (KLF4) expression, but suppresses NF-κB activation, 

and AhR-deficient TAMs are poorly recruited to tumor, resulting in impaired growth of 

GL261 glioma cells120. Another study revealed that IDO-overexpressing B16 melanoma 

display an immunosuppressive phenotype, which is in part dependent on the kynurenine-

AhR-mediated regulatory T (Treg) cell-TAM interplay121. Furthermore, tryptophan can be 

degraded by microbiota and generate indole-containing metabolites to activate AhR in 

TAMs, which promotes PDAC tumor progression by suppressing intra-tumoral CD8+ T cell 

function122. Interleukin-4-induced-1 (IL4I1), an L-amino-acid oxidase, has recently been 

identified as a potent activator of the AhR pathway by promoting tryptophan catabolism 

to indole metabolites and kynurenic acid (Figure 2)123. scRNA-seq analyses revealed that 

an enriched IL4I1+IDO1+PD-L1+ TAM subset is associated with T cell dysfunction in a 

number of human tumors24. Although the in vivo function of IL4I1 in TAMs has yet to be 

determined, those findings reveal an alternative metabolic pathway that may account for the 

immunosuppressive function of tryptophan catabolism. In addition to AhR, kynurenine can 

bind to the cell surface receptor GPR35124. LysMcre-mediated GPR35 depletion suppresses 

tumor development in both genetic and carcinogen-induced CRC models in part mediated by 

attenuated tumor angiogenesis125. These studies suggest that tryptophan metabolites may be 

sensed by both intracellular and plasma membrane-localized receptors in TAMs to promote 

tumor development.

Positively charged amino acids including arginine are taken up by cationic amino acid 

transporters (CATs) SLC7A1–4126. Arginases including arginase 1 (Arg1) convert arginine 

to urea and ornithine as part of the urea cycle for nitrogen excretion. Ornithine can also 

be catalyzed by ornithine decarboxylase (ODC) to form putrescine, which is the precursor 

for polyamine biosynthesis (Figure 2A). Polyamines including spermidine and spermine 

Zhang et al. Page 10

Immunity. Author manuscript; available in PMC 2024 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



promote cell proliferation and maintain tissue homeostasis127. Arg1 is highly expressed 

in TAMs128, which is in part dependent on HIF-1α signaling, lactate, and granulocyte 

macrophage colony-stimulating factor (GM-CSF)129 68,130,131. Uptake of the metabolite 

creatine through the creatine transporter Slc6a8 has also been shown to sustain Arg1 

expression in macrophages132, but its role in TAMs is undefined. Arg1-expressing myeloid 

cells from transplanted Lewis lung carcinoma (LLC) tumors inhibit T cell proliferation 

in an in vitro culture system133,134. SLC7A2-mediated arginine uptake in tumor myeloid 

cells also suppresses T cell proliferation ex vivo135. Those observations suggest that the 

Arg1-mediated arginine consumption in TAMs may have an immunosuppressive function. 

In a number of transplantation tumor models, pharmaceutical inhibition of arginase by 

CB-1158 enhances arginine concentration and cytotoxic immune cell infiltration and inhibits 

tumor development136. Moreover, LysMcre-mediated Arg1 deletion suppresses murine 

PDAC progression, which is associated with increased cytotoxic CD8+ T cell infiltration 

and activation137. The TAM regulation function of Arg1 may also act through polyamine. 

For instance, the arginine-polyamine pathway is induced in tumor-infiltrating myeloid 

cells to promote their survival, and depletion of polyamine prolongs mouse survival in 

transplantation models of brain tumor138,139. These findings suggest a tumor-promoting role 

of myeloid Arg1, but its specific function in TAMs remains to be determined.

Glutamine is an important non-essential amino aid that can be converted to glutamate by 

glutaminase (GLS). Conversely, glutamate can generate glutamine via glutamine synthetase 

(GS). Pharmaceutical inhibition of GLS by JHU083 suppresses transplanted 4T1 tumor 

progression and reprograms TAMs to a pro-inflammatory state associated with high 

expression of tumor necrosis factor-α (TNF-α) and co-stimulatory molecules140, but it was 

unknown whether such reprograming was due to the blockade of GLS in TAMs. Of note, 

LysMcre-mediated GLS depletion attenuates macrophage engulfment of apoptotic cells141, 

and the impaired efferocytosis may account for the inflammatory phenotype of TAMs, 

as efferocytosis is largely anti-inflammatory (see below). CSF1Rcre-mediated depletion of 

GS does not affect primary LLC tumor growth, but impairs cancer cell metastasis, which 

was associated with high abundance of glutamate and succinate under the condition of GS 

inhibition in macrophages with succinate mainly derived from glucose, but not glutamine142. 

These observations suggest that glutamine/glutamate metabolism may interact with glucose 

metabolism to regulate macrophage responses, but the exact functions of such metabolic 

crosstalk in TAMs remain to be investigated.

Engulfment-mediated nutrient acquisition in control of TAM responses

Macrophages can manifest robust engulfment activity to support their scavenger function 

and provide an alternative route of nutrient acquisition. The transcription factor PU.1 

specifies a core macrophage gene expression program including those involved in 

macrophage phagocytosis such as tyrosine-protein kinase Mer (MerTK) for efferocytosis 

and CD64 (FCγR1A) for antibody-dependent phagocytosis143,144. In addition, specialized 

scavenger receptor gene expression programs support discrete engulfment activity of 

macrophage subsets, including ECM scavenger receptors Mrc1 and Lyve1 for iTAMs, 

and the lipid scavenger receptor Trem2 for pTAMs. While interactions between scavenger 

receptors and their ligands trigger intracellular receptor signaling to promote phagocytosis 
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and regulate inflammatory responses, the engulfed cargo generates nutrients that can be 

further metabolized and engaged in cell signaling (Figure 3).

A major scavenger function of RTM is apoptotic cell clearance, or efferocytosis. A number 

of receptors can mediate efferocytosis, including Tyro3, Axl and MerTK that are receptor 

tyrosine kinases sharing similar structures with two immunoglobulin-like repeats and two 

fibronectin type III repeats in the extracellular domain145. Upon ligand binding and receptor 

dimerization, autophosphorylation of intracellular kinase domain activates signaling and 

gene transcription programs that promote membrane and cytoskeleton remodeling in support 

of efferocytosis146. MerTK is indispensable for apoptotic cell clearance in mice147, while 

Tyro3, Axl and MerTK collectively promote efferocytosis and suppress autoimmunity148. In 

a PyMT transgenic mammary tumor model, impaired clearance of apoptotic cells in mice on 

a MerTK-deficient background is associated with defective expression of anti-inflammatory 

cytokines and diminished cancer cell metastasis to lung149. Whether the tumor phenotype 

can be attributed to the depletion of MerTK in TAMs remains to be determined, as epithelial 

(cancer) cells can express MerTK and engulf apoptotic cells150. Nonetheless, in a CT26 

transplantation tumor model, radiation-triggered tumor therapy is potentiated in MerTK-

deficient recipient mice151, and MerTK deficiency inhibits the development of Starry-sky 

B-cell lymphoma, where MerTK expression is highly restricted in TAMs152. These findings 

support a critical function for MerTK-mediated TAM efferocytosis in fostering cancer 

progression.

The T-cell immunoglobulin and mucin domain-containing protein (TIM) family receptors 

can also mediate clearance of apoptotic cells with TIM-4 being the major family member 

expressed on antigen presentation cells (APCs) including RTMs in liver, heart, intestine, 

adipose tissue and the peritoneal cavity153–157. In patients with metastatic non-small 

cell lung cancer (NSCLC) to serous body cavities, the frequency of TIM-4-expressing 

cavity-resident macrophages is inversely associated with the frequency of CD8+ T cells 

that express the ectonucleotide triphosphate diphosphohydrolase CD39158. Importantly, anti-

TIM-4 synergizes with anti-PD-1 to revive T cell responses and suppress peritoneal cancer 

cell metastasis in a murine model158. Loss of peritoneal TIM-4+ TAMs is also associated 

with elevated T cell immunity and tumor inhibition for ID8 ovarian cancer cell line injected 

into mouse peritoneal cavity159. These observations further support an important function of 

TAM efferocytosis in promoting tumor development.

The metabolic outcome of macrophage efferocytosis has started to be revealed. Engulfment 

of apoptotic cells and their processing in the lysosome drastically increases the intracellular 

lipid level (Figure 3). High amounts of free intracellular cholesterol activate the 

transcription factor liver X receptor (LXR) that enhances expression of ATP-binding cassette 

transporter A1 (ABCA1) to promote cholesterol efflux, and MerTK to support continuous 

efferocytosis160. Activation of PPAR-δ, another lipid-sensing transcription factor, enables 

cellular adaptation to efferocytosis-derived lipids by promoting fatty acid metabolism161,162. 

Mice deficient in LXR or PPAR-δ accumulate dead cells in many tissues due to failure 

of efferocytosis, revealing a critical role of lipid signaling and metabolism in sustaining 

efferocytosis163. In addition, LXR and PPAR-δ induce expression of anti-inflammatory 

cytokines including transforming growth factor-β1 (TGF-β1) and IL-10162, promoting the 
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resolution of inflammation. In support of a critical role of apoptotic cell-derived lipids 

in metabolic reprogramming of macrophage, depletion of lysosomal lipidase lipidase A 

(LIPA) and phospholipase A2 group 15 (PLA2G15) that hydrolyze cholesteryl esters and 

phospholipids, respectively, impairs activation of LXR and PPAR-δ164,165. Inhibition of 

Niemann-Pick disease type C1 (NPC1)-mediated sterol transport from lysosome to cytosol 

as well prevents activation of LXR during efferocytosis166. Diminished expression of 

proinflammatory cytokines IL-1β and IL-6 during efferocytosis has also been shown to be 

mediated by the Rac GTPase-dependent import of polyamine through pinocytosis139, but the 

molecular mechanisms and functions of this non-selective liquid phase engulfment pathway 

need to be further characterized in macrophages.

Lysosomal clearance of apoptotic cell DNA proceeds with DNA degradation and nucleoside 

export via equilibrative nucleoside transporter 3 (ENT3) (Figure 3), which is critical 

for the maintenance of an anti-inflammatory state of macrophage, as depletion of 

lysosomal DNase II triggers expression of the proinflammatory cytokine TNF-α in part 

through unmethylated CpG DNA-induced activation of toll-like receptor 9 (TLR9)167,168. 

Furthermore, efferocytosis generates short peptides and free amino acids that are exported 

from lysosome to cytosol169. Among all amino acids, arginine is the most upregulated 

amino acid following engulfment of apoptotic cells170. Efferocytosis-derived arginine and 

ornithine can further boost efferocytosis through the stabilization of mRNA encoding the 

GTP-exchange factor (GEF) Dbl and activation of the small GTPase Rac1, following their 

conversion to putrescine by Arg1 and ODC170 (Figure 3). Thus, apoptotic cell-derived lipids 

and amino acids can be sensed and metabolized to sustain efferocytosis.

The afore-discussed metabolic outcomes of macrophage efferocytosis have yet to be directly 

evaluated in TAMs. It also remains to be determined whether efferocytosis is differentially 

regulated in iTAMs and pTAMs, and how cancer cell transformation mechanisms and 

tumor microenvironment signals affect TAM efferocytosis. Furthermore, the functional role 

of apoptotic cell clearance by TAMs can be modulated by phagolysosome cargo sorting 

with the LC3-associated phagocytosis promoting tumor immune tolerance171. How different 

apoptotic cell scavenge receptors engage different phagolysosome pathways to impact TAM 

function warrants further investigation.

The endocytosis receptor Mrc1 marks iRTMs and iTAMs34,172, and mediates internalization 

of the ECM protein collagen173–175 (Figure 3). In a lung tumor model, Mrc1+ iTAMs 

display a matrix catabolism transcriptome signature175, suggesting that collagens can be 

effectively engulfed and proteolyzed by iTAMs. Indeed, Mrc1+ iTAMs are localized at the 

peripheral collagen-rich tumor region131,176, and function to remodel the collagen matrix, 

which promotes cancer cell invasion and metastasis176,177. iTAMs can also express Lyve1, 

an endocytosis receptor for the ECM molecule HA30 (Figure 3). Notably, Lyve1 expression 

marks a subset of iRTMs localized in close proximity to the blood vasculature across 

tissues178. In a PyMT transgenic mammary tumor model, depletion of Lyve1+ iTAMs 

inhibits tumor development in association with disruption of a proangiogenic niche179.

The metabolic outcome of Mrc1- and Lyve1-mediated ECM scavenging is poorly 

understood. Engulfment and proteolysis of ECM proteins in the lysosome generate high 
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amounts of amino acids that may activate the metabolic regulator mTORC1 (Figure 3). In 

support of the hypothesis, iTAMs are metabolically more active with a larger cell size than 

pTAMs22. Interestingly, LysMcre-mediated Raptor knockout promotes the accumulation of 

immune suppressive lung interstitial macrophages and Lewis lung cancer metastasis180. As 

mentioned above, cytosolic amino acids acquired through plasma membrane amino acid 

transporters can be sensed by Rag GTPases to promote mTORC1 signaling. However, 

mTORC1 activation by the lysosome-derived amino acids appears to be Rag GTPase-

independent181,182. Future studies will reveal such mechanisms and define how the 

lysosome-derived amino acids from scavenged ECMs regulate iTAM differentiation and 

function.

Trem2 is a scavenger receptor of the immunoglobulin superfamily and can recognize 

endogenous phospholipids as its ligands183–185 (Figure 3). Trem2+ macrophages are present 

in damaged tissues39, and accumulate high levels of lipids in association with enrichment 

of a lipid metabolism gene expression signature186. In a murine model of diet-induced 

non-alcoholic steatohepatitis (NASH), the interstitial region-localized Kupffer cells and 

monocyte-derived macrophages upregulate Trem2187, suggesting that Trem2 is induced in 

diverse populations of macrophages to clear damage-associated lipids. In contrast to NASH, 

Trem2 expression is limited to pTAMs in tumor, implying that damage-associated lipids are 

predominantly released by cancer cells in the tumor parenchyma. In transplantation tumor 

models, ablation of Trem2 or treatment with a Trem2 blocking antibody alters the TAM 

phenotype and synergizes with anti-PD-1 to revive anti-tumor T cell responses41,188,189. 

In a lung cancer model, Trem2 deficiency triggers NK cell-mediated suppression of tumor 

growth190. Collectively, these studies demonstrate a critical role for Trem2 in mediating the 

immunosuppressive function of TAMs.

The metabolic outcome of Trem2-mediated lipid scavenging in macrophages has started 

to be revealed. Trem2-deficient microglial fail to upregulate lipid metabolism, which can 

be rescued by an agonist for the lipid-sensing transcription factor LXR40, suggesting that 

lipids scavenged by Trem2 are important signaling molecules. However, Trem2 ligands in 

the tumor microenvironment need be further characterized to understand their function in 

nutrient metabolism and signaling in TAMs. In addition to Trem2, a number of other lipid 

scavenger receptors including macrophage receptor with collagenous structure (Marco) and 

macrophage-inducible C-type lectin (Mincle) have been reported to control TAM responses 

(Figure 3). Marco-dependent lipid uptake in TAMs is associated with induction of an LXR 

gene expression program that tracks with short disease-free survival in prostate cancer 

patients with Marco targetable for cancer therapy in preclinical models191. Furthermore, 

Mincle-mediated lipid uptake supports the pro-tumor function of TAMs through the 

induction of an X-box binding protein 1 (XBP1)-mediated endoplasmic reticulum (ER) 

stress response192. Thus, blockade of the lipid scavenger function of TAMs may provide 

novel therapeutic strategies to inhibit their pro-tumor functions.

Iron is a trace element nutrient that primarily utilized by erythrocytes, but equally critical in 

all other cell types193. In addition to SLC39A8 and SLC39A14 transporter-mediated uptake 

of free iron, iron can be acquired through efferocytosis or endocytosis via specific receptors 

for ion in complex forms including that bound to transferrin, lipocalin, and heme194,195 
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(Figure 3). Iron can be used as a metabolic cofactor, stored in macrophages in the form 

of a ferritin complex, or released through the transporter ferroportin (FPN)196. In models 

of microbial infection and tissue damage, iron-sequestering and iron-donating macrophage 

phenotypes have been observed at inflammatory and resolving phases of immune responses, 

respectively197,198. Iron metabolism in TAMs has also important functions in control of 

cancer progression. High level of iron accumulation in TAMs at the tumor edge, likely 

iTAMs, is associated with a pro-inflammatory phenotype and predicts favorable outcomes 

in multiple cancer types199–201. Yet, an iron-secreting and anti-inflammatory phenotype 

was observed in TAMs at the tumor core, likely pTAMs202, and loading TAMs with 

iron repolarizes them to a pro-inflammatory phenotype and diminishes tumor growth203. 

Furthermore, LysMcre-mediated knockout of low-density lipoprotein (LDL) receptor related 

protein 1 (LRP1 or CD91), the endocytic receptor for heme, promotes TAM infiltration to 

the tumor parenchyma and angiogenesis in an implanted mouse pancreatic adenocarcinoma 

model204.

The metabolic outcome of engulfment-mediated ion uptake in TAMs has also started 

to be elucidated. TAMs at the tumor margin express high level of heme oxygenase 1 

(HO-1) that degrades intracellular heme exported out of the lysosome via heme-responsive 

gene 1 protein homolog (HRG1)205. LysMcre-mediated depletion of HO-1 triggers an 

immunostimulatory phenotype, suppresses angiogenesis in a transplantation model of 

sarcoma205, inhibits cancer cell dissemination in a model of melanoma lung metastasis205 

and enhances anti-tumor vaccine efficacy in a subcutaneous thymoma model206. Thus, the 

TAM regulation phenotype of iron is dependent on iron metabolic pathways. While iron 

level modulates TAM polarization, iron metabolism crosstalk between TAMs and cancer 

cells may also be critical to regulate tumor growth. In a prostate tumor model, the anti-tumor 

effect of an iron-chelating reagent is negatively associated with infiltration of iron-laden 

TAMs207, suggesting that TAMs maintain local iron homeostasis. In breast tumor models, 

TAMs at the tumor periphery express high levels of the iron carrier lipocalin 2 (Lcn2), 

that promotes iron transfer to cancer cells in an in vitro coculture system and cancer 

progression in vivo208,209. Leptomeningeal metastasis cancer cells also secret Lcn2 and 

express its receptor SLC22A17 to compete with macrophages for iron acquisition in the 

nutrient sparse subarachnoid space210. Therefore, iron is a limiting micronutrient in the 

tumor microenvironment, and TAMs can recycle iron to support cancer cell growth.

Concluding remarks

TAMs are maladapted RTMs with sub-tissular niche factors including the dynamically 

fluctuating nutrient source being a critical regulator of TAM differentiation and function. 

While the plasma membrane transporter-mediated uptake of glucose appears to majorly 

support the bioenergetic and biosynthetic needs of TAMs, lipids acquired via transporters 

or scavenger receptors are mostly stored in lipid droplets as a likely means to detoxify 

inflammatory lipids produced in the tumor tissue. A number of metabolites generated in 

glucose and lipid metabolism pathways as well as those converted from amino acids can 

also act as signaling molecules to promote scavenger and anti-inflammation functions of 

TAMs. Aside from nutrient consumption, storage and conversion to signaling molecules in 

TAMs, nutrients acquired through engulfment can be further exchanged with neighboring 
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cells including cancer cells as a likely means to support their metabolic needs. Collectively, 

the nutrient acquisition and metabolism pathways appear to enable the tumor-promoting 

activities of TAMs as maladaptation of the tissue maintenance programs of RTMs. 

Nonetheless, the definitive functions of many nutrient acquisition and metabolism pathways 

in TAMs, including their differential regulation in pTAM and iTAM subsets, remain to 

be investigated, as autochthonous tumor models that recapitulate the tissue architecture 

associated with cell transformation have yet to be used in most studies. Of note, in a 

transgenic model of breast cancer, the immunosuppressive function of pTAMs is associated 

with their ability to present tumor-associated antigens to CD8+ T cells and induce T cell 

exhaustion211. Whether such a tolerogenic function of pTAMs is metabolically regulated is 

open for investigation.

The pro-tumor activities of TAMs hamper patient responses to conventional chemotherapy 

and radiotherapy as well as immunotherapy. Notably, blockade of efferocytosis by anti-

Mertk enhances TAM uptake of the endogenously produced immune stimulant 2’3-cyclic 

GMP-AMP (cGAMP) that activates stimulator of interferon genes (STING) signaling and 

synergizes with immune checkpoint inhibitors to suppress tumor growth212. Depletion of 

the potassium channel Kir2.1 in TAMs also diminishes efferocytosis, which promotes 

the accumulation of intratumoral cGAMP and the induction of type I IFN production 

leading to enhanced anti-tumor CD8+ T cell responses213. Administration of the immune 

stimulant unmethylated CpG oligonucleotides also reprograms lipid metabolism in TAMs 

and facilitates phagocytic clearance of cancer cells both in vitro and in vivo regardless of 

their expression of the ‘don’t eat me’ signal CD47214. Furthermore, TAMs may inhibit 

tumor growth by competing with cancer cells or other crucial stromal cells such as the 

endothelium for essential nutrients47,210. Reprograming TAMs by disengaging the tissue-

supporting role and promoting the nutrient-competing function may as well represent a 

new cancer therapy approach. Considering the diverse cell transformation mechanisms 

and heterogenous immune profiles in tumors of different tissue origin, the functions of 

TAMs can thus be contextual. A deep understanding of nutrient acquisition and metabolism 

pathways in TAMs and their metabolic interaction with other components in the tumor 

microenvironment will help guide the development of mechanism-based cancer therapies by 

targeting the highly adaptable innate immune cell lineage.
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Figure 1. TAM subsets and metabolic crosstalk in the tumor microenvironment
A) A simplified schematic depicting healthy and tumorous epithelial tissues with 

phenotypically distinct resident tissue macrophages (RTMs) and tumor-associated 

macrophages (TAMs) localized in sub-tissular interstitial and parenchymal niches. Epithelial 

cell transformation is associated with expansion and phenotypic adaptation of cancer cell-

associated parenchymal TAMs (pTAMs), while interstitial TAMs (iTAMs) with or without 

expression of the scavenger receptor Lyve1 are also adapted in interstitial regions composed 

predominantly of fibroblasts, endothelial cells, nerves, and acellular extracellular matrix 

(ECM).

B) RTM and TAM differentiation from macrophage progenitors is driven by tissue niche 

factors, including growth factors and nutrients as discussed in1 for RTMs. The parenchymal 

and interstitial niche factors regulate differentiation of pRTMs/pTAMs and iRTMs/iTAMs, 

respectively.

C) Modes of metabolic crosstalk between TAMs, cancer cells and other cell types in 

the tumor microenvironment. Abundant nutrients are taken up by all cell types with no 
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restriction, while limited nutrients can be cross-fed or competed between TAMs, cancer 

cells, and other cell types in the tumor stroma, promoting or inhibiting tumor growth, 

respectively. TAMs can also scavenge irritants that otherwise impair tumor tissue fitness and 

suppress tumor development.

D) A number of animal models have been used to study TAM responses in epithelial 

cancers. Autochthonous murine tumor models involve transformation of endogenous 

epithelial lineage cells, and preserve the parenchymal and interstitial tissue architecture 

with pTAMs and iTAMs differentiated in distinct sub-tissular niches. Transplantable murine 

tumor models involve inoculation of cancer cell lines propagated in vitro into target tissues, 

which fails to recapitulate the tumor tissue architecture. In addition, many cancer cell lines 

derived from epithelial tumors acquire mesenchymal phenotype during in vitro propagation. 

TAM responses in these models are often associated with acute influx of a large number of 

inflammatory monocytes with TAM differentiation poorly resembling that induced in human 

tumor.
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Figure 2. Macronutrient uptake and metabolism control of TAM responses
A) Macronutrients including glucose, lipids and amino acids are taken up by tumor-

associated macrophages (TAMs) in the tumor microenvironment (TME) and are catabolized 

or converted to biosynthetic intermediates or signaling metabolites to regulate TAM 

responses. Glucose acquired through glucose transporter 1 (GLUT1) undergoes glycolysis 

to produce adenosine triphosphate (ATP) and generates metabolic intermediates to support 

several biosynthetic pathways. Pyruvate is the end-product of glycolysis, and is mainly 

reduced to lactate in the cytosol, rather than enter the mitochondrion to complete the 

tricarboxylic acid (TCA) cycle as a likely consequence of low oxygen level in the TME. 

Instead, itaconate can be converted from the TCA intermediate cis-aconitate with tumor-

promoting functions. Long-chain fatty acids (LCFAs) are acquired via CD36-mediated 
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lipid uptake and contribute to lipogenesis and lipid droplet formation in TAMs, while 

prostaglandin E2 (PGE2) and leukotrienes are converted from phospholipids, and act as 

bioactive signaling lipids. Amino acids arginine and tryptophan acquired from plasma 

membrane transporters can also be converted to bioactive metabolites to regulate tumor 

progression.

B) Signaling functions of metabolites in TAMs. Metabolites of the glycolytic pathway 

can promote activation of transcription factors including signal transducer and activator 

of transcription 6 (STAT6), nuclear factor kappa B (NF-κB), and hypoxia-inducible factor 

1-alpha (HIF-1α). In addition, lactate can be sensed by the G protein-coupled receptors 

(GPCRs) GPR132 and OLFR78, while the TCA cycle metabolite itaconate suppresses 

the generation of reactive oxygen species (ROS). Lipid-sensing peroxisome proliferator-

activated receptor-γ (PPAR-γ) is subject to caspase-1-mediated cleavage to prevent fatty 

acid oxidation, while lipid-derived metabolites including vitamin D, PGE2, and leukotrienes 

can bind to vitamin D receptor (VDR) and GPCR family members to induce cellular 

signaling. Moreover, cytosolic amino acids such as leucine promotes activation of the 

metabolic regulator mammalian target of rapamycin complex 1 (mTORC1), while the 

tryptophan metabolites kynurenine, kynurenic acid, and indole metabolites are sensed by 

aryl hydrocarbon receptor (AhR) and GPCR family member to regulate TAM responses.

1,3BPG, 1,3-bisphosphoglycerate; 3-PG, 3-phosphoglycerate; 5-LO, 5-lipoxygenase; α-

KG, alpha-ketoglutarate; ADP, adenosine diphosphate; Arg1, arginase 1; CAT, cationic 

amino acid transporter; CCL, chemokine (C-C motif) ligand; COX, cyclooxygenase; 

CXCL, chemokine (C-X-C motif) ligand; DAGs, diacylglycerols; DGAT, diglyceride 

acyltransferase; DHAP, dihydroxyacetone phosphate; ETC, electron transport chain; 

F1,6BP, fructose-1,6-bisphosphate; F2,6BP, fructose-2,6-bisphosphate; F6P, fructose 6-

phosphate; FABPs, fatty acid-binding proteins; G3P, glycerol 3-phosphate; G6P, 

glucose 6-phosphate; GA3P, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-

phosphate dehydrogenase; IL, interleukin; IL4I1, interleukin-4 induced 1; IRG1, 

immune-responsive gene 1; LDH-A, lactate dehydrogenase-A; MAGs, monoacylglycerols; 

MCT, monocarboxylate transporter; MGLL, monoacylglycerol lipase; MMPs, matrix 

metalloproteinase; NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide adenine 

dinucleotide phosphate; OAA, oxaloacetate; PC, pyruvate carboxylase; PDH, pyruvate 

dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1; PD-L1, programmed death-

ligand 1; PEP, phosphoenolpyruvate; PFK-1, 6-phosphofructokinase-1; PFKFB3, 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PKM2, pyruvate kinase M2; PSAT, 

phosphoserine aminotransferase; Ribose-5P, ribose 5-phosphate; RXR, retinoid-X receptor; 

TAGs, triacylglycerols; TFs, transcription factors; TGF-β, transforming growth factor-beta; 

UDP-GlcNAc, uridine diphosphate-N-acetylglucosamine; VEGF-α, vascular endothelial 

growth factor-alpha.

Zhang et al. Page 34

Immunity. Author manuscript; available in PMC 2024 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Engulfment-mediated nutrient acquisition control of TAM responses
Apoptotic cell as well as lipids, extracellular matrix (ECM) proteins and iron complexes 

can be phagocytosed or endocytosed in tumor-associated macrophages (TAMs), and 

nutrients are further generated in the lysosome and exported to the cytosol to support 

metabolism and signaling responses. Upon ligand binding, efferocytosis receptors such 

as MER proto-oncogene, tyrosine kinase (MerTK) or lipid-scavenging receptors such as 

triggering receptor expressed on myeloid cells 2 (Trem2) can activate intracellular kinase 

signaling cascades and induce expression of anti-inflammatory mediators. The recycled 

lipids can also induce anti-inflammatory signaling or exported outside of TAMs to promote 

cross-feeding. Degradation of apoptotic bodies and ECM proteins generate amino acids 

in the lysosome and may activate the metabolic regulator mammalian target of rapamycin 

complex 1 (mTORC1). Arginine is a major amino acid generated from ECM degradation 

and can activate Rac1 through its downstream metabolites. Engulfed apoptotic cells also 

contain nucleic acids, proper degradation of which is critical to prevent activation of nucleic 

acid-innate immune sensing pathways. TAMs can either uptake or release iron in both free 

and complex forms and regulate iron metabolism through competition or crossfeeding in 

tumor.

ABCA1, ATP Binding cassette subfamily A member 1; CD163, CD163 molecule; DNase 

II, deoxyribonuclease 2, lysosomal; ENT3, equilibrative nucleoside transporter 3; FPN1, 

ferroportin 1; SLC39A8, solute carrier family 39 member 8; HO-1, heme oxygenase 

1; HRG1, heme-responsive gene 1 protein homolog; FCGR1A, Fc gamma receptor 

Ia; Lcn2, lipocalin 2; LIPA, lipase A, lysosomal acid type A; LRP1, LDL receptor 
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related protein 1; Lyve1, lymphatic vessel endothelial hyaluronan receptor 1; Marco, 

macrophage receptor with collagenous structure; Mertk, MER proto-Oncogene, tyrosine 

kinase; Mincle, macrophage-inducible C-type lectin; Mrc1, mannose receptor C-type 1; 

NPC1, NPC intracellular cholesterol transporter 1; PLA2G15, phospholipase A2 group XV; 

SLC11A1, solute carrier family 11 member 1; SLC11A2, solute carrier family 11 member 

2; SLC22A17, solute carrier family 22 member 17; SLC39A14, solute carrier family 39 

member 14; TfR, transferrin receptor; Trem2, triggering receptor expressed on myeloid cells 

2.

Zhang et al. Page 36

Immunity. Author manuscript; available in PMC 2024 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	eTOC Blurb
	Introduction
	TAMs as maladapted RTMs
	Macronutrient uptake and metabolism in control of TAM responses
	Engulfment-mediated nutrient acquisition in control of TAM responses
	Concluding remarks
	References
	Figure 1.
	Figure 2.
	Figure 3.

