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Toward naturalistic neuroscience: Mechanisms
underlying the flattening of brain hierarchy in movie-
watching compared to rest and task
Morten L. Kringelbach1,2,3*, Yonatan Sanz Perl4,5, Enzo Tagliazucchi5,6, Gustavo Deco4,7*

Identifying the functional specialization of the brain has moved from using cognitive tasks and resting state to
using ecological relevant, naturalistic movies. We leveraged a large-scale neuroimaging dataset to directly in-
vestigate the hierarchical reorganization of functional brain activity when watching naturalistic films compared
to performing seven cognitive tasks and resting. A thermodynamics-inspired whole-brain model paradigm re-
vealed the generative underlying mechanisms for changing the balance in causal interactions between brain
regions in different conditions. Paradoxically, the hierarchy is flatter for movie-watching, and the level of non-
reversibility is significantly smaller in comparison to both rest and tasks, where the latter in turn have the
highest levels of hierarchy and nonreversibility. The underlying mechanisms were revealed by the model-
based generative effective connectivity (GEC). Naturalistic films could therefore provide a fast and convenient
way to measure important changes in GEC (integrating functional and anatomical connectivity) found in, for
example, neuropsychiatric disorders. Overall, this study demonstrates the benefits of moving toward a more
naturalistic neuroscience.
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INTRODUCTION
“Cinema is the most beautiful fraud in the world” - Jean-Luc Godard.

Watching a movie is a favorite pastime for billions of people,
with the moving images and sound making us feel and think in
often transformative ways. Most, if not all, would agree that the sub-
jective experience of watching naturalistic, multimodal dynamics of
film is highly motivating, soothing, and entirely different from our
usual everyday resting experience of mind-wandering (1, 2). Movie-
watching also feels very different and more relaxing than our often
stressful experience of working and having to solve problems. These
subjective experiences of different workload in different states must
be associated with changes in brain dynamics, and the study of nat-
uralistic films has already yielded interesting findings (3–8). Yet, the
underlying brain mechanisms responsible for the change in compu-
tations associated with watching naturalistic stimuli are not well
understood.

Traditionally, in cognitive neuroscience, neuroimaging studies
of the human brain initially focused on measuring localized activity
evoked during relatively simple parametric tasks using tightly con-
trolled abstract stimuli. These “localizationist” frameworks were de-
signed to assign specific cognitive processes to discrete brain regions
(9, 10). This has led to a deeper understanding of how the brain
solves complex psychological tasks such as, for example, working
memory (11) and reward (12), but at the same time, this also led

to the accidental discovery of a network of regions that are more
active during rest than during task (13, 14). Over time, this has
grown into a burgeoning field, which has provided new insights
into how spontaneous resting state activity recapitulates task activity
(15–22). However, it has also become clear that the field needs more
realistic real-life stimuli where the brain is forced to integrate
complex multimodal stimuli over longer time spans. Proposals
have been made to create a naturalistic neuroscience dedicated to
measuring how the brain reacts to ecologically valid stimuli such
as moving images, speech, and music (3, 6, 23).

Hence, over the past decades, the use of naturalistic films has
emerged as a promising tool for investigating brain function (4, 5,
24). While the earliest studies date back to 1954 where researchers
recorded electroencephalography (EEG) from human participants
watching a movie (25), this provided little in terms of spatiotempo-
ral dynamics. A turning point in cognitive neuroscience came in
2004 with two pioneering papers investigating the spatiotemporal
brain activity linked to films (4, 5). One of these studies used
Sergio Leone’s classic film “The Good, the Bad and the Ugly” to elu-
cidate the intersubject synchronization of cortical activity (4).
Speaking to the importance of using complex stimuli for under-
standing brain function, Sonkusare and colleagues (3) made the ar-
gument that naturalistic movies mimic experiences from everyday
life. Other exciting approaches have used an intersubject phase syn-
chronization approach to reveal brain networks synchronizing to
various features of a task, which not always predicted by the tempo-
ral structure of this task (26, 27).

As such, movies provide an alternative to resting state functional
magnetic resonance imaging (fMRI) and exceed them in some re-
spects, such as higher test-retest reliability and acceptability in
younger and clinical populations (23), although please note that
the umbrella term “naturalistic” can be misleading when referring
to media stimuli, given that films are carefully crafted for form and
function (28).
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Naturalistic movies with fast perceptual information embedded
in slower narrative contexts provide an obvious route to identifying
one of the key organizational objectives of the brain, namely, to
capture the complex, multiscale dynamics of natural stimuli (29).
To reveal these objectives, it is important to understand how the
computational demands for brain changes, when resting or when
solving problems, where the brain must reconfigure the communi-
cation channels between specialized brain regions. For example,
when trying to extract moving features from a visual scene, the spe-
cialized middle temporal visual area region of the brain must be
engaged and communicate differently with the relevant networks
(30). Equally, solving problems requires the prefrontal cortex to
engage according to the difficulty of the task (11, 12, 31–35).
Hence, it has been proposed that the brain is hierarchically orga-
nized such that a group of brain regions, often called the global
workspace, collaborate to orchestrate optimal brain communication
and computation (36–38). Different conditions have been shown to
reconfigure the functional hierarchy of different states, with the pre-
frontal cortex temporarily overriding the global workspace to solve
specific difficult problems (31, 35). However, it is not clear how
watching naturalistic movies reorganizes the functional hierarchy
compared to rest or when solving cognitive tasks.

To directly solve this problem, we created the GCAT (generative
connectivity of the arrow of time) framework, allowing us to infer
the causal mechanisms underlying changes in the hierarchy of the
causal interactions between brain regions across the whole brain.
This generative model uses the previously described INSIDEOUT
framework for determining the model-free changes in hierarchy
in a given condition (39). The INSIDEOUT framework was inspired
by the ideas put forward by Buzsáki (40), who proposed that self-
organized dynamics of the brain constrains how the brain acts on
the world rather than being solely driven by sensations. In other
words, the “inside-out” balance of intrinsic and extrinsic brain dy-
namics could serve as a distinguishing signature of a brain state. The
INSIDEOUT framework also provides a faster and more flexible
way to quantifying causal brain interactions instead of the more
complex and computationally demanding measures of Granger
causality (41) or the more general measures of transfer entropy
(38, 42, 43). This thermodynamics-inspired framework estimates
pairwise interactions between regions and is based on insights
from thermodynamics (44, 45), showing that it is possible to
capture the asymmetry in causal interactions by estimating the
level of nonreversibility (NR). A convenient way of capturing NR
between pairs of regions is through the comparison of not only
the forward time series of signals but also the backward reversed
time series of these signals. Specifically, the GCAT framework com-
putes the time-shifted correlations between (i) the forward time
series of the two regions and (ii) the time-shifted correlations of
the reversed time series. Comparing these two time-shifted correla-
tions provides a reliable quantification of the asymmetry in the in-
teractions between pairs of regions, which, in turn, quantifies the
extent to which one region is driving another.

Another way to describe GCAT framework is to use the language
of thermodynamics, where the breaking of the detailed balance is
said to be reflected in the level of NR, i.e., the arrow of time (39,
44, 46–49). The resulting model-free measure is directly related to
production entropy (46, 49) but much simpler to directly estimate
from the empirical neuroimaging data.

Crucially, here, we use this model-free quantification of the level
of NR fitted to a causal mechanistic whole-brain model. This pro-
vides the generative effective connectivity (GEC), which is the effec-
tive weighting of the existing anatomical connectivity. Note that this
is an extension of the classic concept of effective connectivity (50):
(i) GEC is generative using the whole-brain model to adapt the
strength of existing anatomical connectivity (i.e., the effective con-
ductive values of each fiber), and (ii) the optimization target for
GEC is the NR INSIDEOUT matrix. In other words, creating a
whole-brain model of the arrow of time in the empirical neuroim-
aging data provides direct access to determining the generative
mechanisms creating the hierarchy in any condition and therefore
provides a direct measure of the hierarchical reconfiguration
between conditions.

Specifically, we use the notion of hierarchy to describe the asym-
metry in the directionality of information flow. In physics and
systems biology, creating this asymmetry is usually referred to as
“breaking the detailed balance.”Hence, a flat hierarchy is character-
ized by a low level of directionality of information flow, i.e., what is
called the detailed balance.When the detailed balance is broken, i.e.,
when there is an increase in the directionality of information flow,
this results in a high level of hierarchical reorganization. This notion
of thermodynamic hierarchy allows for the determination of asym-
metry in space (given by the information flow interactions), which
gives rise to asymmetry in time (measured as the arrow of time, or
NR) (39). At different scales, this gives rise to different spatial and
temporal hierarchies (51–53).

The hierarchy across the whole brain can thus be estimated by
using this framework for all pairs of regions in the brain, describing
the breaking of the detailed balance in movie-watching, rest, or cog-
nitive tasks. This is consistent with other examples of proposed hi-
erarchical organization of brain states that include core synaptic
hierarchy (54), global workspace (36, 37), and core periphery (51).

Here, we applied the GCAT framework to the large-scale Human
Connectome Project (HCP) neuroimaging data of the 176 individ-
uals watching movies and resting (scanned with 7 T) and perform-
ing seven cognitive tasks and resting (scanned with 3 T). The
model-free results showed that global levels of NR in the empirical
brain signals are significantly lower in naturalistic movie-watching
than in both resting and tasks (with the highest levels for the latter).
The lower levels of NR in movie-watching directly reflect a more
flattened hierarchy. We then built a whole-brain model where the
resulting GEC allowed us to identify the underlying causal mecha-
nisms generating the flattening of hierarchy appearing when watch-
ing naturalistic films compared to rest and tasks. Overall, the
findings provide insights into functional hierarchical reorganiza-
tion in movie-watching and more generally the GCAT framework
provides the means to harvest the full potential of moving to a more
naturalistic neuroscience.

RESULTS
The move toward a more naturalistic neuroscience requires new ad-
vanced methods and our overall aim was to assess the GCAT frame-
work for quantifying the functional hierarchical changes in the
brain. This is achieved by using a model-free measure of the NR
capturing the breaking of the detailed balance, combined with a
model-based approach, which can identify the causal mechanisms
underlying specific changes in brain state. Specifically, we applied

Kringelbach et al., Sci. Adv. 9, eade6049 (2023) 13 January 2023 2 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E



the GCAT framework to large-scale neuroimaging data of human
participants watching a naturalistic movie, resting, or solving cog-
nitive tasks.

Description of GCAT framework
Figure 1 summarizes the overall framework based on the thermody-
namics notion of NR, which can be used to quantify the breaking of
detailed balance of a hierarchical system. In particular, the upper
panel of the figure shows a nonhierarchical system, which is in de-
tailed balance and therefore fully reversible over time. In thermody-
namics, this means that the production entropy, S, over time is equal
to zero. The production entropy is quantified as the Kullback-
Leibler distance between the forward and backward transition prob-
abilities of the dynamical evolution of a system and therefore a
measure of NR (46, 49).

In a hierarchical systemwithout detailed balance, the production
entropy is always larger than zero (shown in the bottom subpanel of

Fig. 1A). Hence, this is a measure of the asymmetry of the underly-
ing causal interactions, i.e., measuring the breaking of the detailed
balance. In other words, the hierarchy of a system can be quantified
directly by assessing NR.

In addition to production entropy, Jarzynski et al. (44, 45) pro-
posed to measure the level of NR by estimating the arrow of time in
the underlying signals of a dynamical system. Specifically, their
method requires both the forward time series of each region and
the time reversed time series (generated by flipping the time order-
ing from the empirical time series; see Fig. 1B and Methods). Their
method then uses machine learning to classify whether these two
time series are distinguishable. If they are not distinguishable,
then there is no arrow time and the system is fully reversible and
vice versa.

Here, we propose a variation on this time-consuming machine
learning process. We simply measure the pairwise level of temporal
asymmetry by computing a time-shifted measure of correlation

Fig. 1. GCAT framework for discovering underlying causal mechanisms of hierarchical organization. (A) Level of hierarchy is given by the level of asymmetry of
causal interactions between brain regions arising from the breaking of the detailed balance. The upper subpanel shows a nonhierarchical system in full detailed balance
and thus fully reversible over time, i.e., no change in production entropy, S. In contrast, the bottom subpanel shows a change in production entropy, reflecting the
asymmetry of the underlying causal interactions. (B) Estimating the arrow of time requires the forward time series of each region (in black) and the time-reversed
time series (in red). (C) Basic principle of how the level of NR can be computed through the pairwise level of asymmetry using a time-shifted measure of the correlations
between the forward (x, y) (top row) and the reversed [x(r), y(r)] time series (bottom row). The difference between these time-shifted correlations provides a quantification
of the asymmetry in the interactions between pairs of regions (for a given shift ∆t = T ). (D) Hierarchy is computed through the generalization of the pairwise NR for the
whole brain, i.e., as a matrix involving all pairs. The hierarchy is given by the NR matrix, which is the difference between the two time-shifted correlation matrices for the
forward and reversed time series (at a given shift time point ∆t = T; see Methods). (E) NR matrix is used to fit a whole-brain model creating the GEC, which provides the
underlying causal mechanisms (see Methods). (F) Average of the NR matrix provides a model-free estimate of the hierarchy that can be contrasted over conditions. (G)
Further mechanistic insights into hierarchy can be provided by rendering the in and out degree of the GEC matrix.
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between the two time series. Figure 1C shows how to compute the
pairwise NR as the absolute value of the difference between these
time-shifted correlations of the forward and reversed time series.
In other words, this quantifies the extent to which one region is
driving another by providing the level of asymmetry in the interac-
tions between pairs of regions (for a given shift ∆t = T;
see Methods).

This allows us to compute the brain hierarchy as the generaliza-
tion of the pairwise NR to a matrix involving all pairs, i.e., covering
all regions of the brain. Figure 1D shows how the hierarchy is simply
given by the NR matrix, which is the difference between the two
time-shifted correlation matrices for the forward and reversed
time series (at a given shift time point ∆t = T; see Methods).

To gain a deeper understanding of the generative principles of
functional hierarchy, we then modeled these empirical, model-
free measures. Figure 1E shows how a whole-brain model can be
fitted to the empirical NR matrix by iteratively estimating the
GEC with a pseudo-gradient algorithm (see Methods). The under-
lying changes in model-free functional hierarchy (shown in Fig. 1F)
can be directly quantified by the model-based GEC matrix, which
provides direct insights into the information flow involved in the
breaking of the detailed balance (Fig. 1G).

Empirical, model-free changes in functional hierarchy for
movies, rest, and tasks
We assessed the overall significant changes in functional hierarchy
for movies, rest, and tasks. As can be seen in Fig. 2A, a direct com-
parison of hierarchy shows that movie-watching (averaged over all
sessions) has a significantly more flattened hierarchy (lower NR)
compared to both rest (P < 0.001, Wilcoxon) and tasks (average
over all seven tasks, P < 0.001, Wilcoxon). Even the differences
between rest and cognitive tasks are highly significant (P < 0.001,
Wilcoxon) with resting less nonreversible than cognitive tasks.
These results show that the level of NR in movie-watching is
similar to anesthesia and deep sleep (as quantified in recent
papers) (39, 49) than rest and task. This flattening of the hierarchy
is suggestive of a less active dynamical repertoire than when resting,
which, in turn, most likely reflects less computation. In other words,
the flattened hierarchy reflects less asymmetric interactions between

brain region and the decrease of NR in anesthesia, and deep sleep
reflects less directed information flow in the underlying substrate,
associated with much less computational demand. It has been
found that the lack of dynamical flexibility found in unconscious
states (such as deep sleep and anesthesia) is also reflected in a stron-
ger correlation between the functional and anatomical connectivity
(55, 56). In other words, the unconscious brain activity is more
driven by the underlying anatomical backbone of connectivity.
This is also the case when movie-watching, where the correlation
between the average FCallmovies and structural connectivity (SC) is
0.40, while the correlation between the average functional connec-
tivity (FC)allrest and SC is 0.37.

Further analyses of each session of movie-watching whether
watching Hollywood or Creative Commons (CC) movies (com-
pared with rest) showed significantly different levels of hierarchy
(P < 0.001, Wilcoxon; see Fig. 2B). Equally, Fig. 2C shows that
each of the seven cognitive tasks (measured with 3-T fMRI) is sig-
nificantly more nonreversible than resting state (P < 0.001, Wilcox-
on). This increase in the hierarchy during cognitive tasks is
suggestive of the specific computational demands, which is reflected
in specific asymmetric, causal interactions between regions in
cognition.

Whole-brain modeling of hierarchical changes: GEC
We went beyond the empirical, model-free measures of NR by con-
structing a generative whole-brain model, allowing us to infer the
underlying causal mechanisms for hierarchical changes in movies,
rest, and tasks. The whole-brain model combines the anatomical
connectivity with the local dynamics to fit the empirical functional
data (57–59). The models come in many flavors (e.g., spiking, dy-
namical mean field, and Hopf) and can fit many different empirical
observables (FC and dynamic FC]. Here, crucially, we use a Hopf
model (since this has been shown to provide the best fit) and the
model-free observable of NR identifying the hierarchical organiza-
tion. More specifically, Fig. 3A shows the procedure for fitting a
whole-brain model, initially using the anatomical connectivity
and then iteratively adjusting a GEC, which are the weights of the
existing anatomical connections. To study the influence of the pre-
viously unknown observable, we first carried out this fitting

Fig. 2. Different functional hierarchies formovies, rest, and tasks.We estimated the functional hierarchy as characterized by the levels of NR. (A) Direct comparison of
hierarchy in naturalistic movie, rest, and tasks shows thatmovie-watching (averaged over all sessions) has a significantlymore flattened hierarchy (i.e., lower NR) compared
to both rest and tasks (average over all seven tasks). Rest is less nonreversible than movie-watching but significantly less than task. (B) Each session of movie-watching
(measured with 7-T fMRI) is significantly less nonreversible than rest. (C) Equally, all seven cognitive tasks (measured with 3-T fMRI) are significantly more hierarchically
(i.e., nonreversible) than rest, suggesting the importance of hierarchy for computation.
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procedure using the traditional approach of fitting only the empir-
ical FC, which resulted in the GEC matrix, GFC. Second, we also
fitted the whole-brain model both to the FC and the NR matrices,
which produced the GEC matrix, GNR (see Methods).

Figure 3B shows that only fitting to the NRmatrices generated an
acceptable fit to the empirical levels of NR (compare upper row with
lower row). Specifically, the leftmost graphs show the evolution of
the level of fit over time when fitted to the FC (upper) and when

fitted to FC and NR (lower). The correlation between the empirical
and simulated matrices are represented by black (FC) and red (NR)
curves. In both cases, we found good levels of the model fit to FC
(black curves). However, only when fitting the model using both FC
and NR, we obtained a good level of fit to the empirical NR (see the
convergence of red curve in the lower graph and nonconvergence in
the upper graph). This nontrivial finding shows that the whole-
brain model needs to explicitly fit the empirical levels of NR to be

Fig. 3. Whole-brain model provides causal insights into the functional hierarchy of movie-watching. The figure shows how to identify the underlying causal mech-
anisms resulting in the different levels of hierarchy (i.e., NR) when movie-watching. (A) Procedure starts with fitting a whole-brain model, initially using the anatomical
connectivity and then iteratively adjusting a GEC according to either fitting this to the empirical FC alone (GFC) or including the NR (GNR) matrices. (B) Upper row shows the
optimization of the whole-brain model based on optimizing only with FC, while the lower row shows the same but including the optimization with NR. As can be seen in
the leftmost panels, the evolution of learning improves the level of fit to FC (correlation between empirical and simulated matrices, black curves) in both cases but only
fitting the FC does not give a good fit to the empirical NR (see red curves). The second column of panels show the optimized GECmatrices (GFC and GNR). While difficult to
discern, the former is symmetrical, while the latter is asymmetrical, as quantified below. The third column of panels shows the simulated NRmatrices, and the level of fit to
the empirical NR is shown in the scatterplot in the fourth column of panels. It is very clear that only the GNR optimization is able to capture the level of empirical NR and
consequently, the hierarchy. (C) Leftmost figure is quantifying the level of asymmetry of the GNR. As can be seen in the boxplot, there is no asymmetry for GFC, but strong
asymmetry for GNR. This is further explored in the inset, which shows that there are many asymmetric pairs of brain regions. Last, we visualize these asymmetries with the
full and thresholded matrices.

Kringelbach et al., Sci. Adv. 9, eade6049 (2023) 13 January 2023 5 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E



able to account for this observable and consequently capture the
mechanisms underlying the functional hierarchy.

The importance of this result can also be seen when inspecting
the results of the fitting procedure, in the second column of panels
showing the optimized GEC matrices (GFC and GNR). Equally, the
third column of panels shows the simulated NR matrices, while the
levels of fit to the empirical NR are shown in the scatterplots in the
fourth column of panels. As can be appreciated, only the GNR opti-
mization is able to capture the level of empirical NR and, conse-
quently, the hierarchy.

The figure shows the reason why the whole-brain model can
capture the hierarchy, namely, due to the underlying asymmetry
found in the GEC matrix GNR. Figure 3C shows a boxplot demon-
strating the lack of asymmetry for GFC but strong asymmetry for
GNR. The inset shows that there are many asymmetric pairs of
brain regions, which are visualized through renderings of the full
and thresholded matrix differences (rightmost panels;
see Methods).

Discovering the underlying regions involved in hierarchical
changes in movies, rest, and tasks
The information flow between different brain regions is captured by
the GEC matrix resulting from fitting the whole-brain model to the
empirical FC and NR data. This, in turn, provides a precise descrip-
tion of the regions serving as drivers and receivers under different
conditions. More specifically, these can be identified from the GEC
matrix. The receivers can be determined as the incoming informa-
tion,Gin, given by the in-degree of the GECmatrix, while the drivers
can be found as the outgoing information,Gout, from the out-degree
of the GEC matrix. Similarly, a measure of orchestration is given by
the sum of ingoing and outgoing information, Gtotal = Gin + Gout.

For all conditions, Fig. 4A shows a rendering of the receivers (in-
coming Gin), drivers (outgoing Gout), and the sum of them (Gtotal).
The figure shows the significantly flattened hierarchy in movie-
watching (deeper red) compared to both rest (more orange) and
task (strongest yellow). This expands on the model-free results re-
ported above, which found differences between the average total for
the conditions. Here, using the GEC, we were able to pinpoint the
regional, topological differences driving the changes in hierarchy.
These results further strengthen the interpretation that the brain
is performing less computation in movie-watching compared to
both rest and when performing tasks.

The significant topological differences between movie-watching
and rest as well as the differences between cognitive tasks and rest
are further quantified in Fig. 4B. There is a significant decrease in
hierarchy in movies compared to rest, which is explicitly shown by
rendering the difference between their respective Gtotal. As can be
seen from the colormap in the left, movie-watching is more ba-
lanced than resting, except in prefrontal and visual regions. This
demonstrates the counterintuitive finding that resting involves
more computation than movie-watching, which is perhaps
driving our desire for watching movies. However, the prefrontal
cortices are still more nonreversible than in rest, reflecting that
breaking of the detailed balance is being orchestrated by these pre-
frontal regions. This finding is reinforced by the finding (shown in
right of Fig. 4B) that the general hierarchy is significantly larger for
tasks than rest, where the main drivers of the breaking of the de-
tailed balance is once again found primarily in the prefron-
tal regions.

Figure 4C quantifies this important finding of the role of the pre-
frontal cortex in computation and driving the breaking of the de-
tailed balance. To identify the common drivers across movie-
watching and cognitive tasks, we selected the top 50% regions of
the contrasts in Fig. 4B and computed the intersection of the two
contrasts. We found that primarily prefrontal regions [bilateral su-
perior frontal, rostral middle frontal, inferior frontal gyrus (pars tri-
angularis), caudal middle frontal cortices, and left lateral
orbitofrontal cortices] as well as right rostral anterior cingulate,
left superior parietal, right middle temporal, and lateral occipital
cortices are the main drivers orchestrating computation in
the brain.

GEC matrix is significantly better for classification
The GEC matrix provides the causal mechanistic principles for a
given condition and can therefore be used for revealing the main
drivers of computation. It should therefore be excellent for classifi-
cation of a given condition. To test this, we used machine learning
[with an support vector machine (SVM) classifier] using either GEC
or FC to classify movie-watching compared to rest and comparing
between different kind of movies (Hollywood or CC license on
Vimeo). Figure 5A shows the boxplots of the classification perfor-
mance (across 100-fold) and the associated average confusion
matrix (see Methods). The results show that the classification is
much better when using GEC than when using FC. In each case,
the performance numbers are shown on the figure. This improve-
ment is caused by the fact that the GEC matrix is a generative
measure capturing the asymmetry of causal interactions, while the
FC matrix is symmetric, capturing functional correlations.

Equally, as shown in Fig. 5B, the GECmatrix is much better than
the FC matrix for classifying specific movie extracts. The average
performance for GEC is 93.4%, while the average performance
using FC is closer to chance levels (62.7%).

DISCUSSION
Over the past century, neuroscience has started to reveal much
about the functional specialization of the brain, yet we are only be-
ginning to identify the overall whole-brain hierarchical organiza-
tion needed for orchestrating brain computation. Over time, focus
has shifted from using relatively simple parametric cognitive tasks
to using more ecologically valid naturalistic stimuli such as movies.
Here, we used a thermodynamics-inspired GCAT framework to di-
rectly determine the brain hierarchy involved in the computation
evoked by naturalistic movies compared to rest and parametric cog-
nitive tasks in a large-scale neuroimaging dataset. This framework
directly measured the hierarchy in the empirical data in a model-
free and model-based manner through assessing the level of NR,
i.e., the arrow of time. The model-free results showed that the hier-
archy is significantly flatter for naturalistic movies compared to
both rest and cognitive tasks. Equally, the model-free results also
showed that cognitive tasks involve more computation with signifi-
cantly higher levels of hierarchy than both resting and movie-
watching.

The model-based findings were entirely consistent with the
model-free results in revealing a flattened hierarchy for movie-
watching compared to cognitive tasks and rest. Crucially,
however, the GEC matrix obtained by the whole-brain modeling
(fitted to the model-free measure of NR) revealed the causal
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interactions that give rise to the empirical hierarchy, i.e., the level of
NR. In particular, we were able to identify the common drivers
across movie-watching and cognitive tasks, which were found to
be mainly prefrontal regions (bilateral superior frontal, rostral
middle frontal, inferior frontal gyrus pars triangularis, caudal
middle frontal cortices, and left lateral orbitofrontal cortices).
This provides causal insights into the large literature on the prefron-
tal regions, which shows that the prefrontal cortex is crucial for flex-
ible computation needed for complex problems (11, 12, 31–35).
This also fits well with the extensive literature on mind-wandering
and spontaneous thought, where a very influential review by Christ-
off et al. (60) pointed to role of DMN centered on the medial pre-
frontal cortex as a main driver of mind-wandering. In addition, it is
of significant interest that the orbitofrontal cortex is a driving region

for both movie-watching and solving cognitive tasks, given its role
in the hedonic processing and motivation (12).

In addition, we were also able to show that the asymmetric, gen-
erative GECmatrix is much better than the correlative FCmatrix for
the classification of condition. In particular, the GEC matrix was
much better for classifying different conditions (movie-watching
and resting) and betweenmovie conditions (Hollywood versus CC).

Using thermodynamics framework to infer generative
hierarchy
The findings reported here provide evidence for the generative hi-
erarchy of brain function and thus significantly expanding on the
research carried out over the past hundred years of neuroscience.
Previous research has convincingly demonstrated that the

Fig. 4. Identifying the underlying causal drivers of hierarchy changes in movies,
rest and tasks. We can determine the information flow in terms of drivers and re-
ceivers by using the matrices of the GEC, obtained through using a whole-brain
model for movies, rest, and tasks (fitted to both the model-free measures of NR and
FC). This provides direct measures of the underlying brain hierarchy. (A) For all con-
ditions, the figures show the receivers (incoming, Gin), drivers (outgoing, Gout), and
their sum (Gtotal). The hierarchy is given by the gradations in color and, as can be seen
movie, has a significantly lower hierarchy (deeper red) than both rest (orange) and
task (strongest yellow). (B) Decrease in hierarchy in movies versus rest can be explicit
shown by rendering the difference between their respective Gtotal. As can be seen
from the colormap, where negative values are more blue and positive values are
more yellow, only prefrontal and some visual regions are stronger for movies than
rest. In other words, while the general hierarchy is flattened in movies, the prefrontal
and visual regions are more nonreversible for movies, suggesting that the compu-
tation performed by these regions drives the breaking of the detailed balance when
movie-watching. In contrast, when comparing the Gtotal for the average over all tasks
versus rest, the general hierarchy is significantly larger for tasks and the main drivers
of the computation is again found primarily in the prefrontal regions. (C) Confirming
the role of prefrontal cortex in driving the breaking of the detailed balance, we
computed the intersection of the top 50% regions of the contrasts shown in (B). This
showed that primarily prefrontal regions (as well as some parietal, visual, and tem-
poral) are the common drivers orchestrating computation in the brain.
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anatomy of the brain is hierarchically organized across scales, from
single units to the larger circuits (54, 61–66). It has also become
clear that this fixed anatomy is reflected in the functional organiza-
tion of the brain leading to a clear topographic organization of the
brain with some functional specialization (67). Yet, finding the true
richness of the functional hierarchical organization requires ad-
vanced methods for estimating the flow of information between
brain regions, which provides the scaffold for the necessary orches-
tration of computation performed by the brain.

Previously, in terms of going beyond the anatomical restrictions
to describe the richness of functional activity, Marsel Mesulam was
one of the first to propose how the anatomical connectivity can lead
to brain processing shaped by a hierarchy of distinct unimodal areas
orchestrated by integrative transmodal areas (54). Recently, this idea
has been further extended with functional neuroimaging by re-
searchers such as Margulies et al. (68) providing a gradiental per-
spective on hierarchical processing and Atasoy et al. (69, 70)
providing a more generalized perspective based on the ubiquitous
idea of harmonic modes found everywhere in Nature. Equally,
Northoff et al. (51, 71–73) have proposed a similar hierarchical

core-periphery principle. This led them to the demonstration of a
convergence of temporal and spatial hierarchy during rest which
changes compared to task (51, 71–73), consistent with the findings
presented here.

Yet, even stronger evidence of the functional hierarchical brain
organization can only come from methods directly estimating the
causal interactions between brain regions using versions of transfer
entropy and Granger causality (38, 74–76). Using a version of nor-
malized directed transfer entropy (NDTE) has been key to quantify
the notion of a “global workspace” orchestrating brain function and
where information is integrated in a small group of brain regions
before being broadcast to many other regions across the whole
brain (36, 37). Hence, the global workspace can be thought of as
prototypical example of a hierarchical system, akin to a small core
assembly of people in charge of a large organization. Such larger
brain network organization has been shown to be efficient,
robust, and largely fault tolerant (63, 77, 78).

Using the NDTE framework allowed for the identification of
global workspace used for the orchestration of the functional hier-
archical organization (38), which included the left precuneus, left

Fig. 5. GEC is excellent for classification of movie-watching. We used machine learning to classify movie-watching compared to rest and between different movies
using either GEC or FC. (A) Figure shows the boxplots of the classification performance (across 100-fold) and the associated average confusion matrix. As can be seen, the
classification is much better when using GEC than using FC (with the performance numbers shown on the figure). (B) Similarly, the classification of specific movie extracts
(Hollywood or CC license on Vimeo) is also much better when using GEC than using FC. Here, using classification with GEC is significantly better than using FC. As can be
seen, the average performance for GEC is 93.4%, while the average performance using FC is closer to chance levels (62.7%). Overall, the GEC provides the causal mech-
anistic principles for a given condition and therefore is excellent for classification of that condition.
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nucleus accumbens, left putamen, left posterior cingulate cortex,
right hippocampus, right amygdala, and left and right isthmus cin-
gulate. Lesioning of these regions in a whole-brain model destroys
the functional hierarchical organization.

Nevertheless, the computation of the direct causal interactions
using NDTE and other related methods is a time-consuming
process and depends on having large datasets. Here, we improved
on the state of the art by using an efficient and robust thermody-
namics-inspired GCAT framework providing two complementary
quantifications of hierarchy: A model-free, indirect measure of hi-
erarchy (as the level of NR), which in turn provides the observable
for a model-based, direct quantification of the causal interactions
giving rise to the hierarchical organization.

Thus, by its very nature, the GCAT framework developed here
provides measures of the NR of the brain during different condi-
tions and allows for a precise identification of the brain regions in-
volved in breaking the balance and net fluxes between the
underlying networks. The INSIDEOUT method used here can
used to reveal the hierarchical organization of brain states, and it
has been demonstrated to capture the causality of time series
found [as shown in figure S4 in the paper of Deco et al. (39)].
Causal measures of time series have a long history with considerable
arguments in the literature as to the appropriateness of using these
on blood oxygenation dependent level (BOLD) time series due to
the potential impact of the variability of the hemodynamic response
across brain regions (79–81). At the same time, it has also been
shown that causal time series methods perform much better with
sufficiently fast sampling and low measurement noise (82). Here,
we use state-of-the-art HCP data with a fast repetition time (TR)
of 0.78 s (for the 3-T data) and 1.0 s (for the 7-T data), providing
excellent subsampling of the hemodynamic response function. This
lessens any potential problems with poor subsampling with long TR
that can lead to problems with spurious and undetectable causality
as well as distortion of relative strengths.

Intuitively, it might seem that movie-watching would involve
more computation than when resting and therefore would involve
a steeper hierarchical organization. However, the empirical analysis
carried out here show that this is not the case. Instead, we found a
flattening of the brain hierarchy in movie-watching, which is
perhaps one of the reasons why watching films is a preferred relax-
ing pastime for many people. Perhaps surprisingly, resting is not
particularly desirable with Killingsworth and Gilbert (83)
showing that the introspection and mind-wandering state rarely
leads to a happy mind, probably since resting leads to thinking
about what is not happening, which involves significant, and
often undesirable, computation. In contrast, movie-watching pro-
vides a desirable audio-visual narrative where the necessary compu-
tation is minimal. Hence, naturalistic films may be a better
alternative compared to resting when investigating younger and
clinical populations, especially given that naturalistic films also
have higher test-retest reliability (23).

Overall, the proposed framework provides important model-free
and model-based insights into the causal mechanisms underlying
complex changes in brain hierarchy under different conditions.
This provides much needed tools for leveraging the move toward
amore naturalistic neuroscience, which, in turn, will benefit our un-
derstanding of how the brain operates in its natural ecologi-
cal context.

METHODS
Ethics
The Washington University–University of Minnesota (WU-Minn
HCP) Consortium obtained full informed consent from all partic-
ipants, and research procedures and ethical guidelines were fol-
lowed in accordance with Washington University Institutional
Review Board (IRB) approval (Mapping the Human Connectome:
Structure, Function, and Heritability; IRB #201204036).

Participants
All data were extracted from the HCP using the same 176 partici-
pants with complete data of movie-watching and rest (in 7 T) and
seven tasks and rest (in 3 T), which were a subset of approximately
1200 participants scanned at 3 T. Note that the dataset includes
many sets of siblings and twins (whether mono- and dizygotic),
and ultimately, the data derive from 90 unique families. All partic-
ipants (106 females and 70 males) were generally healthy young
adults between 22 and 36 years old (mean age = 29.4 and SD = 3.3).

Experimental paradigms
The experimental paradigms performed in the scanner included
movie-watching, rest, and seven cognitive tasks as described in
detail in the following.
Movie-watching and rest in 7-T scanner
Participants passively viewed a series of audiovisual movie clips in
four functional runs (of approximately 15 min each) consisting of
four or five clips of varying length from 1:03 to 4:19 min:s. In
between each clip there was 20-s period of rest. The first and
third runs contained clips from independent films (both fiction
and documentary) made freely available under CC license on
Vimeo, while the second and fourth runs contained clips from Hol-
lywood films prepared by Cutting et al. (84, 85). For a brief descrip-
tion of each clip, see (86). Themovies were presented in a full-screen
mode (size, 21.8° width × 15.7° height) and audio was delivered via
Sensimetrics earbuds.

The same participants underwent four resting state scans (of ap-
proximately 16 min each), where the participants were instructed to
keep their eyes open andmaintain relaxed fixation on a bright cross-
hair on a dark background in a darkened room. Given that the di-
rection of phase encoding alternated between posterior to anterior
and anterior to posterior across runs, we included all four scans.
Seven cognitive tasks and rest in 3-T scanner
We chose the same 176 participants who also performed seven tasks
contained in the HCP task battery (39, 87), which were designed to
cover a broad range of human cognitive abilities in seven major
domains that sample the diversity of neural systems (i) visual,
motion, somatosensory, and motor systems; (ii) working memory,
decision-making, and cognitive control systems; (iii) category-spe-
cific representations; (iv) language processing; (v) relational pro-
cessing; (vi) social cognition; and (vii) emotion processing.

The participants also underwent four resting state scans (of ap-
proximately 15 min), where the participants were instructed to keep
their eyes open and maintain relaxed fixation on a bright cross-hair
on a dark background in a darkened room. Unlike the 7-T data, the
direction of phase encoding was the same across the four scans and
so we only used the first resting scan.
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Neuroimaging data
The HCP website (http://humanconnectome.org/) provides the full
details of participants, the acquisition protocol and preprocessing of
the data. Below, we have briefly summarized this information.
3-T structural data
The HCP structural data were acquired using a customized 3-T
Siemens Connectom Skyra scanner with a standard Siemens 32-
channel radio frequency (RF)–receive head coil. For each partici-
pant, at least one three-dimensional (3D) T1w MPRAGE image
and one 3D T2w SPACE image were collected at 0.7-mm isotropic
resolution.
3-T diffusion MRI
To reconstruct a high-quality SCmatrix, we obtainedmultishell dif-
fusion-weighted imaging data from 32 participants from the HCP
database (scanned for approximately 89 min). The acquisition pa-
rameters are described in detail on the HCP website (88). This is
used for constructing the whole-brain model as the first estimate
of the GEC, which is then iteratively improved to fit the functional
data (see below).
3-T functional data
Briefly, the HCP 3-T fMRI data were acquired using a customized 3-
T Siemens Connectom Skyra scanner with a standard Siemens 32-
channel RF receive head coil, with the following parameters: 2.0-
mm isotropic voxels, TR = 720 ms, echo time (TE) = 33.1 ms, flip
angle = 52°, field of view (FOV) = 208 × 180mm, 72 slices, and mul-
tiband factor = 8. For full details of the task scans, see http://
protocols.humanconnectome.org/HCP/3T/imaging-
protocols.html.
7-T functional data
For each participant, HCP fMRI data were acquired using a 7-T
Siemens Magnetom scanner with a Nova32 32-channel RF receive
head coil, using the following parameters: 1.6-mm isotropic voxels,
TR = 1000 ms, TE = 22.2 ms, flip angle = 45°, matrix = 130 × 130,
FOV = 208 × 208 mm, 85 slices, multiband factor = 5, image accel-
eration factor = 2, partial Fourier sampling = 7/8, echo
spacing = 0.64 ms, and bandwidth = 1924 Hz/Piels. The direction
of phase encoding alternated between posterior to anterior and an-
terior to posterior across runs. For full details, see http://protocols.
humanconnectome.org/HCP/7T/.
Neuroimaging preprocessing for fMRI HCP
The preprocessing of the HCP resting state and task datasets is de-
scribed in detail on the HCP website. Using an existing pipeline
(39), the data are preprocessed using the HCP pipeline, which is
using standardized methods using FSL (FMRIB Software Library),
FreeSurfer, and the ConnectomeWorkbench software (89, 90). This
standard preprocessing included correction for spatial and gradient
distortions and head motion, intensity normalization and bias field
removal, registration to the T1 weighted structural image, transfor-
mation to the 2-mm Montreal Neurological Institute space, and
using the FIX artefact removal procedure (90, 91). The head
motion parameters were regressed out and structured artefacts
were removed by ICA + FIX processing [independent component
analysis followed by FMRIB’s ICA-based X-noiseifier (92, 93)]. Pre-
processed time series of all grayordinates are in HCP Connectivity
Informatics Technology Initiative (CIFTI) grayordinates standard
space and available in the surface-based CIFTI file for each partic-
ipants for resting state and each of the seven tasks.

We used a custom-made MATLAB script using the ft_read_cifti
function [FieldTrip toolbox (94)] to extract the average time series

of all the grayordinates in each region of the Mindboggle-modified
Desikan-Killiany parcellation (95) with a total of 62 cortical regions
(31 regions per hemisphere) (96), which are defined in the HCP
CIFTI grayordinates standard space. The BOLD time series were fil-
tered using a second-order Butterworth filter in the range of 0.008
to 0.08 Hz.

GCAT framework and associated methods
The thermodynamics-inspired GCAT framework is a general
method, which allows us to infer the causal interactions between
brain regions through the level of NR across the whole brain. This
allows us to build a causal mechanistic whole-brain model, which
creates the GEC, as the effective weighting of the existing anatomical
connectivity, giving rise to the observed level of NR.
Empirical FC
The empirical FC, FCempiricalij , is a matrix of Pearson correlations
across the fMRI BOLD time series activity between brain regions,
i and j, in the different conditions (naturalistic films, rest, and tasks).
Method for quantifying causal interactions through the levels
of NR
Rather than using direct causal measures such as transfer entropy,
we estimate the pairwise interactions between regions by computing
the time-shifted correlations between both the forward and the re-
versed fMRI BOLD time series of any two brain regions (39). This
provides a reliable quantification of asymmetry in the interactions
between pairs of regions, which, in turn, quantifies how one region
is driving another. This is inspired by thermodynamics, where the
breaking of the detailed balance is quantified by the level of NR, i.e.,
the arrow of time. Following procedures previously described in
(39), we capture the level of NR precisely as the difference in the
time-shifted correlations between forward and reverse time series.
Using this empirical framework on all pairs of regions in the brain
provides a quantification of the hierarchy in a given condition
(movie-watching, rest, or tasks).

Specifically, let us consider first the detection of the level of NR
(i.e., the arrow of time) between two time series x(t) and y(t). The
causal dependency between the time series x(t) and y(t) is measured
through the time-shifted correlation. For the forward evolution the
time-shifted correlation is given by

cforwardðDtÞ ¼, xðtÞ; yðt þ DtÞ . ð1Þ

Equally, we create the reversed backward version of x(t) [or y(t)]
that we call x(r)(t) [or y(r)(t)], which is obtained by flipping the time
ordering, i.e., by ordering the time evolution of x(r)(t) [or y(r)(t)] as
the inverted sequence. Thus, the time-shifted correlation of the re-
versal evolution is given by

creversalðDtÞ ¼, xðrÞðtÞ; yðrÞðt þ DtÞ . ð2Þ

The pairwise level of NR, i.e., the degree of temporal asymmetry
capturing the arrow of time, is consequently given by the absolute
difference between the causal relationship between these two time
series in the forward and reversed backward evolution at a given
shift Δt = T, i.e.

Ix;yðTÞ ¼j cforwardðTÞ � creversalðTÞ j ð3Þ
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We selected the optimal T (for the 7- and 3-T scans) using a two-
step procedure, where we first compute the averaged autocorrela-
tion over all signals and identified the approximate value of T,
where the autocorrelation has sufficiently decayed. For the 7-T
data (movie-watching and rest), we selected the optimal T7T = 2
TRs, i.e., 2 s. We then optimize around this value to find the most
significant results. Similarly, for the 3-T data (rest and seven cogni-
tive tasks), we selected the optimal T3T = 3 TRs, i.e., 2.16 s.

To compute the whole-brain level of NR, we define the forward
and reversal matrices of time-shifted correlations for the forward
version, xi(t), and respective reversed backward version, x

ðrÞ
i ðtÞ, of

a multidimensional time series, where the subindex i denotes the
different brain regions. The forward and reversal matrices express-
ing the functional causal dependencies between the different vari-
ables for the forward and artificially generated reversed backward
version of a multidimensional system are given by

FSforward;ijðDtÞ ¼ �
1
2
log½1� , xiðtÞ; xjðt þ DtÞ .2� ð4Þ

FSreversal;ijðDtÞ ¼ �
1
2
log½1� , xðrÞi ðtÞ; x

ðrÞ
j ðt þ DtÞ .2� ð5Þ

respectively. The FS functional causal dependencies matrices are
expressed as the mutual information based on the respective time-
shifted correlations. The level of NR is given by the quadratic dis-
tance between the forward and reversal time-shifted matrices at a
given shift Δt = T. In other words, the level of NR in the multidi-
mensional case is given by

I ¼ kFSforwardðTÞ � FSreversalðTÞk2 ð6Þ

Where the notation ‖Q‖2 is defined as the mean value of the ab-
solute squares of the elements of the matrix Q. In other words, if we
define a difference matrix FSdiff in the following way

FSdiff ;ij ¼ ½FSforward;ijðTÞ � FSreversal;ijðTÞ�2 ð7Þ

Thematrix FSdiff is thus a matrix whose elements are the squared
of the elements of the matrix [FSforward(T ) − FSreversal(T )], where
for each pair, the level of NR is as measured by the squared differ-
ence. Thus, the level of NR, I, is the mean value of the elements
of FSdiff.

Whole-brain model of NR
To reveal the causal mechanisms underlying the hierarchy as mea-
sured by the NR in each condition, we created a whole-brain model
fitting the empirical NR measures by creating the GEC.
Hopf whole-brain model
Similar to our previous papers (57, 97), we fit the empirical BOLD
activity at the whole-brain level by using a Hopf whole-brain model
(98), which captures the dynamics emerging from the mutual inter-
actions between brain regions connected using the anatomical SC
and weighted by the GEC. The model consists of 62 coupled dy-
namical regions from the Mindboggle-modified Desikan-Killiany
parcellation (95) with a total of 62 cortical regions (31 regions per
hemisphere) (96).

The local dynamics of each brain region is described by the
normal form of a supercritical Hopf bifurcation, also called a
Landau-Stuart oscillator, which is the canonical model for studying

the transition from noisy to oscillatory dynamics (99). When
coupled together using brain network architecture, the complex in-
teractions between Hopf oscillators have been shown to successfully
replicate features of brain dynamics observed in electrophysiology
(100, 101), magnetoencephalogram (102), and fMRI (98, 103–105).

The dynamics of an uncoupled node n is given by the following
set of coupled dynamical equations, which describes the normal
form of a supercritical Hopf bifurcation in Cartesian coordinates

dxn
dt
¼ ½an � x2n � y2n�xn � vnyn þ bhnðtÞ ð8Þ

dyn
dt
¼ ½an � x2n � y2n�yn þ vnxn þ bhnðtÞ ð9Þ

with additive Gaussian noise, ηn(t), with SD β. This normal form
has a supercritical bifurcation an = 0, so that if an > 0, then the
system engages in a stable limit cycle with frequency fn = ωn/2π.
In contrast, for an < 0, the local dynamics are in a stable fixed
point representing a low activity noisy state. Within this model,
the intrinsic frequency ωn of each node is in the 0.008- to 0.08-
Hz band (n = 1, …, 62). The intrinsic frequencies were estimated
from the data, as given by the averaged peak frequency of the nar-
rowband BOLD signals of each brain region. Similar to previous
findings (98), the best fit was obtained with an = − 0.02.

Modeling the whole-brain dynamics requires modeling the cou-
pling, which we include by adding a diffusive coupling term repre-
senting the input received in region n from every other region p,
which is weighted by the corresponding GEC, Gnp. This input
wasmodeled using the common difference coupling, which approx-
imates the simplest (linear) part of a general coupling function.
Thus, the whole-brain dynamics was defined by the following set
of coupled equations

dxn
dt
¼ ½an � x2n � y2n�xn � vnyn þ

XN

p¼1
Gnpðxp � xnÞ

þ bhnðtÞ ð10Þ

dyn
dt
¼ ½an � x2n � y2n�yn þ vnxn þ

XN

p¼1
Gnpðyp � ypÞ

þ bhjðtÞ ð11Þ

where the noise SD is set to β = 0.01.
Methods for updating GEC
We optimized GEC between brain regions by comparing the output
of the model with the empirical measures of forward and reversed
time-shifted correlations and the empirical FC. Using a heuristic
gradient algorithm, we proceed to update the GEC such that the
fit is optimized. To work only positive values for the algorithm,
all values are transformed into a mutual information measure (as-
suming Gaussianity).
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More specifically, the updating uses the following form

Gij ¼ Gij þ ɛðFSempiricalij � FSmodelij Þ � ɛ0
(
h
FSempiricalforward;ijðTÞ

� FSempiricalreversal;ijðTÞ
i
�
h
FSmodelforward;ijðTÞ � FS

model
reversal;ijðTÞ

i
)

ð12Þ

Where the FSij is based on the nonshifted FCij as the mutual in-
formation measure obtained by

FSij ¼ �
1
2
log½1 � ðFCijÞ

2
� ð13Þ

Themodel was run repeatedly with the updated GEC until the fit
converges toward a stable value.

We initialized using the anatomical connectivity (obtained with
probabilistic tractography from dMRI) and only update known ex-
isting connections from this matrix (in either hemisphere).
However, there is one exception to this rule, which is that the algo-
rithm also updates homolog connections between the same regions
in either hemisphere, given that tractography is known to be less
accurate when accounting for this connectivity. We used ε =
0.0005 and ε′ = 0.0001 and continue until the algorithm converges.
For each iteration, we compute the model results as the average over
as many simulations as there are participants.

Functional hierarchical organization
Using the GEC matrix, we can establish and study the functional
organization of the brain, where the different levels of information
flow to and from a given brain region i are given Gin(i), Gout(i), and
Gtotal(i). The functional relevance and hierarchy can be obtained
from the averaged information flow, Gij, across all participants.
For each brain region i, we define the incoming level of information
flow (i.e., the degree of being a receiver) by Gin(i) =∑jGij. Similarly,
for each brain region i, the outgoing level of information flow (i.e.,
the degree of being a driving region) by Gout(i) = ∑jGji. The total
level of functional interaction for each brain region i is given by
Gtotal(i) = Gin(i) + Gout(i).

Measuring asymmetry of differently optimized GEC
matrices for movie
We measured the asymmetry of the two optimized GEC matrices
[using either only FC (GFC) or both FC and NR (GNR)], where
the matrices were computed as the average over all four movie ses-
sions. Specifically, the asymmetry was captured as ∑j∣Gij − Gji∣, i.e.,
the sum of the difference between the matrix and its transposed and
show the boxplots for them in Fig. 5C. We also show the pairwise
asymmetry of GNR as the histogram of pairwise differences, not in-
cluding symmetric values (see inset in Fig. 5C).

SVM used for condition classification
We used a SVM with polynomial kernels as implemented in the
MATLAB function fitcecoc. The function returns a fully trained,
multiclass, error-correcting output codes model. This is achieved
using the predictors in the input with class labels. The SVM used
inputs of the 62 × 62 matrices of either empirical FC or model
GEC, while the output was two classes corresponding to the condi-
tions (rest versus all movies or Hollywood movies versus CC

movies). We used the output from all 176 HCP participants used
for generalization, subdivided into 90% training and 10% valida-
tion, repeated, and shuffled 100 times.
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