
RNA secondary structure packages evaluated and improved by 
high-throughput experiments

Hannah K. Wayment-Steele1,2, Wipapat Kladwang2,3, Alexandra I. Strom3,4, Jeehyung 
Lee2,5, Adrien Treuille2,5, Alex Becka3, Eterna Participants2, Rhiju Das*,2,3,6

1Department of Chemistry, Stanford University, Stanford, CA, 94305

2Eterna Massive Open Laboratory. List of consortium members given in Table S3.

3Department of Biochemistry, Stanford University, Stanford, CA, 94305

4Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182

5Department of Computer Science, Carnegie Mellon, Pittsburgh, PA, 15206

6Department of Physics, Stanford University, Stanford, CA, 94305

Abstract

Despite the popularity of computer-aided study and design of RNA molecules, little is known 

about the accuracy of commonly used structure modeling packages in tasks sensitive to ensemble 

properties of RNA. Here, we demonstrate that the EternaBench dataset, a set of over 20,000 

synthetic RNA constructs designed on the RNA design platform Eterna, provides incisive 

discriminative power in evaluating current packages in ensemble-oriented structure prediction 

tasks. We find that CONTRAfold and RNAsoft, packages with parameters derived through 

statistical learning, achieve consistently higher accuracy than more widely used packages in 

their standard settings, which derive parameters primarily from thermodynamic experiments. 

We hypothesized that training a multi-task model with the varied data types in EternaBench 

might improve inference on ensemble-based prediction tasks. Indeed, the resulting model, named 

EternaFold, demonstrated improved performance that generalizes to diverse external datasets 

including complete mRNAs, viral genomes probed in human cells and synthetic designs modeling 

mRNA vaccines.
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The EternaBench dataset of synthetic RNA constructs was used to directly compare RNA 

secondary structure prediction software packages on ensemble-oriented prediction tasks and used 

to train the EternaFold model for improved performance.

Introduction

RNA molecules perform essential roles in cells, including regulating transcription, 

translation, and molecular interactions, and performing catalysis.1 Synthetic RNA molecules 

are gaining increasing interest for a variety of applications, including genome editing,2 

biosensing,3 and vaccination.4 Characterizing RNA secondary structure, the collection of 

base pairs present in the molecule, is typically necessary for understanding the function 

of natural RNA molecules and is of crucial importance for designing better synthetic 

molecules. Some of the most widely-used packages use a physics-based approach5 that 

assigns thermodynamic values to a set of structural features (ViennaRNA,6 NUPACK,7 and 

RNAstructure8), with parameters traditionally characterized via optical melting experiments 

and then generalized by expert intuition.9 However, a number of other approaches have 

also been developed that utilize statistical learning methods to derive parameters for 

structural features (RNAsoft,10 CONTRAfold,11 CycleFold,12 LearnToFold,13 MXfold14, 

SPOT-RNA15).

Secondary structure modeling packages are typically evaluated by comparing single 

predicted structures to secondary structures of natural RNAs16. While important, this 

practice has limitations for accurately assessing packages, including bias toward structures 

more abundant in the most well-studied RNAs (tRNAs, ribosomal RNA, etc.) and neglect 

of energetic effects from these natural RNAs’ tertiary contacts or binding partners. 

Furthermore, scoring on single structures fails to assess the accuracy of ensemble-averaged 

RNA structural observables, such as base-pairing probabilities, affinities for proteins, and 

ligand-dependent structural rearrangements, which are particularly relevant for the study 

and design of riboswitches17, 18, ribozymes, pre-mRNA transcripts, and therapeutics19 that 

occupy more than one structure as part of their functional cycles. Existing packages are, 

in theory, capable of predicting ensemble properties through so-called partition function 

calculations, and, in practice, are used to guide RNA ensemble-based design, despite not 

being validated for these applications.

High-throughput RNA structure experiments data, such as high-throughput chemical 

mapping20–22 and RNA-MaP experiments23, 24, offer the opportunity to make incisive tests 

of secondary structure models with orders-of-magnitude more constructs than previously. 

Unlike datasets of single secondary structures, both of these experiments provide ensemble-

averaged structural properties, which allow for directly evaluating the full ensemble 

calculation of secondary structure algorithms, obviating the need to also evaluate the further 

nontrivial inference of a most-likely structure from the calculated ensemble. Furthermore, 

experimental data on human-designed synthetic RNA libraries has potential to mitigate 

effects of bias incurred in natural RNA datasets.

In this work, we evaluate the performance of commonly-used packages capable of making 

thermodynamic predictions in two tasks for which large datasets of synthetic RNAs 
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have been collected via the RNA design crowdsourcing platform Eterna25: 1) predicting 

chemical reactivity data through calculating probabilities that nucleotides are unpaired, and 

2) predicting relative stabilities of multiple structural states that underlie the functions of 

riboswitch molecules, a task that involves predicting affinities of both small molecules and 

proteins of interest. We find striking, consistent differences in package performance across 

these quantitative tasks, with the packages CONTRAfold and RNASoft performing better 

than packages that are in wider use.

We hypothesized that these data, though shorter than many natural RNAs of interest 

and not designed to bear similarity to natural RNAs, might still sufficiently represent 

RNA thermodynamics to allow for developing an improved algorithm. We tested this 

by developing a multitask-learning-based framework to train a thermodynamic model on 

these tasks concurrently with the task of single-structure prediction. The resulting multitask-

trained model, called EternaFold, did indeed demonstrate increased accuracy both on held-

out data from Eterna as well as a collection of 31 independent datasets gathered from 

other literature sources, which encompass viral genomes, mRNAs, and other small synthetic 

RNAs, probed with distinct methods and under distinct solution and cellular conditions. 

This represents, to our knowledge, the largest collection of datasets used to evaluate RNA 

secondary structure algorithms.

Results

Evaluated packages

We initially evaluated commonly used secondary structure modeling packages in their 

ability to make thermodynamic predictions on two datasets of diverse synthetic molecules 

from Eterna: EternaBench-ChemMapping (n=12,711) and EternaBench-Switch (n=7,228). 

The packages ViennaRNA (version 1.8.5, 2.4.10), NUPACK (3.2.2), RNAstructure (6.2), 

RNAsoft (2.0), and CONTRAfold (1.0, 2.02), were analyzed across different package 

versions, parameter sets, and modelling options, where available (Table S1). We also 

evaluated packages trained more recently through a varied set of statistical or deep learning 

methods (LearnToFold13, SPOT-RNA15, MXfold14, CycleFold12, and CROSS26), but these 

packages demonstrated poor performance on a subset of chemical mapping data (Extended 

Data Figure 1a), and due to their intensive runtimes, were omitted from further comparison.

Package ranking based on RNA chemical mapping predictions

Our first ensemble-based structure prediction task investigates the capability of these 

packages to predict chemical mapping reactivities. Chemical mapping is a widely-used 

readout of RNA secondary structure20–22 and has served as a high-throughput structural 

readout for experiments performed in the Eterna massive open online laboratory25. A 

nucleotide’s reactivity in a chemical mapping experiment depends on the availability of 

the nucleotide to be chemically modified, and hence provides an ensemble-averaged readout 

of the nucleotide’s deprotection from base pairing or other binding partners.27 We wished 

to investigate if current secondary structure packages differed in their ability to recapitulate 

information about the ensembles of misfolded states that are captured in chemical mapping 

experiments.
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To make this comparison, we used the Eterna “Cloud Labs” for this purpose: 24 datasets 

of 38,846 player-designed constructs, ranging from 80–130 nucleotides in length (dataset 

statistics in Table S2, participant information in Table S3). These constructs were designed 

in iterative cycles on the Eterna platform (Figure 1a). Participants launched “projects”, 

each of which contained one “target structure”, and posed a design challenge or tested a 

hypothesis about RNA structure (project information in Table S4). The constructs designed 

in these labs were periodically collected and mapped in vitro using selective 2’-hydroxyl 

acylation analyzed by primer extension (SHAPE) and read out using the MAP-seq chemical 

mapping protocol.28 These data were returned to participants, and the results guided future 

lab development and construct design29.

The community of Eterna participants collectively developed highly diverse sequence 

libraries across target structures ranging from 0 to 12 loops (a proxy for design 

complexity30), as assessed by analyzing the positional sequence entropy of collected 

constructs as grouped by project (Figure 1b). Example project target structures, colored 

by the mean reactivity of the probed solutions, are shown in Figure 1b (inset). Some 

projects sought to design intricate structures, e.g., “The Nonesuch by rnjensen45” and 

“Robot serial killer 1”, while other participant projects focused more on better understanding 

experimental signals from particular structure motifs, e.g., “SHAPE Profile U-U mismatch”, 

which consisted of a single stem and a U-U mismatch.

Figure 1a depicts an example heatmap of SHAPE data for Eterna-player-designed synthetic 

RNA molecules from the project “Aires” by participant wateronthemoon. Figure 1c depicts 

calculated ensemble-averaged unpaired probabilities per nucleotide, p(unpaired), for five 

example package options, plotted in the same heatmap arrangement as the experimental 

data in Figure 1a (see Extended Data Figure 2 for heatmaps from all package options 

tested). In this subset of constructs, all packages are largely able to identify which regions 

are completely paired (p(unpaired) = 0, white) or unpaired (p(unpaired) = 1, black), 

but some packages predict p(unpaired) values between 0 and 1 that more accurately 

reflect intermediate reactivity levels. Arrows (blue, green, magenta) indicate intermediate 

reactivity values that are captured by predictions from CONTRAfold and RNAsoft but 

not ViennaRNA, NUPACK, and RNAstructure. We quantified similarity between reactivity 

and p(unpaired) by calculating the Pearson correlation coefficient between the experimental 

reactivity values and p(unpaired) values (see Methods). As an example, predictions from 

CONTRAfold 2 and RNAsoft BLstar for Cloud Lab Round 1 (1088 constructs) demonstrate 

improved correlation of R = 0.718(2), 0.724(3) (respectively) over Vienna 2, RNAstructure, 

and NUPACK (0.673(2), 0.671(2), 0.667(2), respectively) (Table S5). Noting that some 

projects had low sequence diversity, and to make the dataset a more manageable size 

for benchmarking while maintaining the same degree of sequence diversity, we filtered 

constructs to remove highly similar sequences (see Methods, Extended Data Figure 3). 

Clustering the resulting sequences per project (Figure 1d) demonstrates that low-entropy 

projects were reduced in size. The final 24 EternaBench-CM datasets comprised 12,711 

individual constructs.

We observed that CONTRAfold and RNAsoft generally predict that the constructs studied 

are more melted than the other packages predict at their default temperatures of 37 °C, even 
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though the actual chemical mapping experiments were carried out at lower temperature (24 

°C; see Methods). Motivated by this observation, we wished to ascertain if a simple change 

in temperature might account for differences in performance between packages. Because 

ViennaRNA, NUPACK, and RNAstructure packages include parameters for both enthalpy 

and entropy, we calculated correlations across predictions from a range of temperatures 

(Extended Data Figure 1b). We found that increasing the temperature from the default value 

of 37 °C used in these packages to 60 °C improved the correlation to experimental data for 

ViennaRNA (R=0.708(2)) and RNAstructure (R=0.707(2)), but not NUPACK (R=0.639(2)). 

We hence included each of these packages also at 60°C as options to test.

We established a ranking of all package options for each dataset (Figure 1e, Table S5, 

representative heatmaps for all datasets in Extended Data Figure 4) by computing the Z-

score for each package correlation in comparison to all packages tested, and averaging over 

all datasets (Figure 1f). The top 3 package options were CONTRAfold 2, ViennaRNA at 

60°C, and RNAsoft with “BLstar” parameters. Using a Pearson correlation assumes a linear 

relationship between p(unpaired) and reactivity and relies on a two-state model with inherent 

limitations (see Methods). We therefore also ranked all packages with a Spearman rank 

correlation coefficient and found a similar global overall ranking (Extended Data Figure 1c). 

Overall package performance and the resulting ranking was not strongly dependent on GC 

content, sequence length, or total number of loops in the project target structure, which was 

investigated by calculating correlations and rankings when grouping constructs by project 

(see Methods, Extended Data Figure 1d).

Package ranking based on riboswitch affinity predictions

Our second ensemble-based structure prediction task involved predicting the relative 

populations of states occupied by riboswitch molecules. Riboswitches are RNA molecules 

that alter their structure upon binding of an input ligand, which effects an output 

action such as regulating transcription, translation, splicing, or the binding of a reporter 

molecule.18, 31, 32 We compared these packages in their ability to predict the relative binding 

affinity of synthetic riboswitches to their output reporter, fluorescently-tagged MS2 viral 

coat protein in the absence of input ligand, KMS2
−lig  (see Methods, Extended Data Figure 

5a). As with the chemical mapping datasets, each riboswitch dataset was filtered to exclude 

highly similar sequences (Extended Data Figure 3, Table S6). These riboswitches came from 

two sources: the first consisted of 4,849 riboswitches (after filtering) designed by citizen 

scientists on Eterna33. The second consisted of 2,509 riboswitches (after filtering) designed 

fully computationally using the RiboLogic package,34 probed concomitantly with Eterna 

riboswitches. These riboswitches were designed using aptamers for three small molecules: 

FMN, theophylline, and tryptophan.

Figure 2a depicts experimental values for log KMS2
−lig  for FMN riboswitches from the 

RiboLogic dataset vs. predicted log KMS2
−lig  values. Again, CONTRAfold and RNAsoft 

BLstar packages exhibit higher correlations to the experimental data (Pearson R = 0.50(2) 

and 0.51(2), respectively) than ViennaRNA, NUPACK, and RNAstructure (R=0.37(2), 

0.34(2), 0.36(2), respectively). Example predictions for all package options tested are in 
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Extended Data Figure 6. We evaluated performance across 12 independent experimental 

datasets (Figure 2b, Table S7, representative predictions in Extended Data Figure 7), and 

obtained a ranking (Figure 2c) similar to the ranking obtained from chemical mapping 

data. CONTRAfold 2, RNAsoft (model “BL, no dangles”, equivalent to BLstar but without 

dangles), and RNAstructure 60°C were ranked as the top 3 out of the package options 

tested. The top ranking of CONTRAfold 2 matches the entirely independent ranking based 

on chemical mapping measurements of distinct RNA sequences described in the previous 

section. These riboswitches were designed using aptamers for three small molecules: FMN, 

theophylline, and tryptophan. Calculating Z-scores over each individual subset resulted in 

slightly differing rankings but consistently favored Contrafold methods (Extended Data 

Figure 5b). Predicting MS2 binding affinity in the presence of the riboswitch input 

ligand, KMS2
+lig , as well as the activation ratio, AR, requires computing constrained partition 

functions, a capability limited to Vienna RNAfold, RNAstructure, and CONTRAfold. 

Rankings for predicting KMS2
+lig  and AR followed the same trends (Extended Data Figures 

5d–e, see Methods).

EternaFold gives best-of-class performance in multiple tasks

We hypothesized that performance in both secondary structure prediction tasks above 

might be improved by incorporating these tasks in the process of training a secondary 

structure package. The RNAsoft10, 35 and CONTRAfold11 packages both take advantage 

of the property that the gradient of any parameter is expected counts of that feature in the 

ensemble, which can be readily computed in dynamic programming scheme. We generalized 

this framework beyond maximizing the likelihood of one single structure to matching 

the experimentally determined probability of a particular structural motif in the ensemble 

through minimizing the root-mean-squared error (RMSE) to the logarithm of riboswitch 

affinities for MS2 protein (see Methods). We used the CONTRAfold code as a framework 

to explore multi-task learning on RNA structural data, since it has previously been extended 

to train on chemical mapping data to maximize the expected likelihood of chemical mapping 

data.36

We tested training from three data types: secondary structures, chemical mapping reactivity, 

and riboswitch affinities. We used the STRAND S-Processed dataset for secondary 

structures (n=3439), which was the same data used to train RNAsoft and CONTRAfold10. 

The Chemical mapping training data (n=2603) came from Cloud Lab datasets used 

in previous model development36. We used riboswitches designed by the automated 

Ribologic34 algorithm for riboswitch training data (n=1295). We trained models with a 

variety of combinations of data types to explore interactions in multitask training (Figure 

3a), used holdout sets to determine hyperparameter weights (see Methods), and evaluated 

performance on separate test sets for single-structure prediction accuracy37, chemical 

mapping prediction accuracy, and riboswitch affinity prediction. To ensure a rigorous 

separation of training and test data, each test dataset was filtered for sequence similarity 

to all training data at 80% using a windowed Levenshtein metric (see Methods). Significant 

sequence similarity overlap between the S-Processed Train and Test sets motivated us to 

develop an orthogonal dataset for secondary structure prediction testing based on the dataset 
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ArchiveII38. Test sets for chemical mapping and riboswitch data came from completely 

different experimental rounds than those used in training to avoid learning experiment-

specific biases.

Comparing performance across models trained with different types of input data indicates 

some tradeoffs in performance. CONTRAfold 2 exhibited the highest accuracy, followed by 

“Model S”, trained only on single-structure prediction training data, exhibited the highest 

accuracy on the separate single-structure prediction test set, outperforming CONTRAfold 

2 (Figure 3b, F-scores of 0.56(0.22), and 0.55(0.22) respectively). Incorporating other data 

types in model training resulted in F-scores worse than Model S on the ArchiveII-NR 

single-structure prediction test set but within error of CONTRAfold 2 (Figure 3B). Model 

“SCRR”, trained on four data types (single-structure data, chemical mapping, riboswitch 

KMS2
−lig  and KMS2

+lig ) exhibited the highest performance on separate test sets for chemical 

mapping (Figure 3c) and riboswitch KMS2
−lig  prediction (Figure 3d, data for all test sets in 

Table S8). We termed this SCRR model “EternaFold”.

Independent tests confirm EternaFold performance

We wished to test if EternaFold’s improvements in correlating p(unpaired) values to 

chemical mapping and protein-binding data generalized to improvement in predictions for 

datasets from other groups, experimental protocols, and RNA molecules. We compiled 36 

datasets of chemical mapping data for molecules including viral genomes39–49 in cells and 

in virions, ribosomal RNAs44, 50, 51 both in cells and extracted from cells, synthetic mRNAs 

and RNA fragments designed to improve protein expression and in vitro stability19, 52, and 

mRNAs probed in various subcellular compartments and extracted from HEK 293 cells53 

(Figure 4a, Table S9). These datasets spanned structure probing methods different from 

those used in the Eterna Cloud Labs (SHAPE-CE, SHAPE-MaP, DMS-MaP-seq vs. MAP-

seq) as well as a variety of chemical modifications (DMS, icSHAPE, NAI). Most of these 

test molecules were much longer (thousands of nucleotides) than the 85-nucleotide RNAs 

used as the primary training data for EternaFold. Notably, 6 of these involved the SARS-

CoV-2 genome46–48, which came into prevalence after the development of the EternaFold 

model, and represented a test of novel data. The following results are for P(unpaired) values 

calculated for overlapping windows of size 900, but other window sizes and Levenshtein 

distance metrics gave qualitatively similar results (Extended Data Figure 8). We wished to 

ascertain that the sequences in these datasets did not overlap with sequences that EternaFold 

had been trained on, so we also filtered these data using a windowed Levenshtein distance 

metric at a cutoff of 60% sequence similarity. This removed 37% of the originally collected 

sequences for a dataset size of 8734 sequences (Table S10).

For 15/31 datasets across all categories, EternaFold exhibited the highest correlation 

coefficient (with p<0.05, determined by 95% overlapping CI, see Methods), and had the 

highest average Z-score (Figure 4b, Table 2). For the other 16 datasets, EternaFold was 

tied with other packages for having the highest correlation. EternaFold showed significant 

improvement (p<0.05) in datasets from varying sources including RNAs probed in cell (5/7 

in cell datasets), extracted from cells (6/8), in virion (1/3), extracted from viral particles 
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(1/2), and with other modifiers, including DMS (2/5) and icSHAPE (8/11). EternaFold was 

the top-scoring package (p<0.05) in 5 of the 6 datasets of novel SARS-CoV-2 data.

We were curious as to whether the differences in packages arose from consistent accuracy 

differences across all regions of these RNAs or from a net balance of increased and 

decreased accuracies at specific subregions of the RNAs, which might reflect particular 

motifs that are handled better or worse by the different packages. We calculated correlations 

along the length of example constructs -- the Zika ILM genome probed in virion45 (Figure 

4c), HEK293 mRNA ENST00000495843, extracted from chromatin and probed ex vivo53 

(Figure 4d) -- and observed that EternaFold correlations generally demonstrated a fixed 

improvement across compared packages across all regions, supporting a consistent accuracy 

improvement by this package.

We also tested the ability of EternaFold to predict the thermodynamics of binding of human 

Pumilio proteins 1 and 2 in a dataset of 1405 constructs54. EternaFold showed no significant 

increase or decrease in predictive ability (p>0.05) when compared to CONTRAfold or 

ViennaRNA 2 at 37°C (Extended Data Figure 9a, Table S11).

Discussion

In this work, we have established EternaBench, benchmark datasets and analysis methods 

for evaluating package accuracy for two modeling tasks important in RNA structural 

characterization and design. These include 1) predicting unpaired probabilities, as measured 

through chemical mapping experiments, and 2) predicting relative stabilities of different 

conformational states, as exhibited in riboswitch systems. Unlike in single secondary 

structure prediction tasks, we demonstrate that both widely used and state-of-the-art 

machine-learning algorithms demonstrate a wide range in performance on these tasks. We 

averaged both rankings to acquire a final ranking of the tested external packages in Table 1.

We discovered that CONTRAfold 2, which inferred thermodynamic parameters by 

feature representation in datasets of natural RNA secondary structures, performed best 

in this ranking, and performed significantly better than Vienna RNAfold, NUPACK, and 

RNAstructure, packages with parameters derived from thermodynamic experiments9. The 

results were particularly notable since the probed RNA molecules were designed for two 

distinct tasks (chemical mapping and riboswitch binding affinities), with no relationship 

between these two sets of sequences and no relationship between the synthetic sequences 

and natural sequences. We further investigated if combining these tasks in a multitask-

learning framework could improve performance. We found that models trained on four types 

of data – single structures, chemical mapping data, and riboswitch affinities for both protein 

and small molecules – showed improved performance in predictions for held-out subsets of 

EternaBench datasets as well as improvements in datasets involving virus RNA genomes and 

mRNAs collected by independent groups.

The improved performance of CONTRAfold and RNAsoft – two packages developed 

by maximum likelihood training approaches – was not obvious prospectively. Statistically-

learned packages could incorporate bias towards common motifs in the RNA structures that 
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they were trained on and might overstabilize motifs simply due to their increased frequency 

rather than actual thermodynamic stability. Indeed, methods developed with a variety of 

more recent methodological advances, including machine learning from chemical mapping 

datasets (CROSS), deep learning methods for secondary-structure prediction (SPOT-

RNA), extended parameter sets (CONTRAfold-noncomplementary, CycleFold, MXfold), or 

accelerated folding packages (LearnToFold), demonstrated diminished performance in the 

EternaBench tasks (Extended Data Figure 1a). It was surprising that well-developed and 

more widely used packages like ViennaRNA and RNAstructure gave worse performance 

than CONTRAfold and RNAsoft across all tasks, but that predictions from ViennaRNA 

and RNAstructure at 60°C showed notable improvement over the default of 37°C. This 

observation might be rationalized by discrepancies in ionic conditions used to measure these 

packages’ thermodynamic parameters, and the in vitro and in vivo conditions tested here.

We used the EternaBench datasets to train a thermodynamic model via multitask learning 

on secondary structure prediction, chemical mapping signal likelihood maximization, and 

minimizing error for riboswitch protein-binding prediction. The resulting model, termed 

EternaFold, performed best across 31 external datasets in 4 categories of natural and 

synthetic RNAs (Table 2) in a variety of cellular contexts, including RNAs probed in 

and extracted from cells and viral particles. It was not obvious that a model trained on 

datasets collected in vitro would demonstrate improvement on the variety of contexts for 

which we collected datasets. Although many factors influence RNA structure in cells beyond 

thermodynamic base-pairing55, this demonstrates that existing natural RNA datasets are 

indeed capable of discriminating between ensemble-averaged base-pairing predictions, and 

that accurate prediction of chemical mapping signal presents an ensemble-aware target for 

RNA secondary structure algorithm improvement.

The improvements from multitask training in EternaFold indicated that the nearest-

neighbor model encoded in CONTRAfold had sufficient representational capacity to gain 

improvement on the chemical mapping and riboswitch prediction tasks. A notable area of 

algorithm development and potential improvement is the systematic evaluation of structure 

prediction methods that incorporate structure mapping data8, 55, 56. We implemented 

data-driven folding in EternaFold and tested on a collection of 13 structured RNAs as 

well as 3 other independent datasets. We found that EternaFold-SHAPE resulted in the 

highest mean MCC over all these datasets (0.842), but was not statistically significant 

over several other algorithms in use for SHAPE-directed folding, such as SHAPEknots57 

and the heuristic developed by Zarringhalam et al.58 implemented in ViennaRNA (mean 

MCCs of 0.820 and 0.830 respectively, Extended Data Figure 9c, Table S12), indicating 

potential for improvement. Another limitation of the resulting EternaFold algorithm is 

that it does not contain distinct terms for entropy, enthalpy, and ionic concentrations. The 

resulting coefficients represent free energies of the included features at room temperature 

and the given ionic concentrations. Future work creating temperature-and salt-dependent 

models may benefit from analogous ensemble-aware fitting procedures collected at varying 

temperatures and ionic concentrations. Further improvements in modelling may arise from 

applying more sophisticated graph-59 and language-based60 architectures to predicting RNA 

thermodynamics. Further investigations will also be necessary to improve performance 

and aspects of the model that need to be expanded, which may include noncanonical 
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pairs12, more sophisticated treatment of junctions61, next-nearest-neighbor effects14, and 

chemically modified nucleotides62. Orthogonal 3D structure methods such as nuclear 

magnetic resonance (NMR) spectroscopy63 and cryo-electron microscopy64 will likely be 

instrumental to these pursuits. Taken together, the datasets presented here serve as an 

important starting point for evaluating and improving future RNA structure prediction 

algorithms.

Online Methods

The algorithms evaluated in this work model secondary structure in the following manner. 

Given a model Θ, which is comprised of a set of structural features {θ}, the partition 

function of an RNA sequence x is computed as

Z(x |Θ) = ∑s ∈ S ∑k ∈ sexp − ΔG(θk)
kBT ), (1)

where ΔG(θk) is the free energy contribution of structural feature k, kB is Boltzmann’s 

constant, and T is temperature. Z represents a sum over the set of all possible structures {S} 
1. From this expression, the probability of any particular structure s is defined as

p(s |x, Θ) = Z−1∑k ∈ sexp( − ΔG(θk)
kBT ) . (2)

Chemical mapping prediction theoretical basis

Structure prediction algorithms are able to estimate the ensemble-averaged probability that 

a nucleotide is paired or unpaired. Let p(i: j|x, Θ) be the probability of bases i and j being 

paired, given sequence x and model Θ. For simplifying notation, we continue with implicit x 
and Θ, i.e., p(i: j│x, Θ) = p(i: j). This is computed as

p(i: j) = Σsi: j ∈ S p(si: j), (3)

where s(i: j) denotes a structure containing the base pair i:j, and {S} is the full set of possible 

structures. These posterior probabilities are analytically calculated by all the algorithms 

tested here. The probability of any single base being unpaired can be computed as

p(i unpaired) = 1 − ∑j p i: j . (4)

The relationship between the probability of a nucleotide being unpaired and its 

experimentally-measured reactivity has served as a locus for many efforts for improving 

structure prediction of RNA constructs incorporating chemical mapping data from those 

constructs, and several functional forms have been used to describe the relationship between 

unpaired probability and chemical mapping reactivity2–4. In this work, we use the linear 

Pearson correlation coefficient between unpaired probability and experimentally measured 

reactivity as a measure of model quality. In the following, we describe the simple model 
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under which this linear assumption holds. We write the probability nucleotide i is modified 

at time t as

p(nt i modified, time t) = 1 − e−kmod(i) t (5),

Where kmod(i) is the rate of modification for nucleotide i. The measured chemical 

modification signal is an ensemble population average, where the time exposure of the 

ensemble to the modifier has been limited to aim to achieve “single-hit kinetics” with 

single-hit frequency, so that the degree of modification in experiment is proportional to the 

rate of modification5. In other words, because kmod(i) t ≪ 1, we can approximate

p(nt i modified, time t) ≈ kmod(i)t ∝ kmod i . (6)

This expression assumes that each RNA molecule is not heavily modified, such that kmod(i) 
for each nucleotide is independent of the modification state of other nucleotides. If we 

assume that the timescale of chemical modification is much slower than the timescale of 

fluctuation between structural ensemble states, then we may write the overall modification 

rate for each nucleotide i as averaged over the equilibrated structure ensemble of the RNA,

kmod(i) = ∑s ∈ {S} p(s)kmod(i |s) (7)

If we consider a simplest two-state model for each nucleotide, with modification rate kpr if 

paired and a rate kunp if unpaired, then this reduces to

kmod(i) = kunpp(i unpaired) + kprp(i paired) = kpr + kunp − kpr)p(i unpaired), (8)

which demonstrates that under this simple model, the modification rate is linear with respect 

to p(unpaired). The model above is limited in its assumption of two states and does not 

account for reactivity effects caused by sequence and local environment. For instance, 

Hoogsteen conformations in G-A and G-G mismatches expose the Watson-Crick faces 

of purine nucleobases, resulting in higher DMS reactivity6. A Spearman rank correlation 

(Extended Data Figure 1c), which will be more dominated by relative rankings, results in a 

similar overall ranking.

Chemical mapping data

Chemical mapping data for the Eterna Cloud Lab experiments were downloaded from 

RMDB7 and processed with RDATKit (https://ribokit.github.io/RDATKit/). The RNA was 

probed with the MAP-seq protocol with a co-loaded standard molecule (P4-P6-2HP RNA) 

to enable normalization, as described in ref. 8; measurements were carried out at ambient 

temperatures (24 °C) with 10 mM MgCl2, 50 mM Na-HEPES, pH 8.0. Data were processed 

using MAPseeker9 with standard settings.

Within each chemical mapping dataset, CD-HIT-EST10 was used to filter sequences 

with greater than 80% redundancy (excluding a shared 3’ primer binding site). From 

each sequence cluster identified, the sequence with the highest signal-to-noise ratio from 
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chemical mapping experiments was selected as the representative sequence. These datasets 

ranged in size from 605 (Round 15) to 3378 constructs (Round 23), with a median size of 

1577; after filtering, they ranged from 101 (Round 12) to 1088 (Round 1), with a median 

size of 562 (Extended Data Figure 3, Table S2). The filtered 24 datasets comprised 12,711 

individual constructs, and distributions of GC content, average sequence length, and number 

of loops in the target structures were not significantly impacted (Extended Data Figure 3).

Nucleotides with reactivities less than zero or greater than the 95th percentile of the dataset 

were removed from analysis. Cloud Lab Round 2 was filtered to exclude certain experiments 

that had FMN present, pertaining to Eterna Cloud Lab challenges to design riboswitches. 

Adenosine nucleotides preceded by 6 or more As were also removed due to evidence of 

anomalous transcription effects in such stretches 11. External chemical mapping datasets 

were obtained from the supplementary information from the papers and processed similarly 

(outliers, nucleotides in poly-A stretches removed).

Analyzing package performance by Cloud Lab project

We wished to understand if factors such as target structure complexity, GC content, and 

sequence length influenced package predictions. We performed the same package ranking 

analysis, grouping constructs by their projects instead of by the 24 datasets. Because 

grouping constructs into projects sometimes resulted in a small number of nucleotides over 

which to calculate correlations, we omitted package predictions where the standard error 

of the calculated Pearson correlation was greater than 0.05. This resulted in a total of 612 

project groupings remaining, names, and calculated metrics for which are contained in Table 

S4.

We found weak correlation between the per-project Z-score of the top-performing package, 

CONTRAfold 2, and GC content (Spearman R = 0.15), sequence length (0.07), and 

total loops in the target structure (R=0.16). There were also weak correlations between 

the average Pearson Correlation for all packages and GC content (Spearman R = 0.10), 

sequence length (R=−0.24), and total target structure loops (R=−0.01) (Extended Data 

Figure 1d).

Riboswitch activity prediction theoretical basis

A thermodynamic framework discussed in greater detail in ref. 12 allows us to relate the 

observed binding affinity of an output molecule to the relative populations of a riboswitch 

molecule in different states. In the absence of input ligand, we may relate the probability that 

a riboswitch adopts a structural feature that can bind its output, p(out), to an experimentally 

measured binding affinity, Kobs
−lig, via the relative ratios of both values to those of a reference 

state:

Kobs
−lig

Kobs
ref = pref(out)

p(out) ≡ KMS2
−lig . (9)
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We selected the MS2 hairpin aptamer as a reference state whose probability of forming, 

pref(out), can be estimated by the secondary structure algorithm. For each separate 

independent experimental dataset, Kobs
ref  is estimated as the strongest affinity measured 

(Extended Data Figure 10a). We refer to the estimated ratio pref(out)
p(out)  as KMS2

−lig  in the main 

text, as the equilibrium constant of forming the MS2 hairpin as normalized to the reference 

state.

Although there may be error introduced in which experimental point is selected to be Kobs
ref , 

relative error should be constant when comparing packages on the same dataset. To compare 

packages, we report the correlation between log Kobs
±lig/Kobs

ref) and log(KMS2
±lig ), which excludes 

the effect of selection for Kobs
ref .

In general, the probability of an RNA molecule forming any structure motif is computed as

p(motif |x, θ) = Σsmotif ∈ {S}p(smotif), (10)

where smotif denotes a structure containing that motif. Computing this probability requires 

a dynamic programming routine that is able to constrain the sampled structure space to 

only structures containing that motif to estimate a so-called “constrained partition function”. 

However, not all secondary structure algorithms have implemented constrained partition 

function estimation. Because the MS2 aptamer is a hairpin, we can approximate its 

probability of forming as the probability of forming the final base pair of the MS2 hairpin 

aptamer, an experimental observable that can be estimated by all the packages tested here. 

Thus, our prediction of interest is

Kpred
−lig

Kpred
ref = pref(i: j)

p(i: j) , (11)

where i and j are the nucleotides forming the terminal base pair in the MS2 aptamer stem. 

The value pref(i: j) is accordingly computed as the probability of closing the base pair in 

the reference sequence. We confirmed that calculations using eqn. 9 and eqn. 11 agree for 

Vienna, RNAstructure, and CONTRAfold packages.

Predicting protein-binding affinities with input ligand bound.

The estimation of Kfold
+lig follows similarly to above but accounts for increased 

thermodynamic weights for states that correctly display the aptamer of the input small 

molecule ligand. Therefore, it cannot be estimated via the simplified single base pair 

calculation and must make use of constrained partition functions (eq. 10).

Analogously to eq. 9, we define KMS2
+lig  as
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KMS2
+lig =

Kobs
+lig

Kobs
ref (12)

which is calculated as

KMS2
+lig = Z + bZlig

ZMS2 + bZlig, MS2
(13),

where Zlig is the constrained partition function of the state including the ligand aptamer 

(calculated in each algorithm as described in the next section), ZMS2 is the partition 

function for the state including the MS2 aptamer, and Zlig,MS2 is the partition function 

of the state including both ligand aptamer and MS2 aptamer. The constant b = [ligand]
Kd, ligand

 is 

the Boltzmann weight of binding the ligand when the bulk concentration of the ligand is 

[ligand]. Values used for calculating b are in Table S14. Representative predictions of KMS2
+lig

vs. experimental KMS2
+lig  values are in Extended Data Figure 10b.

Riboswitch data

Riboswitch data were downloaded from supplementary materials from refs. 13 and 14. In 

brief, measurements were carried out at 37 °C in 100 mM Tris-HCl, pH 7.5, 80 mM KCl, 

4 mM MgCl2, 0.1 mg/mL BSA, 1 mM DTT, 0.01 mg/mL yeast tRNA, 0.01% Tween-20, 

and varying concentrations of small molecule ligand (FMN, theophylline, tryptophan) and 

MS2 coat protein. Datasets were filtered to only include constructs with more than 50 

copies of the sequence represented in the RNA-MaP experiment, constructs that included 

the canonical MS2 and small molecule aptamers, and filtered using CD-HIT-EST10 to 

remove sequence redundancy over 80%. As per the CD-HIT-EST algorithm default, the 

longest sequence per cluster was maintained. If all sequences were the same length, the first 

sequence was used. After filtering, the riboswitch datasets comprised of 7,228 constructs 

in total. Scripts to replicate data processing from refs. 13 and 14 are included in the 

EternaBench software repository.

For all constructs as well as the reference MS2 hairpin construct, we performed KMS2
±lig

estimations including a flanking hairpin included in the Illumina array experiments, 

described in ref. 13. As an example, the full reference MS2 hairpin construct, as well as the 

constraint used for estimating Kpred
ref  with constrained-partition-function-based estimation, is 

reproduced below. The MS2 hairpin construct is underlined and the nucleotides in the base 

used for base-pair-based prediction are bolded.

GGGUAUGUCGCAGAAACAUGAGGAUCACCCAUGUAACUGCGACAUACCC

...............(((((x((xxxx)))))))...............
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The riboswitches in EternaBench-Switch are controlled by the small molecules FMN, 

tryptophan, or theophylline. Motifs, concentrations, and intrinsic Kdvalues used for KMS2
+lig

prediction, taken from refs. 13 and 14, are provided in Table S14.

EternaFold Multi-task learning

The CONTRAfold15 loss function optimizes the conditional log-likelihood of ground-truth 

structure s(i) given sequence x(i) over dataset D:

LCONTRAfold = LStruct(θ) = ∑i ∈ D log P (s i) | x(i), {θ} . (14)

In CONTRAfold-SE16, the authors include a term to also use chemical mapping data 

to optimize structure prediction by maximizing the likelihood of observing the included 

chemical mapping dataset. The loss function then becomes

LCONTRAfold − SE = LStruct + wCMLCM, LCM θ, ϕ
= ∑i ∈ D log ∑sP s, d x, θ , ϕ , (15)

where d are the chemical mapping datapoints from construct x. CONTRAfold-SE fits 

reactivity signals to gamma distributions for each nucleotide type (A,C,G,U) and whether 

the base is paired or unpaired, parameters for which are represented by ϕ.

We further included a term to minimize the mean squared error of predicted log Kfold
−lig and 

log Kfold
+lig :

LMS2 = w−lig[log KMS2
exp ( − lig) − log KMS2

pred ( − lig)]2

+ w+lig[log KMS2
exp ( + lig) − log KMS2

pred ( + lig)]2 .
(16)

The full loss function for EternaFold is thus written as

LEternaFold = LStruct + LCM + LMS2 . (17)

The hyperparameters wCM, w−lig, w+lig, corresponding to the relative weights placed on 

different data types, were selected through a grid search on the holdout sets STRAND-

holdout, EternaBench-CM-holdout, and EternaBench-Switch-holdout (data not shown). The 

final values used for training were wCM = 0.5, w−lig = 30, w+lig = 30.

Dataset selection for training and testing EternaFold.

Single-structure data.—For training EternaFold, we used the S-Processed dataset17 train 

and holdout sets used previously in training CONTRAfold 2 and RNAsoft18, to keep the 

same datasets consistent with these algorithms. However, we found that the S-Processed test 

set had 68% and 52% redundancy to the S-Processed train and holdout sets, respectively, 

using CD-HIT-EST-2D. We therefore created a new secondary structure test set by filtering 
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the more recent ArchiveII dataset19 for constructs with <80% sequence similarity to any 

sequence across all 3 data types used in EternaFold training. We also evaluated EternaFold 

performance on structure prediction for the S-Processed test set, and found qualitatively 

similar results to the ArchiveII-NR test set (Extended Data Figure 9b, compare to Fig. 3b).

Cloud lab chemical mapping data.—We used Rounds 3,4,5,7,10,11 as training and 

holdout data. This was to be consistent with the training data used in CONTRAfold-SE16, 

and to reserve Rounds 0 and 1 as test rounds, given their large size and high signal-noise 

ratio. GC content, sequence length, total loops in the target structure, and signal/noise ratio 

were equivalent across train, holdout, and test rounds (Extended Data Figure 3c).

Riboswitch data.—We partitioned the RiboLogic dataset into our training, holdout and 

test sets due to the high signal-noise ratio and diversity of structures, subdividing the 

riboswitches so that each split contained identical fractions of FMN-, theophylline-, and 

tryptophan-responsive riboswitches. This left the rest of the Eterna riboswitch rounds as test 

sets (Extended Data Figure 3d.

Test dataset filtering

To filter test datasets based on sequence similarity to the EternaFold training data, we 

implemented a “windowed Levenshtein distance”. We calculated Levenshtein distance 

across sliding windows of the longer sequence that are the length of the shorter sequence. 

A sequence was counted as redundant at X% cutoff if any window had a Levenshtein 

edit distance smaller than (100-X)% the window size. Table S10 contains test dataset sizes 

before and after filtering at a windowed Levenshtein distance cutoff of 80%, 60%, and 40%. 

As a point of comparison, uniformly-distributed, randomly-generated 50-mers, 100-mers, 

and 200-mers were calculated to have average Levenshtein distances of 42%, 44%, and 

45%, respectively.

Evaluating base-pair probabilities for external datasets

For comparing p(unpaired) calculations to natural RNAs, many of which are thousands 

of nucleotides long, we compared several practices for calculating, which includes 

predicting base-pair probabilities from overlapping windows, constraining the nucleotides 

under consideration using a beam search algorithm implemented in LinearPartition20, and 

conventional folding of the entire RNA. Windows of length 300, 600, 900, and 1200 with 

25-nt overlap. Results from length 900 are shown in the main text, though results are similar 

for other window sizes (Extended Data Figure 8a).

SHAPE-directed folding evaluation

We implemented SHAPE-directed folding in EternaFold in the following way: for an RNA 

sequence x with length L, let dj be the probing signal at nucleotide j in the sequence. The 

joint probability for structure s and the vector of reactivities d is given as

P (s, d |x; θ, ϕ) = P (s |x; θ) ∏
j = 1

L
P (dj |xj, s; ϕ)κ

(18)
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Where θ represents the learned set of thermodynamic parameters and ϕ represents the 

parameters learned for 8 Gamma distributions defining the reactivities of A,C,G,U being 

paired or unpaired (Extended Data Figure 9d), and κ is a parameter specifying the relative 

weight of the evidence. Predicting a maximum likelihood structure given an observed 

reactivity vector d, is calculated as

sMLE = argmax
s ∈ S

P (s, d |x; θ, ϕ) . (19)

The maximum expected accuracy structure is calculated using the same SHAPE-weighted 

partition function and the expression

smea = argmax
s

Es[Acc(s, s*)] (20)

Where Acc(s, s*) is the pseudo-accuracy measure described in detail in ref. 15 and s* is the 

(unknown) true structure.

When the EternaFold parameters were initially trained, κ was set to 1. To fit κ in the context 

of SHAPE-directed folding, we used the SHAPEknots training dataset and calculated the 

Mathews Correlation Coefficient (MCC). This dataset consists of 16 RNAs with known 

3D structure and was used similarly to tune parameters in SHAPEknots21 and for the 

default settings of 3 formulas present in the ViennaRNA package. We refer to this model as 

EternaFold-SHAPE.

We compared EternaFold-SHAPE to SHAPEknots21, RNAstructure with structure probing 

(but not pseudoknots as in SHAPEknots), three algorithms implemented in ViennaRNA 

from Washietl2, Deigan22, and Zaringhalam23, as well as RNAstructure, ViennaRNA, and 

EternaFold predictions without reactivity data. We also evaluated the algorithms on the 

SHAPEknots-TEST dataset, as well as datasets from Chen and Kappel which included DMS 

probing data for RNAs with secondary structures validated by other methods (Extended 

Data Figure 9c, full dataset in Table S12).

We calculated mean Mathews Correlation Coefficient across datasets and averaged these 

values. We found that EternaFold+SHAPE resulted in the highest mean MCC over test 

constructs of 0.842, but this was not statistically significant (evaluated as p<0.05) over 

SHAPEknots (MCC=0.818), EternaFold without SHAPE data (MCC=0.814), ViennaRNA 

with the heuristic developed by Zarringhalam (MCC=0.828), RNAstructure with SHAPE 

data (MCC=0.803), or Vienna RNAfold 2 (MCC=0.801). Statistical significance was 

evaluated using a two-sided t-test for related values. Table S12 contains predicted SHAPE- 

or DMS-directed MFE structures for the dataset in all evaluated algorithms.

SHAPE and DMS probing by capillary electrophoresis of 13 structured RNAs for SHAPE-
directed folding evaluation

DNA template preparation.—DNA templates were designed to include the 20-nt 

T7 RNA polymerase promoter sequence followed by a sequence encoding the desired 
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RNA flanked by two hairpins used to normalize the resulting signal8. Double-stranded 

templates were prepared by the extension of 60-nt DNA oligomers (IDT, Integrated 

DNA Technologies) with Phusion polymerase, using the following thermocycler protocol: 

denaturation for 30 sec at 98°C, 35 cycles of denaturation for 10 sec at 98°C, annealing for 

30 sec at 60 to 64°C, extension for 30 sec at 72°C, final extension for 10 min at 72°C and 

cooling to 4°C. DNA samples were purified with AMPure XP beads (Beckman Coulter), 

following manufacturer’s instructions. Sample concentrations were estimated based on UV 

absorbance at 260 nm measured on Nanodrop spectrophotometer. Verification of template 

length was accomplished by electrophoresis of all samples and 10-bp and 20-bp ladder 

length standards (Thermo Scientific O’RangeRuler SM1313 & SM1323) in 4% agarose gels 

(containing 0.5 mg/mL ethidium bromide) and 1x TBE (100 mM Tris, 83 mM boric acid, 1 

mM disodium EDTA).

Preparation of RNA templates.—In vitro transcription reactions were carried out in 

40 μL volumes with 10 pmol of DNA template, using the TranscriptAid T7 High Yield 

Transcription Kit (Thermo Fisher). Reactions were incubated for 3 hours at 37°C, followed 

by degradation of DNA template with 2 μL of DNase I at 37°C for 30 min. RNA samples 

were purified using the Zymo RNA Clean and Concentrator-25 kit (Zymo Research). 

Concentrations were measured by absorbance at 260 nm on Nanodrop spectrophotometers.

SHAPE mapping.—1.2 pmol of purified RNA was added to 2 μL of 500 mM Na- HEPES 

buffer (pH 8.0) and denatured at 90°C for 3 minutes. The reaction was then cooled down 

to room temperature over 10 minutes. 2 μL of 100 mM MgCl2 was then added, followed 

by incubation at 50°C for 30 minutes. The sample was cooled down to room temperature 

over 20 minutes before addition of 5 μL of nuclease-free water (negative control) or 

1-methyl-7-nitroisatoic anhydride (1M7, 8.48 mg/mL of DMSO) followed by incubation 

at room temperature for 15 min, and brought to a final volume of 20 μL with nuclease-free 

water. The SHAPE-RNA sample was further purified by incubating the sample with 5.0 

μL of Na-MES, pH 6.0, 3.0 μL of 5 M NaCl, 1.5 μL of Oligo dT bead, 0.25 μL of 10 

μM FAM-A20-Tail2, and brought to a final volume of 10 μL with nuclease-free water. The 

reaction mixture was incubated at room temp for 15 min, pulled down by 96-post magnetic 

stand for 10 min, washed twice with 70% ethanol and allowed to dry, before adding 2.5 μL 

of nuclease-free water.

DMS mapping.—5 μL of RNA stock in H2O containing 12.5 pmol of RNA was mixed 

with 5 μL of 1× TE (Ambion) and denatured by incubating at 95 °C for 2 min, and then 

cooling on ice for 1 min. Then 12.5 μL of 2× buffer (600 mM Na-cacodylate, pH 7.0, and 

20 mM MgCl2) was added, and the RNA was incubated at 37 °C for 30 min to fold. RNAs 

were modified by adding 2.5 μL of DMS (1.7 M in 100% ethanol); for no-modification 

controls, 2.5 μL of 100% ethanol was added instead. Reactions were incubated at 37 °C for 6 

min, and then quenched with 25 μL of 2-mercaptoethanol.

Preparing samples for capillary electrophoresis.—cDNA was prepared from in-line 

probing and SHAPE RNA samples as follows (note that above procedures leave RNA 

bound to FAM-A20-Tail2 reverse transcription primers which are in turn bound to Oligo 
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dT beads). 2.5 μL of purified RNA was added to a reaction mixture containing 1x First 

Strand buffer (Thermo Fisher), 5 mM dithiothreitol (DTT), 0.8 mM dNTPs, 0.2 μL of 

SS-III RTase (Thermo Fisher) to a final volume of 5.0 μL. The reaction was incubated at 

48°C for 40 minutes, and stopped with 5 μL of 0.4 M sodium hydroxide. The reaction was 

then incubated at 90°C for 3 minutes, cooled on ice for 3 minutes, and neutralized with 

2 μL of quench mix (2 mL of 5 M sodium chloride, 3 mL of 3 M sodium acetate, 2 mL 

of 2 M hydrochloric acid). For four cDNA reference ladders, each of four ddNTPs (GE 

Healthcare 27-2045-01) with a ddNTP/dNTP ratio of 1.25 (0.1 mM / 0.08 mM) was used in 

the reverse-transcription reaction.

cDNA was pulled down on a 96-post magnetic stand and washed 2 times with 100 

μL 70% ethanol. To elute the bound cDNA, the magnetic beads were resuspended in 

10.0625 μL ROX350 (Thermo Fisher Scientific 401735) /Hi-Di (0.0625 μL of ROX 350 

ladder in 10 μL of Hi-Di formamide) and incubated at room temperature for 20 minutes. 

The cDNA was further diluted by 1/3 and 1/10 in ROX350/HiDi and samples loaded 

onto capillary electrophoresis sequencers (ABI-3730) on capillary electrophoresis (CE) 

services rendered by ELIM Biopharmaceuticals. CE data was analyzed using the HiTRACE 

2.0 package (https://github.com/ribokit/HiTRACE), following the recommended steps for 

sequence assignment, peak fitting, background subtraction of the no-modification control, 

correction for signal attenuation, and reactivity profile normalization.

Error and Significance Estimation

We estimated confidence intervals on reported Pearson correlation values by bootstrapping 

the datapoints under consideration and reporting the 2.5th and 97.5th percentile over 1000 

rounds of bootstrapping. Reported standard error values are estimated by calculating the 

standard deviation across bootstrapping rounds. We inferred significance in differences 

between package correlations by analyzing overlap between 95% confidence interval 

estimates24, 25. All code to reproduce significance analyses is included in the EternaBench 

repository.

Data availability

All datasets used here for evaluation are available at https://www.github.com/eternagame/

EternaBench. The original cloud lab datasets are available at the RNA Mapping Database7 

under accession IDs ETERNA_R00_0000 (Round 00), ETERNA_R69_0000 (Round 01), 

ETERNA_R70_0000 (Round 02), ETERNA_R71_0000 (Round 03), ETERNA_R72_0000 

(Round 04), ETERNA_R73_0000 (Round 05), ETERNA_R74_0000 (Round 06), 

ETERNA_R75_0000 (Round 07), ETERNA_R76_0000 (Round 08), ETERNA_R77_0002 

(Round 09), ETERNA_R78_0001 (Round 10), ETERNA_R79_0001 (Round 11), 

ETERNA_R80_0001 (Round 12), ETERNA_R81_0001 (Round 13), ETERNA_R82_0001 

(Round 14), ETERNA_R83_0003 (Round 15), ETERNA_R84_0000 (Round 16), 

ETERNA_R85_0000 (Round 17), ETERNA_R86_0000 (Round 18), ETERNA_R87_0001 

(Round 19), ETERNA_R89_0000 (Round 20), ETERNA_R91_0000 (Round 21), 

ETERNA_R92_0000 (Round 22), ETERNA_R94_0000 (Round 23). A list of RMDB 

accession IDs or urls corresponding to the data used for benchmarking SHAPE-guided 

folding is in Table S12.
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Code availability

The datasets used here for evaluation, as well as scripts and Python notebooks 

for reproducing the filtered datasets and the chemical mapping and riboswitch 

affinity calculations described here, are available at https://www.github.com/eternagame/

EternaBench. The code for training EternaFold, as well as the training and test sets used, 

are available at https://eternagame.org/about/software as the package “EternaFold”. The 

EternaFold code is derived from the CONTRAfold-SE16 codebase, which is derived from 

the CONTRAfold15 codebase.

Package predictions

All base-pairing probability calculations and constrained partition function calculations 

were performed using standardized system calls through Python wrappers developed in 

Arnie (www.github.com/DasLab/arnie). Example command-line calls for each package 

option evaluated are provided in Table S1. Datasets were processed with Pandas (https://

github.com/pandas-dev/pandas) and visualized with Seaborn (https://seaborn.pydata.org/).
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Extended Data

Extended Data Fig. 1. Extended analysis of package rankings based on Eterna Cloud lab 
chemical mapping data.
a) Pearson correlation of all package options tested on Cloud Lab Round 1, which was 

also a holdout test set for EternaFold training studies. Mean ± SEM of Pearson correlation 

calculated via bootstrapping, n=1088 independent constructs. b) ViennaRNA 2, NUPACK 

1999, and RNAstructure show maximum Pearson correlation to chemical mapping data 

at 60°C, 40°C, and 60°C respectively for Eterna Cloud Lab Round 1. Mean ± SEM of 
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Pearson correlation calculated via bootstrapping, n=1088 independent constructs. c) Ranking 

across Cloud lab dataset rounds using Spearman rank correlation (compare to Figure 1E,F). 

Error bars represent 95% confidence interval of the mean obtained over 1000 iterations of 

bootstrapping over 24 independent experiments, n=12,711 independent constructs total. d) 

(Top) Mean Pearson correlations, calculated over each project (as opposed to each dataset), 

compared to sequence metrics of the Cloud Lab projects. The strongest correlation to mean 

correlation was Signal/Noise ratio. (Bottom) Z-score of CONTRAfold-2, calculated over 

each project, compared to sequence metrics of the Cloud Lab projects.

Extended Data Fig. 2. Example chemical mapping predictions from all package options tested.
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Example heatmaps of all package options tested for the “Aires” project (compare to Figure 

1c).

Extended Data Fig. 3. Summary statistics for EternaBench datasets before and after performing 
CD-HIT filtering.
a) Distributions of sequence properties for chemical mapping data (n=38,846 before filtering 

and n=12,711 independent constructs after filtering, collected across 24 experiments), 

and B) riboswitch constructs (n=19,016 independent constructs and n=7,228 independent 

constructs after filtering, collected in 12 experiments). Dataset statistics of EternaBench 
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train and test experimental rounds for (c) Chemical Mapping (Train set: n=3,476 

independent constructs collected over 6 experiments. Test set: n=1,492 independent 

constructs collected over 18 experiments) and (d) Riboswitch data (Train set: n=2,508 

independent constructs collected over 3 experiments. Test set: n=4,018 independent 

constructs collected over 9 experiments). Center dot, median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range. For all subplots: center dot, median; box limits, 

upper and lower quartiles; whiskers, 1.5x interquartile range.
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Extended Data Fig. 4. Overview of all Cloud Labs data.
Example reactivity and p(unpaired) heatmaps from example packages for all 24 Cloud Lab 

rounds.

Extended Data Fig. 5. Extended analysis of package rankings based on riboswitch activity 
predictions.
a) Example set of states for a riboswitch that toggles binding of the fluorescent MS2 protein 

as an output, controlled by binding the small molecule FMN. The equilibrium constant for 

forming the MS2 aptamer in the absence of ligand, KMS2
−lig , is estimated using the probability 
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of forming the closing base pair for all packages. b) Riboswitch Z-scores stratified by input 

ligand type. Error bars represent standard error on Z-score as calculated by bootstrapping 

from 6402, 440, and 386 constructs collected over 8, 2, and 2 experiments, respectively. 

c) Overall ranking KMS2
−lig  calculations using the calculated Spearman correlation (no 

linear assumption, compare to Figure 2B.) Evaulating the Pearson Correlation of package 

calculations for (d) KMS2
+lig  as well as (e) riboswitch Activation Ratio results in a similar 

ranking. In C, D, E, error bars represent 95% confidence interval of the mean obtained over 

1000 iterations of bootstrapping across datasets, n=7,228 independent constructs collected 

over 12 experiments.
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Extended Data Fig. 6. Example riboswitch predictions from all package options tested.
Scatterplots for all options tested for Ribologic dataset. Black solid line indicates line of best 

fit.

Wayment-Steele et al. Page 27

Nat Methods. Author manuscript; available in PMC 2023 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 7. Example riboswitch predictions across all datasets.
Scatterplots for representative packages on all riboswitch datasets. Black solid line indicates 

line of best fit.
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Extended Data Fig. 8. Effect of window size and Levenshtein distance filtering for independent 
chemical mapping test set.
a) Calculating p(unpaired) using varying sliding windows of size 300, 600, and 1200 does 

not change the overall ranking obtained across datasets, compare to Fig. 4B, which was 

calculated for window size 900 (n=31 datasets for all). Package ranking is also consistent 

for a redundancy cutoff of 40% b) (n=16 datasets included after filtering based on 40% 

cutoff by windowed Levenshtein distance). Error bars in A and B represent 95% confidence 

interval for the mean Z-score as calculated by bootstrapping across respective number of 

datasets for each.
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Extended Data Fig. 9. Extended data corresponding to EternaFold development and test set 
evaluation.
a) Comparing Vienna, CONTRAfold, and EternaFold predictions in predicting free energy 

of PUM binding. i) Replication of ddG_exp for both PUM WT and mutant binding from 

(Becker, 2019). The same calculation in Vienna 2 at 37°C shows lower Root-mean-squared 

error (RMSE) (ii), but higher RMSE at 60°C (iii). CONTRAfold 2 shows no improvement 

over Vienna at 37°C (iv), but EternaFold shows modest improvement over both (v). b) 

Package performance for the S-Processed test set is qualitatively similar to results on 

the ArchiveII-NR test set (cf. Fig. 3b). Error bars represent 95% confidence interval of 
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the mean calculated with 1000 iterations of bootstrapping over n=6 independent datasets, 

which contain 974 independent constructs total. C) Evaluating SHAPE- and DMS- directed 

folding. Error bars represent 95% confidence interval of the mean calculated with 1000 

iterations of bootstrapping over n=5 independent datasets of RNAs with known secondary 

structures,, which contain 47 constructs total. d) Potentials learned from EternaFold training 

and used in SHAPE-directed structure prediction.

Extended Data Fig. 10. Extended data corresponding to predicting riboswitch affinity in the 
presence of small molecule ligands.
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a) log KMS2
−lig  and log KMS2

+lig  values of riboswitches included in filtered datasets. Black 

starred datapoint indicates reference value used for Kobs
ref. b) Estimates for the RiboLogic 

FMN dataset for log KMS2
+lig  in all package options able to make estimates with constrained 

partition functions.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Community-science-designed RNA datasets from the Eterna “Cloud Lab” experiments 
identify consistent discrepancies in ensemble calculations from secondary-structure packages.
(A) Workflow of cloud lab rounds: Eterna participants design “projects”, typically intended 

as RNA design challenges. Players submit solutions, all of which are synthesized in high-

throughput via MAP-seq experiments. Example reactivity data are depicted from the project 

“Aires” by participant wateronthemoon. Data are returned to participants in the in-game 

browser, which served as the basis for more player-designed projects.

(B) Calculating the average positional entropy for all solutions collected for each project 

reveals that participants were able to design a diverse set of solutions, independent of 
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target structure complexity (monitored as number of loops in the target structure). Example 

target structures are colored by average reactivity. (C) Example unpaired probabilities for 

60 example constructs from the project “Aires”, for which reactivity data are shown in (A), 

across 5 representative secondary structure packages. Blue, green, magenta arrows indicate 

package predictions that recapitulate experimental partially reactive features. CONTRAfold 

and RNAsoft predictions for p(unpaired) have higher correlation to experimental reactivity 

data. (D) Analogous representation to (B) for the redundancy-filtered EternaBench dataset. 

(E) We compared many commonly used packages and secondary structure prediction 

options over 24 Cloud Lab independent experiments. We calculated the Pearson correlation 

coefficient and calculated the Z-score across all packages evaluated for each dataset. (F) 

Final ranking is obtained by averaging the Z-scores obtained across all datasets. Error 

bars represent 95% confidence interval of the mean obtained over 1000 iterations of 

bootstrapping over n= 24 independent experiments, which comprised 12,711 independent 

constructs total.
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Figure 2. Riboswitch affinity predictions reveal similar package ranking.
(A) Representative scatterplots for the Ribologic-FMN dataset of experimental vs. predicted 

values of KMS2
−lig . (B) Calculating the Z-scores of Pearson correlation coefficients across 

12 independent datasets of riboswitches result in an overall ranking (C) consistent with 

the Chemical Mapping dataset. Error bars represent 95% confidence interval of the mean 

obtained over 1000 iterations of bootstrapping over n=12 independent experiments of 7,228 

independent constructs total.
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Figure 3. Multitask training using EternaBench datasets results in improved thermodynamic 
prediction.
A) Scheme of data types used in multitask training and loss function used for each. B) 

Secondary structure prediction on ArchiveII-NR test set, prepared to contain <80% sequence 

similarity to secondary structure training data (see Methods), n=9 independent datasets with 

654 constructs total. C) Z-score ranking over 18 test datasets for EternaBench Chemical 

Mapping filtered to contain constructs with <60% sequence similarity to all training data, 

n=18 datasets with 1,492 independent constructs total. D) Z-score ranking over 9 Riboswitch 

test sets for riboswitch KMS2 prediction filtered to contain constructs with <80% sequence 

similarity to all training data, n=9 datasets with 4,018 independent constructs total. In B, C, 

D, Error bars represent 95% confidence interval of the mean obtained over 1000 iterations of 

bootstrapping.
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Figure 4. EternaFold improved prediction extends across diverse natural RNA contexts and 
experiments.
A) Mean package correlation for top-performing representative packages selected to 

benchmark for 31 independent chemical mapping datasets from a variety of biological 

contexts and with other chemical modifiers. Each dataset was filtered to contain sequences 

with <60% sequence similarity to the EternaFold training set. (B) EternaFold is ranked 

highest in average Z-score. Error bars represent 95% confidence interval of the mean 

obtained over 1000 iterations of bootstrapping over n=31 datasets from literature. 

Calculating correlations over sequence windows indicates that EternaFold demonstrates 

uniformly higher correlation across sequence position for two representative datasets: (C) 

Zika genome probed in virion (ref. 45), (D) Human mRNA ENST00000495843 probed ex 

vivo (ref. 53).
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Table 1.

Ranking by Z-score over 24 Chemical Mapping datasets (n=12,711 constructs), 12 Riboswitch datasets 

(n=7,228 constructs), and averaged over both dataset types.

Package ChemMapping Z-score 
mean(std)

Riboswitch Z-score 
mean(std)

Both dataset types 
mean(std)

CONTRAfold 2 1.14(0.69) 1.03(0.43) 1.09(0.61)

Vienna 2, 60°C 1.12(0.29) 0.65(0.34) 0.89(0.38)

RNAsoft BL, no dangles 0.88(0.34) 0.79(0.57) 0.84(0.43)

RNAstructure, 60°C 0.71(0.57) 0.86(0.36) 0.78(0.51)

RNAsoft BLstar 0.93(0.36) 0.42(0.67) 0.67(0.53)

CONTRAfold 1 0.57(0.99) 0.45(0.65) 0.51(0.88)

CONTRAfold 2, noncomplementary 0.15(1.01) 0.66(0.53) 0.40(0.91)

Vienna 2, `RNASoft 2007` params 0.33(0.45) 0.38(0.37) 0.35(0.42)

RNAsoft LAM-CG 0.87(0.25) −0.37(0.69) 0.25(0.74)

Vienna 2, `Langdon 2018` params 0.13(0.48) 0.26(0.46) 0.20(0.47)

RNAsoft 2007 0.89(0.21) −0.54(0.40) 0.17(0.74)

RNAsoft NOM-CG 0.52(0.30) −0.26(0.66) 0.13(0.58)

Vienna 2 −0.15(0.47) 0.25(0.30) 0.05(0.46)

RNAstructure −0.55(0.50) 0.43(0.51) −0.06(0.68)

RNAstructure, no coaxial stacking −0.60(0.55) 0.19(0.51) −0.21(0.65)

NUPACK 1999 −0.86(0.30) −0.06(0.33) −0.46(0.49)

Vienna 1 −0.96(0.56) −0.02(0.79) −0.49(0.78)

NUPACK 1995 −0.86(0.31) −0.19(0.33) −0.52(0.45)

RNAsoft 1999 −0.27(0.55) −0.98(0.22) −0.63(0.58)

RNAsoft 1999, no dangles −0.27(0.55) −0.99(0.22) −0.63(0.58)

Vienna 2, no dangles −0.24(0.47) −1.48(0.26) −0.86(0.72)

NUPACK 1999, no dangles −0.88(0.47) −1.42(0.36) −1.15(0.50)

NUPACK 1995, no dangles −0.88(0.47) −1.44(0.35) −1.16(0.51)

NUPACK 1999, 60° C −1.72(0.89) −1.13(0.41) −1.42(0.81)

Standard deviation of Z-score over datasets in parentheses. Top-performing package for each is bolded.
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Table 2.

Average Z-score for each external RNA class.

Viral genomic RNA SARS-CoV-2 genomic 
RNA

mRNA Synthetic RNA Average across all 
datasets

# Datasets 8 6 9 8 31

EternaFold 1.29(0.21) 1.65(0.12) 1.26(0.43) 0.75(0.50) 1.21(0.47)

CONTRAfold 0.61(0.17) 0.38(0.09) −0.10(0.56) 0.27(0.13) 0.27(0.41)

RNAsoft BLstar 0.34(0.23) 0.54(0.24) 0.23(0.31) −0.07(0.19) 0.24(0.32)

RNAstructure, 60°C 0.10(0.27) −0.25(0.20) 0.32(0.36) 0.21(0.07) 0.12(0.32)

ViennaRNA 2, 60°C 0.04(0.26) −0.25(0.22) 0.37(0.25) 0.18(0.03) 0.11(0.30)

ViennaRNA 2 −1.19(0.30) −1.00(0.16) −0.97(0.43) −0.65(0.32) −0.95(0.37)

RNAstructure −1.20(0.26) −1.06(0.16) −1.11(0.34) −0.70(0.38) −1.02(0.35)

Standard deviation of Z-scores in parentheses. Top-performing package for each is bolded.
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