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Abstract

A rare missense APOE variant (L28P; APOE*4Pittsburgh), which is present only in populations 

with European ancestry, has been reported to be a risk factor for late-onset Alzheimer’s disease 

(LOAD). However, due to the complete linkage disequilibrium of L28P with APOE*4 (C112R), 

its independent genetic association is uncertain. The original association study implicating L28P 

with LOAD risk was carried out in a relatively small sample size. In the current study, we have 

re-evaluated this association in a large case-control sample of 15,762 White U.S. subjects and 

investigated its independent effect in APOE 3/4 subjects, as L28P has been observed only in 

the heterozygous state of APOE*4 carriers and 3/4 is the most common genotype containing 

the APOE*4 allele. The heterozygous carrier frequency of L28P, all with APOE*4, was about 

3-fold higher in AD cases than in cognitively intact controls (0.845% vs 0.277%). The age- and 

sex-adjusted meta-analysis odds ratio (OR) was 2.87 (95% CI: 1.34 – 6.13; p= 0.0066). Among 

APOE 3/4 subjects, age- and sex-adjusted meta-analysis OR was 1.53 (95% CI: 0.70 – 3.36; 

p= 0.28), indicating its effect was independent of APOE*4. The lack of statistical significance 

appears mainly due to the low power of 4,138 subjects with the 3/4 genotype (12% power at 

α= 0.05) compared to the required sample of 139,088 subjects with the 3/4 genotype to detect 

an OR of 1.5 at α= 0.05 and 80% power. Our data suggesting that L28P has an independent 

genetic effect on AD risk is reinforced by earlier experimental findings showing that this mutation 
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leads to significant structural and conformational changes in the ApoE4 molecule and can induce 

functional defects associated with neuronal Aβ42 accumulation and oxidative stress. Additional 

functional studies in cell-based systems and animal models will help to delineate its functional 

significance in the etiology of AD.
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Introduction

Human apolipoprotein E (ApoE, protein; APOE, gene) plays a pivotal role in cholesterol/

lipid transport in the peripheral and central nervous systems [1]. The most common APOE 
polymorphism due to missense mutations at codons 112 and 158 results in three allelic 

forms, of which APOE*4 is associated with an increased risk and earlier age-at-onset (AAO) 

of Alzheimer’s disease (AD), while APOE*2 is associated with decreased risk and later 

AAO of AD as compared to the wild type APOE*3 [2–6]. Since the original discovery of the 

association between APOE*4 and AD, evidence that APOE alleles differentially influence 

amyloid and tau pathology, network dysfunction, and neuroinflammation has been identified 

[7, 8].

In 1999, two groups independently identified a novel and rare missense mutation in the 

APOE gene [9, 10] in which the leucine residue is replaced by proline at codon 28 (L28P; 

rs769452). This mutation occurs in complete linkage disequilibrium (LD) with the APOE*4 
allele, hence named APOE*4Pittsburgh and APOE*4Freiburg, and it was associated with 

an elevated risk for AD [9] and coronary artery disease [10]. Since then, this variant has 

been examined in additional AD case-control samples [11–13], although a consensus as to 

whether this mutation by itself increases the odds of developing AD is yet to be reached. 

The main drawbacks of aforementioned studies are the use of relatively limited samples, 

considering L28P is an ultra-rare variant and would require a very large sample size. 

The rarity of the L28P mutation, and its complete LD with the APOE*4 allele, makes it 

nearly impossible to separate its unique contribution from the overwhelming effect of the 

APOE*4 allele on the risk of developing AD. In the current study, we have re-evaluated this 

association in a large case-control sample of 15,762 U.S. White subjects and investigated its 

independent effect among subjects with the APOE 3/4 genotype, as L28P has been observed 

in the heterozygous state only on the APOE*4–containing chromosome and 3/4 is the most 

common genotype containing the APOE*4 allele.

Methods

Study Samples

To maximize the sample size for this rare variant study, we used data from 15,762 

White AD cases and controls derived from three major cohorts: Alzheimer’s Disease 

Sequencing Project (ADSP), The Ginkgo Evaluation of Memory (GEM) study, and a 

cohort comprising three studies at the University of Pittsburgh: the case-control cohort at 
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the Alzheimer’s Disease Research Center (ADRC) and two population-based cognitively 

normal cohorts, the Monongahela Valley Independent Elders Survey (MoVIES) and the 

Monongahela-Youghiogheny Healthy Aging Team (MYHAT). The demographic data on 

each study sample is presented in Table 1 and their detailed descriptions are given elsewhere 

[14–18].

Genotyping

Genotypes for the APOE/rs429358 (APOE*4) and APOE/rs7412 (APOE*2) SNPs in the 

Pittsburgh and GEM samples were determined using TaqMan genotyping assays followed 

by the determination of traditional six genotypes (2/2, 2/3, 2/4, 3/3, 3/4, 4/4) based on the 

three-allele APOE polymorphism [6]. The genotype identification of these variants in the 

ADSP sample were derived directly from the whole-exome sequencing (WES) data [19].

Statistical Analysis

Logistic regression was implemented for calculating odds ratios (ORs) and the 95% 

confidence intervals (CI) while using sex and age as covariates. The ORs were calculated 

individually for each of the three research studies followed by the meta-analysis. To 

determine the independent effect of APOE*4Pittsburgh L28P from APOE*4 on AD risk, 

we examined the distribution of L28P among subjects with the APOE 3/4 genotype, since 

as detailed above, it has been observed in the heterozygous state only on the APOE*4–

containing chromosome and 3/4 is the most common APOE*4 genotype. All statistical 

analyses were performed in R version 3.6.1 [20] using the R package epitools [21]; meta 

[22]; and metafor [23]. The power analysis for the current sample size and the required 

sample size for 80% power were calculated in G*Power 3.1 [24] following the formula in 

Demidenko [25].

Results and Discussion

We examined a total of 15,762 subjects from three studies (6,390 AD cases and 9,372 

controls) for the L28P variant (Table 1). As expected, the frequency of APOE*4 carriers 

was higher in AD cases than in controls. Genotyping of L28P revealed two genotypes, TT 

and TC; no example of the rare allele homozygosity (CC) was observed. Table 2 shows the 

carrier frequency of the TC genotype along with the minor allele frequencies (MAF). Eighty 

subjects carried the L28P mutation, all with the APOE*4 allele. The L28P carrier frequency 

was significantly higher in AD cases than controls (0.845% vs 0.277%; P = 1.25E-06). The 

meta OR was 2.87 (95% CI: 1.34 – 6.13; P = 6.60E-03).

To distinguish the independent effect of L28P from APOE*4 on AD risk, we restricted the 

analysis among subjects with the APOE 3/4 genotype, as detailed above. Among the 4,834 

AD cases and controls with APOE*4 carriers, 85.62% had the 3/4 genotype followed by 4/4 

(8.05%) and 2/4 (6.33%) genotypes. Subjects with the APOE 2/4 and 4/4 genotypes were 

excluded in order to avoid the confounding protective effect of E2 and an extra copy of E4 

on L28P. The age- and sex-adjusted meta-analysis OR of L28P among APOE 3/4 was 1.53 

(95% CI: 0.70 – 3.36; p = 0.28; Figure 1). The lack of significance is mainly due to the low 

power of a sample size of 4,138 in the 3/4 genotype (12% power at α = 0.05); the calculated 
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required sample size was 139,088 (Figure 2). Considering that about 25% of the European 

Whites carry the APOE*4 allele, the total required sample size to detect an OR of 1.5 at α = 

0.05 and 80% power was 556,352 (139,088/0.25) European Whites.

Even with non-statistically significant p-value, the OR of 1.53 among 3/4 subjects suggests 

that the effect of L28P on AD risk is independent of APOE*4. This genetic observation 

is further supported by a comprehensive experimental study in which the L28P mutation 

was associated with significant structural and conformational changes in the wild type 

(WT) ApoE4 that resulted in intraneuronal Aβ42 accumulation and oxidative stress [26]. As 

compared to lipid-free WT ApoE4, lipid-free L28P induced the intracellular accumulation 

of Aβ42 in SK-N-SH human neuroblastoma cells and mouse primary neurons. Furthermore, 

lipidated L28P significantly reduced the viability of SK-N-SH cells when compared to 

lipidated WT ApoE4, which was due to greater cellular oxidative stress induced by 

L28P than WT ApoE4 [26]. Regardless of its lipidation state, if L28P promotes the in 
vivo neuronal accumulation of Aβ42 followed by induction of increased oxidative stress 

and ensuing AD pathogenesis, this would represent a gain of function over the WT 

ApoE4, that itself does not induce the intracellular accumulation of Aβ42. WT ApoE4 

is more susceptible to proteolysis than the other ApoE isoforms (E2 and E3) and ApoE4 

fragments have been found in brains of AD patients [27]. In this regard, a specific ApoE4 

fragment, ApoE4[Δ(166-299)], has previously been found to promote the cellular uptake of 

extracellular Aβ42 and resulted in increased oxidative stress [28], similar to the effect of 

L28P. Since the intraneuronal accumulation of Aβ42 and the resulting persistent oxidative 

stress are considered early events in the pathogenesis of AD and the naturally occurring 

L28P mutation is associated with both these events as well as with AD risk, it will be 

important in future studies to examine the role of L28P in cell-based systems, such as 

induced pluripotent stem cells (iPSCs), which can successfully recapitulate the pathology of 

AD [29, 30] and/or animal models.

In summary, our genetic data among APOE 3/4 subjects suggest that L28P has an effect 

independent of APOE*4 on AD risk, which is reinforced by earlier experimental findings. 

Further confirmation of our genetic data in much larger APOE 3/4 subjects would help 

validate this independent association.
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Highlights

• A rare missense APOE (L28P) has been reported to be a risk factor for 

late-onset Alzheimer’s disease (LOAD).

• However, due to the complete linkage disequilibrium of L28P with APOE*4, 

its independent genetic association is uncertain.

• we have re-evaluated the L28P association in 15,762 White U.S. case-control 

subjects and in 4,139 APOE 3/4 subjects, since APOE 3/4 is the most 

common genotype containing the APOE*4 allele

• Our data suggesting that L28P has an independent genetic effect on LOAD.
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Figure 1. 
Meta-analysis of L28P in the total sample (left) and among subjects with the APOE 3/4 

genotype (right).
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Figure 2. 
Required sample size for APOE 3/4 genotype individuals with different combinations of the 

odds ratio and the power (α=0.05).
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Table 1.

Demographic information on the study samples

Study ADSP GEM Univ Pittsburgh Total

AD Case Control AD Case Control AD Case Control AD Case Control

N 4316 5964 384 2217 1690 1191 6390 9372

Mean Age ± 
SD

73.7 ± 7.95 85.6 ± 4.10 79.9 ± 3.64 78.3 ± 3.11 72.0 ± 8.02 77.2 ± 7.79 73.6 ± 7.97 82.8 ± 5.88

Sex Female 
(%)

1973 
(45.7%)

2355 
(39.5%)

181 (47.1%) 980 
(44.2%)

1077 
(63.7%)

742 (62.3%) 3231 
(50.6%)

4077 
(43.5%)

APOE*4 
Carrier N (%)

2201 (51%) 814 (14%) 150 (39%) 461 (21%) 974 (58%) 234 (20%) 3325 (52%) 1509 (16%)
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Table 2.

Distribution of L28P (rs769452) Carriers in AD cases and Controls

Study ADSP GEM Univ Pittsburgh Total

AD Case Control AD Case Control AD Case Control AD Case Control

N 4316 5964 384 2217 1690 1191 6390 9372

L28P Carrier N (%) 29 (0.672%) 10 (0.168%) 4 (1.04%) 9 (0.406%) 21 (1.243%) 7 (0.588%) 54 (0.845%) 26 (0.277%)

MAF % 0.335% 0.084% 0.521% 0.203% 0.621% 0.294% 0.423% 0.139%
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