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Summary

T cells are at the centerstage of cancer immunology due to their ability to recognize mutations 

within tumor cells and directly mediate cancer cell killing. Immunotherapies to rejuvenate 

exhausted T cell responses have transformed the clinical management of several malignancies. 

In parallel, the development of novel multidimensional analysis platforms such as single-cell 

RNA-sequencing and high-dimensional flow cytometry has yielded unprecedented insights into 

immune cell biology. This convergence has revealed substantial heterogeneity of tumor-infiltrating 

immune cells, both within single tumors, across tumor types, and among cancer patients. Here, 

we discuss the opportunities and challenges of studying the complex tumor microenvironment 

with -omics technologies that generate vast amounts of data, highlighting the opportunities and 

limitations of these technologies with a particular focus on interpreting high-dimensional studies 

of CD8+ T cells in the tumor microenvironment.

The promise of immunotherapy

Cancer immunotherapy – the augmentation of anti-tumor immunity – has revolutionized 

the treatment of many cancers. Dozens of immunotherapies have received FDA approval, 

and thousands of immuno-oncology agents are under development (Upadhaya et al., 2020). 

Current types of cancer immunotherapy include cytokines, depleting antibodies, adoptive 

cell therapy, oncolytic viruses, cancer vaccines, and immune checkpoint inhibitors (ICIs) 

(Esfahani et al., 2020). As key mediators of anti-tumor immunity, T cells are the target of 
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most of these therapeutic strategies. ICIs, in particular, are the most widely used cancer 

immunotherapy and modulate signaling pathways of exhausted CD8+ T cells in order 

to enhance the anti-tumor response (Robert, 2020). The unprecedented success of ICIs 

in the clinical management of cancer combined with the transience or complete lack of 

responses in most patients has spurred significant efforts over the past decade to gain a 

better understanding of CD8+ T cell differentiation and dysfunction in cancer to ultimately 

improve immunotherapy response rates.

Studies of T cell differentiation were revolutionized by the use of peptide-MHC (pMHC) 

I multimers, allowing the tracking of antigen-specific T cells in a manner independent 

of their functionality (Altman et al., 1996). Much early work on antigen-specific T cell 

differentiation was performed in mouse models, especially the lymphocytic choriomeningitis 

virus (LCMV) system that enables the investigation of T cells specific for identical epitopes 

under acute and chronic antigen stimulation settings (Wherry et al., 2007; Zajac et al., 1998). 

Until recently, studies of antigen-specific T cell differentiation in humans had focused 

almost exclusively on viral infections, including yellow fever virus (YFV) (Akondy et al., 

2017; Akondy et al., 2009; Miller et al., 2008), Epstein-Barr Virus (EBV) (Amyes et al., 

2003; Long et al., 2019; Murray et al., 1992), Cytomegalovirus (CMV) (Khan et al., 2002a; 

Klenerman and Oxenius, 2016; Pourgheysari et al., 2007), and influenza (Gotch et al., 1987; 

Hufford et al., 2014; Koutsakos et al., 2019).

These studies showed that, following antigen exposure, naïve CD8+ T cells differentiate into 

effector cells and express high amounts of cytotoxic proteins, cytokines, and markers of 

division (Fig. 1). Antigen clearance results in de-differentiation of a subset (Kaech et al., 

2003) of effector cells into memory cells, which lack effector molecules but are primed for 

rapid recall of cytotoxic function (Youngblood et al., 2017). In cases of antigen persistence, 

such as cancer, CD8+ T cells exist in several differentiation states (Eberhardt et al., 2021; 

Hudson et al., 2019a; Im et al., 2016; Philip and Schietinger, 2019). One such subset, PD-1+ 

stem-like cells, has been of immense interest in the field of cancer immunology as this 

subset of CD8+ T cells serves as a reservoir maintaining a relatively stable pool of antigen-

specific T cells during antigen persistence (Siddiqui et al., 2019). Most importantly, these 

stem-like cells mediate the proliferative burst of antigen-specific CD8+ T cells observed 

after PD-1 pathway blockade, a finding first described in the murine LCMV model (Im et 
al., 2016).

The heterogeneity of the tumor microenvironment

In contrast to the early focus on viral infections, hundreds of studies have been performed in 

recent years to characterize T cell responses to cancer. This increased interest in anti-tumor 

T cell responses has coincided with a revolution in biological techniques that has advanced 

tumor immunology. In particular, next-generation sequencing has provided the ability to 

measure the expression of thousands of genes in pools of cells, in situ within tissue sections, 

or in single cells. Other technologies, including flow cytometry and gene editing, have 

greatly increased their capabilities and adoption by researchers in the cancer immunotherapy 

era.
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These advances in methodology have revealed many important features of tumor 

immunology; most notably, the diversity of tumor-infiltrating immune cells. This diversity 

includes differences in anti-tumor immunity between cancer patients as well as the variety 

of immune cell types within a single tumor microenvironment (TME). Further, not only 

are many cell types present within tumors, but each of these cell types can also be present 

in multiple states within the same TME, a feature true not only of T cells, but also of B 

cells (Wei et al., 2021), myeloid cells (Veglia et al., 2021), fibroblasts (Helms et al., 2020), 

as well as tumor cells themselves (Patel et al., 2014). In this Perspective, we will discuss 

the opportunities and challenges that have arisen as modern immunology techniques have 

encountered the complexity of the TME, with a particular focus on anti-tumor CD8+ T cell 

immunity.

Specificity is key: bystanders within the TME

Heterogeneity in clinical responses was an early feature of ICI use in cancer (Brahmer et al., 

2010; Topalian et al., 2012), prompting the search for clinical correlates of immunotherapy 

response. One of the first variables tested for correlation with clinical response to PD-1 

pathway blockade was pre-existing infiltration of tumors by CD8+ T cells (Herbst et al., 

2014; Tumeh et al., 2014). In many cases, a higher level of CD8+ T cell infiltration predicts 

response to ICIs (Galon and Bruni, 2019; Tumeh et al., 2014), but this correlation has not 

been found in all studies (Braun et al., 2020; Herbst et al., 2014). Studies in patients with 

various cancers have shown that a substantial proportion - in some cases even the majority 

- of intratumoral CD8+ T cells are bystander cells; that is, they are not specific for tumor 

antigens and are either predominantly reactive to common human pathogens such as EBV, 

CMV, and influenza (Cheng et al., 2021; Oliveira et al., 2021; Rosato et al., 2019; Scheper et 

al., 2018; Simoni et al., 2018; Sudmeier et al., 2022) or have unknown antigen specificity.

Thus, the composition of the intratumoral CD8+ T cell compartment is not only the result of 

available and recognized tumor antigens but also of the immunological history of the patient. 

Without knowledge of their antigen specificity, this infiltration by microbe-specific CD8+ T 

cells has the potential to seriously confound studies assessing the number, phenotype, and 

differentiation of tumor-specific CD8+ TILs. This presence of bystander cells is not only 

restricted to CD8+ TILs, as CMV-specific CD4+ T cells have also been reported with in 

the TME of various cancers (Li et al., 2022; Oliveira et al., 2022). However, less is known 

about bystander infiltration of CD4+ T cells due to inherent difficulties of their detection 

with pMHC multimers when compared to CD8+ T cells (Christophersen, 2020).

In some tumors, even the most abundant CD8+ clones may not be tumor-specific. Elderly 

patients – in which cancer incidence is high - can accumulate oligoclonal CD8+ T cell 

repertoires in a process termed memory inflation (Klenerman, 2018). Many of these 

clones are CMV-specific (Khan et al., 2002b; Wieland et al., 2018). In a nonagenarian 

melanoma patient we recently found that the ten most abundant CD8+ T cell clones in 

circulation accounted for nearly 60% of the entire blood CD8+ T cell repertoire, with 

the most dominant clone comprising 30% (Wieland et al., 2018). Importantly, while these 

peripherally expanded clones were less prevalent in tumor and did not expand in response 

to anti-PD-1 therapy (thus likely representing virus-specific bystanders), they still ranked 
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among the top tumor-infiltrating CD8+ T cell clones due to their vast abundance in the 

periphery.

While these and other data suggest that a negative enrichment of CD8+ T cell clonotype 

frequency in tumor versus blood can identify bystander cells, bystander cells can also 

be found at similar or even slightly higher frequencies than in blood (Ning et al., 2022; 

Rosato et al., 2019; Scheper et al., 2018). This is likely due to the relative exclusion of 

naïve T cells from tumors (Egelston et al., 2018; Sudmeier et al., 2022) and highlights the 

impact of the respective denominator for such comparisons. While techniques allowing for 

the direct determination of antigen specificity such as tetramer staining, MANAFEST and 

TCR sequencing of cells with confirmed antigen/tumor specificity are tedious (Caushi et 

al., 2021; Danilova et al., 2018; Oliveira et al., 2022; Oliveira et al., 2021; Rosato et al., 
2019; Simoni et al., 2018), they are necessary to accurately distinguish bystanders from 

tumor-specific T cells.

This presence of bystander CD8+ T cells in the absence of their cognate antigen has also 

been recapitulated in mouse tumor models, demonstrating that pre-existing virus-specific 

CD8+ T cells can infiltrate tumors and acquire phenotypic traits such as PD-1 expression 

(Erkes et al., 2017; Rosato et al., 2019; Sudmeier et al., 2022) which are often erroneously 

associated with T cell dysfunction or even equated with tumor specificity (Danahy et 

al., 2020). Importantly, bystander recruitment seems to be mostly restricted to antigen-

experienced cells (Erkes et al., 2017; Ning et al., 2022; Rosato et al., 2019; Sudmeier et 
al., 2022) and thus likely results in substantially higher frequencies of tumor-specific CD8+ 

T cells in standard mouse models due to the relative absence of microbe-specific memory 

CD8+ T cells in mice kept under standard pathogen-free conditions.

Bystander infiltration into tumors has two major implications for the study of tumor-

infiltrating CD8+ T cells. First, since tumor-specific CD8+ T cells are required for efficient 

tumor killing, the presence of bystanders may complicate the correlation of CD8+ T cell 

infiltration with response to ICIs. A potential contributor to this phenomenon might be 

the variable fraction of bystanders compared to bona fide tumor-specific cells in different 

tumors and among individuals. Another contributor may be the potentially beneficial, 

antigen-independent role of bystander cells for the maintenance of a permissive local 

immune milieu by secretion of various cytokines and chemokines. This too may be variable: 

cells that have experienced multiple sequential stimulations by their cognate antigen exhibit 

increased antigen-independent effector functions in the TME (Danahy et al., 2020). These 

data suggest that functional bystander cells are not equal from an anti-tumor perspective and 

that their antigen specificity and thus antigenic history (i.e. time since last antigen encounter 

and number of antigenic encounters throughout their lifetime) will significantly impact their 

anti-tumor functions. Experiments in mice exposed to various pathogens in a controlled 

manner prior to tumor inoculation (Danahy et al., 2020; Erkes et al., 2017; Ning et al., 2022; 

Rosato et al., 2019) or the use of “dirty” mice (Beura et al., 2016) will continue to improve 

our understanding of the role of bystander CD8+ T cells and their potential to be specifically 

harnessed to promote anti-tumor immune responses.
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Looks can be deceiving

A second implication of bystander cell infiltration is their potential to confound the study 

of tumor-specific T cells within the TME. As discussed above, tumor specificity of T cells 

cannot be inferred from their simple presence within the TME. As a corollary, the phenotype 

and number of tumor-infiltrating cells should not be confused with the phenotype and 

number of tumor-specific cells.

The marked heterogeneity of antigen specificities within the tumor raises the important 

question to what degree the observed phenotypic heterogeneity of CD8+ TILs can be 

attributed to divergent antigen specificities and thus differential histories of antigenic 

stimulation versus differentiation of the tumor-specific cells themselves. As noted, CD8+ 

T cell differentiation has been extensively studied in the context of both acute and chronic 

antigen exposure in both preclinical mouse models as well as humans (Akondy et al., 
2017; Kaech et al., 2003; Miller et al., 2008). While acute antigen exposure results in the 

ultimate development of polyfunctional memory cells, chronic antigen stimulation leads to 

the alternate T cell differentiation state of exhaustion. Although the ultimate products of 

acute and chronic antigen exposure (i.e., memory and exhausted CD8+ T cells) differ in 

their functional capacity, they still share a substantial number of expressed molecules at 

various stages of their differentiation trajectories, while simultaneously exhibiting significant 

heterogeneity along each trajectory (Figure 1).

Hence, multiple markers are required to accurately describe the differentiation state of 

a given CD8+ T cell. In settings in which the number of employed markers is small, 

such as in low-dimensional flow cytometry or immunohistochemistry, determining distinct 

differentiation states may mislead data interpretation. One misleading marker is PD-1 itself, 

whose presence on CD8+ T cells is commonly equated to an exhausted phenotype; however, 

PD-1 is more accurately described as an activation marker reflecting TCR stimulation. 

Indeed, PD-1 expression is not limited to exhausted T cells but also observed on antigen-

specific cells early after antigenic stimulation (Ahn et al., 2018), with memory precursors - 

fated to become long-lived memory CD8+ T cells - expressing higher levels of PD-1 than 

terminal effector cells (Hudson et al., 2019b).

The above observations were made in a mouse model of acute viral infection, which 

provides detailed information about the antigen specificity of the analyzed CD8+ T cells 

and when a cell first/last encountered its cognate antigen. With some notable exceptions of 

experimental studies in viral infections (Akondy et al., 2017; Akondy et al., 2009; Fuertes 

Marraco et al., 2015; Miller et al., 2008), temporal information is typically not available to 

study human CD8+ T cell differentiation. This is particularly true in tumor studies, where a 

snapshot of the TME is generated at the time of resection or biopsy.

Pitfalls of trajectory analysis

The resulting difficulty in determining distinct lineage relationships between complex 

human T cell populations in vivo has spurred the use of differentiation trajectory algorithms 

to develop a biological framework for tumor-infiltrating lymphocyte differentiation. Key 
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methods of this kind include trajectory analysis using pseudotime and RNA velocity 

to infer differentiation pathways among cells analyzed by scRNA-seq (La Manno et 

al., 2018; Trapnell et al., 2014). However, while these methods can be useful for 

hypothesis generation, they are not substitutes for experimental determination of lymphocyte 

differentiation trajectories and may lead to erroneous results even in relatively simple 

experiments.

As an example, to determine the differentiation pathways of virus-specific CD8+ T cells, 

Kurd et al. (Kurd et al., 2020) transferred P14 cells – TCR-transgenic CD8+ T cells specific 

for a LCMV epitope – to wild type mice. After infection of recipient mice with the acute 

strain of LCMV Armstrong, the authors isolated donor P14 cells at various time points and 

performed scRNA-sequencing (Fig. 2A–B). Since the stage of differentiation and time after 

antigen exposure are known for every cell in this experiment, this is an excellent dataset 

to compare the ground truth (real time) with inferred pseudotime. We re-analyzed their 

data set, performing dimensionality reduction of sequenced cells with Uniform Manifold 

Approximation and Projection (UMAP) and trajectory inference with Slingshot (McInnes et 

al., 2018; Street et al., 2018). The actual, real-time trajectory of CD8+ T cell differentiation 

followed a clockwise pattern in UMAP space (Fig. 2C) whereas trajectory inference 

predicted the opposite differentiation pathway as determined by biological experimentation: 

naïve cells were predicted to differentiate into memory cells first, followed by subsequent 

transition into late and early effectors (Fig. 2D).

Even in this exceptionally “clean” example, where CD8+ T cells with an identical antigen 

receptor of known specificity are transferred to a congenically distinct host and subsequently 

isolated, trajectory analysis from scRNA-seq data infers a wildly incorrect differentiation 

pathway compared to the known ground truth. In human tumors, such analyses are 

often performed on scRNA-seq data from heterogenous pools of tumor-infiltrating T cells 

comprised of cells with multiple TCR clonotypes, multiple antigen specificities and thus 

distinct differentiation histories, often from multiple patients, each isolated at a single time 

point. Any trajectory inference from such a heterogeneous population of cells should thus 

be treated with skepticism. In many cases, it appears that bystander and tumor-specific T 

cells are found in mutually exclusive differentiation states (Oliveira et al., 2021; Sudmeier 

et al., 2022). Given the inability of exhausted CD8+ T cells to form central memory cells 

after antigen removal (Abdel-Hakeem et al., 2021; Hensel et al., 2021; Tonnerre et al., 

2021; Yates et al., 2021), the poor response of memory CD8+ T cells to sustained antigenic 

load (West et al., 2011), and the epigenetically-enforced irreversibility of the exhausted 

T cell state (Pauken et al., 2016), two distinct tumor-infiltrating T cell populations may 

not share a common differentiation pathway and any attempt to infer trajectories between 

such states would be incorrect. An extreme example is a recent study (Wilk et al., 2020) 

that used RNA velocity analysis from scRNA-seq to propose a “differentiation bridge 

from plasmablasts to developing neutrophils”, a conclusion seemingly at odds with basic 

immunological principles (Alquicira-Hernandez et al., 2021).

In our example (Fig. 2), the discrepancy between real-time and pseudotime trajectories is 

due to a conflict between inherent biological properties of CD8+ T cell differentiation and 

the design of differentiation trajectory algorithms. Upon activation, naïve T cells undergo 
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extensive proliferation and acquire an effector gene expression pattern including high levels 

of MKI67, GZMB, PRF1, IL2RA (encoding CD25), and PDCD1 (encoding PD-1) (Fig. 

2B,E). This is accompanied by downregulation of memory/stemness-associated genes such 

as SELL (encoding CD62L), IL7R, TCF7, and CCR7 (Fig. 2B,E). After antigen clearance, 

a subset of effector cells will ultimately de-differentiate into memory CD8+ T cells that 

re-acquire a more naïve and quiescent-like state but simultaneously maintain epigenetic 

marks of an effector phase such as demethylation of loci encoding for effector molecules 

such as granzyme B (Akondy et al., 2017; Youngblood et al., 2017). Similar reversals of 

gene expression are also observed in the differentiation of exhausted CD8+ T cells (with 

CX3CR1 and CD69, for example (Beltra et al., 2020; Hudson et al., 2019a)). Unfortunately, 

this gene expression pattern – inherent to T cell biology - violates “a key assumption 

that enables pseudotemporal ordering,” namely “that genes do not change direction very 

often, and thus samples with similar transcriptional profiles should be close in order” 

(Bacher and Kendziorski, 2016). The result in our example is that naïve and memory cells, 

which are the most transcriptionally similar yet temporally distant, are projected to be 

adjacent in differentiation state (Fig. 2F). Similar issues likely exist with CD4+ T cells, and 

inference of their differentiation trajectories may be further complicated by their potential 

to differentiate into distinct helper T cell subsets, compared to the (relatively) simplistic 

lifestyle of cytotoxic CD8+ T cells. Thus, although it is tempting to use trajectory inference 

techniques to infer differentiation relationships between cell subsets, experimental validation 

is required before making firm conclusions about immune cell differentiation pathways.

Another method commonly used to infer immune cell phenotype or differentiation state is 

gene set enrichment analysis (GSEA) (Subramanian et al., 2005). GSEA determines whether 

differences in expression levels of a pre-defined set of genes are statistically significant 

between two populations. When using GSEA or gene ontology data for analysis, it is critical 

to properly frame the comparison between the gene set(s) and populations being analyzed 

and to also consider confounding biological processes that may be present between two 

otherwise-different cell types. For example, despite their distinct differentiation states, both 

effector and exhausted CD8+ T cells will express high levels of cytotoxicity-related genes 

compared to naïve or memory cells. In our analysis of CD8+ T cells following acute LCMV 

infection, expression of an exhaustion-associated gene set is high in effector cells isolated 

5–7 days following infection (Fig. 3A,B). However, no exhausted cells are present in this 

dataset; the CD8+ T cells expressing these genes are not exhausted but are effectors that 

share an overlapping gene expression program with exhausted T cells. It is also worth 

noting that any errors or omissions in annotation or construction of gene sets will be carried 

forward in the analysis. For example, the gene set in our example was constructed from 

microarray data (Doering et al., 2012), likely omitting more recently discovered or annotated 

genes associated with T cell exhaustion. However, careful use of gene sets does have several 

advantages, including the availability of thousands of gene sets for analysis (Liberzon et al., 

2011) and less sensitivity to scRNA-seq dropout.

One key advantage to studying lymphocytes with scRNA-seq is the ability to determine 

antigen receptor sequences (B cell receptors/BCRs and T cell receptors/TCRs) (Morgan and 

Tergaonkar, 2022; Pai and Satpathy, 2021; Pauken et al., 2022). At a broad level, measuring 

TCR diversity yields important information on the clonality and breadth of T cell responses. 
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On the single-cell level, since lymphocytes with the same antigen receptor sequence are 

clonally related and share antigen specificity, BCR/TCR sequencing can deliver profound 

biological insight into lymphocyte differentiation and is a necessary addition for scRNA-seq 

studies of lymphocytes. When sequenced to an appropriate depth, analysis of cells with 

the same BCR/TCR clonotype will reveal differentiation states available to lymphocytes 

with a given antigen receptor sequence within a particular tissue or tumor. This insight is 

strongest when paired with experimental determination of antigen specificity; several recent, 

elegant studies have used peptide-MHC I multimers and/or in vitro stimulation assays to 

determine bystander and/or tumor-specific TCRs which are then linked with scRNA-seq 

gene expression data (Caushi et al., 2021; Eberhardt et al., 2021; Oliveira et al., 2022; 

Oliveira et al., 2021; Sudmeier et al., 2022). Even without experimental determination of 

antigen specificity, careful use of databases (Bagaev et al., 2020) containing TCR sequences 

with known specificity can assist in the identification of bystander, self-reactive, or tumor-

associated antigen-specific cells (Park et al., 2020a; Sudmeier et al., 2022). Although 

determination of their antigen specificity is more difficult due to the recognition of both 

linear and conformational epitopes, studies of tumor-specific B cells are also possible 

(Mazor et al., 2022; Wieland et al., 2020).

Markers of tumor-specific T cells

Unfortunately, the cost of scRNA-seq makes it prohibitive for many sample sets, and in 

all cases the number of cells analyzed is fewer than in other methods, particularly flow 

cytometry. Thus, protein markers capable of distinguishing tumor-specific from bystander 

T cells have become a topic of particular interest. Memory CD8+ T cells to common 

human pathogens exist in a continuum of differentiation states that likely are imparted by 

differences in their antigenic history and strength of antigenic stimulation. Human memory 

T cells can exhibit a wide range of phenotypes with YFV-specific cells ultimately acquiring 

a CCR7+CD45RA+PD-1negTCF-1+ T stem cell memory (TSCM) phenotype (Gattinoni et al., 

2011) and cells specific for other common human pathogens such as Influenza (Flu), EBV, 

and CMV expressing a mix of the aforementioned markers (Fig. 1) (Debes et al., 2004; 

Sekine et al., 2020).

However, both YFV- and Influenza-specific memory cells lack expression of TOX, a 

transcription factor heavily associated with CD8+ T cell exhaustion and tumor-specificity 

(Alfei et al., 2019; Khan et al., 2019; Oliveira et al., 2021; Scott et al., 2019). Unfortunately, 

TOX expression can also be induced in mouse and human memory T cells by cytokine 

signaling, independent of TCR stimulation (Maurice et al., 2021). CD8+ T cells reactive 

to EBV and CMV, two common human herpesviruses that periodically reactivate and can 

thus repeatedly stimulate cognate CD8+ T cells, show a marked heterogeneity in terms of 

the aforementioned memory markers and can express significant levels of PD-1 as well as 

TOX (Sekine et al., 2020). Despite the expression of these “exhaustion” markers, these cells 

are highly cytolytic and polyfunctional (Sekine et al., 2020), highlighting that the exclusive 

reliance on these markers for differentiation state determination can falsely label cells as 

tumor-specific or exhausted. Of note, EBV- and CMV-specific CD8+ T cells can co-express 

TCF-1 and TOX, making them particularly resemble the antigen-specific stem-like CD8+ 
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T cells found in chronic viral infection and some tumors (Eberhardt et al., 2021; Im et al., 
2016; Siddiqui et al., 2019).

Stem-like CD8+ T cells are characterized by co-expression of the transcription factors TOX 

and TCF-1 and possess substantial proliferative capacity and the potential to give rise to 

more differentiated cytotoxic progeny (Im et al., 2016; Leong et al., 2016; Utzschneider et 

al., 2016). The proliferative burst observed after immune checkpoint blockade depends on 

the presence of these cells, which makes them an intense topic of study (Im et al., 2016). 

In the steady state, stem-like CD8+ T cells serve as a resource to maintain antigen-specific 

T cell responses in the face of chronic antigen stimulation through slow self-renewal and 

differentiation (Im et al., 2016; Leong et al., 2016; Utzschneider et al., 2016). These cells 

are also referred to as progenitor exhausted cells and have been found in various settings of 

persistent antigen such as chronic viral infections, cancer and most recently in autoimmune 

settings such as diabetes (Gearty et al., 2021). Note that despite potentially confusing 

similarities in nomenclature, human stem-like CD8+ T cells are highly distinct from T 

memory stem cells (TSCM) that have been described based on the expression of the CD45RA 

isoform and form a distinct and quite rare subset of memory T cells (Gattinoni et al., 2011) 

emerging slowly after antigen clearance (Akondy et al., 2017; Fuertes Marraco et al., 2015). 

In contrast to TSCM, human stem-like CD8+ T cells express the CD45RO isoform and high 

levels of PD-1 (Eberhardt et al., 2021) (Fig. 1).

In contrast to the somewhat promiscuous expression of PD-1 and TOX on exhausted and 

polyfunctional cells, CD39 has been identified and confirmed in several studies to faithfully 

demarcate exhausted tumor-specific CD8+ T cells (Duhen et al., 2018; Hanada et al., 

2022; Simoni et al., 2018). CD39 is also expressed on tumor-specific conventional CD4+ 

(Kortekaas et al., 2020; Oliveira et al., 2022) TILs, although its constitutive expression 

on regulatory T cells precludes its use to capture tumor-specific Tregs (Borsellino et al., 

2007). Furthermore, CXCL13 transcript expression has been reported to be enriched among 

exhausted tumor-specific CD4+ and CD8+ T cells (Hanada et al., 2022; Thommen et al., 

2018; Veatch et al., 2022; Zheng et al., 2022). While CD39 appears to be a specific 

marker to enrich for tumor-specific CD8+ TILs without requiring cognate tumor antigen 

identification, CD39 expression alone does not necessarily capture all tumor-specific CD8+ 

T cells in the TME, as tumor-specific stem-like cells do not express CD39 (Eberhardt et al., 
2021; Oliveira et al., 2021). Rather, CD39 marks an exhausted, dysfunctional differentiation 

state that is available primarily to tumor-specific CD8+ T cells within the TME.

Studying T cell differentiation states

In most studies, the majority of intratumoral tumor-specific CD8+ T cells have been found 

in the CD39+ terminally exhausted state (Caushi et al., 2021; Li et al., 2019; Oliveira 

et al., 2021; Philip et al., 2017; Simoni et al., 2018), while stem-like cells are present 

at higher frequencies in tumor-draining lymph nodes (Buchwald et al., 2020; Connolly 

et al., 2021). Combined with the high frequency of TCF-1+ bystanders, it has remained 

unclear if intratumoral TCF-1+ cells are truly tumor-reactive (Philip and Schietinger, 2019). 

The answer likely depends on the tumor type and nature of the surrounding tissue. Using 

tetramer staining for tumor-associated viral antigens, we recently identified intratumoral 
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TCF-1+ tumor-specific cells in human papilloma virus (HPV)+ head and neck cancer 

(HNC) (Eberhardt et al., 2021), which arises mostly in lymphoid tissues such as tonsils. 

Other studies examining tumors in non-lymphoid tissues have found very few TCF-1+ 

tumor-specific cells (Caushi et al., 2021; Li et al., 2019; Oliveira et al., 2021; Philip et al., 
2017). Importantly, while HPV-specific T cells were readily detectable in the HPV+ HNC 

tumors, these cells were undetectable in the peripheral blood directly ex vivo (Eberhardt et 
al., 2021), a finding consistent with other studies (Caushi et al., 2021; Oliveira et al., 2021). 

Overall, these data demonstrate a differential distribution of tumor-specific CD8+ T cells 

and subsets not only macroscopically between blood and tissue but also between lymphoid 

and non-lymphoid tissues. This suggests that tumor-specific stem-like cells mostly reside 

in lymphoid tissues, with the possible exception of the cells residing in tertiary lymphoid 

structures. This distribution aligns nicely with data from the murine LCMV model, where 

viral antigen is present in all tissues, but stem-like cells are resident in lymphoid organs (Im 

et al., 2020).

This divergent localization presents challenges to the faithful detection of different CD8+ T 

cell subsets and their associated markers by flow cytometry. Without cells available from 

tumor and lymphoid tissues (or blood), accurate quantification of cell- or tissue-restricted 

proteins can be difficult. One such example is TIM-3, a key marker and co-inhibitory 

molecule co-expressed with CD39 on differentiated tumor-infiltrating CD8+ T cells (Sade-

Feldman et al., 2018). Since TIM-3+ CD39+ CD8+ T cells are rarely found in circulation 

(Eberhardt et al., 2021; Hudson et al., 2019a; Im et al., 2020; Oliveira et al., 2021; Sudmeier 

et al., 2022) (Fig. 4A), it is difficult to assess the quality of TIM-3 staining and true 

fraction of TIM-3+ cells using circulating T cells alone. However, simultaneous staining of 

PBMCs and TILs (the latter acting as a positive control) facilitates assessment of the TIM-3+ 

population (Fig. 4B–C). Unfortunately, such samples are not readily available in all studies, 

and measurements of the TIM-3+ fraction in circulating T cells of healthy adults has thus 

varied wildly, from <1% (Bachmann et al., 2012; Kawashima et al., 2020; Wu et al., 2013) 

to more than 40% (Bonifacius et al., 2021) and various points in between (Cai et al., 2015; 

Liu et al., 2010; Sada-Ovalle et al., 2015; Wu et al., 2011; Xu et al., 2015) (Fig. 4D). Such 

variability highlights the importance of sample diversity, biological controls, and careful 

downstream analysis of studies using cytometry-based approaches.

Another challenge for cytometry-based approaches is the analysis, visualization, and 

reporting of high dimensional data. This challenge dates to the introduction of mass 

cytometry (or CyTOF, cytometry by time-of-flight), which at its introduction greatly 

increased the number of measured parameters per cell (Bandura et al., 2009). CyTOF 

measures the cellular abundance of isotope-labeled antibodies, theoretically enabling 

collection of up to 120 parameters, although this number is limited in practice due to current 

conjugation chemistries and the availability of sufficiently purified heavy metal isotopes to 

currently about 50 parameters (Bandura et al., 2009; Gadalla et al., 2019; Iyer et al., 2022).

Recent years have seen the proliferation of advanced fluorescence flow cytometers with 

five or more lasers and equipped with 64 or more detectors, allowing the full-spectrum 

assessment of each fluorophore rather than limiting its detection to a narrow bandwidth, 

a technique known as spectral flow cytometry. Coupled with advances in fluorophore 
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chemistry, it is now possible to analyze expression of 40 or more proteins on single 

cells using fluorescence flow cytometry (Park et al., 2020b), thus nearly closing the gap 

with mass cytometry in terms of measurable parameters per cell. Compared to CyTOF 

or scRNA-seq, modern fluorescence-based flow cytometry offers an outstanding balance 

between the number of parameters acquired per cell, data acquisition rates, reagent and 

instrumentation cost, widespread availability of required equipment, and ease of downstream 

analysis (Bonilla et al., 2021).

Unfortunately, these properties of fluorescence flow cytometry create a tradeoff: while a 

higher number of measured parameters increases the potential biological insight gathered 

from an experiment, the complexity of data acquisition, analysis, and presentation increase 

in parallel (Fig. 5A). Compensation – correction for spectral overlap in fluorescence 

flow cytometry experiments – is both more crucial and complicated in high-parameter 

experiments. Several excellent articles have been written on the technical aspects of high-

parameter flow cytometry data collection and analysis (Ferrer-Font et al., 2020; Fox et 

al., 2020; Liechti et al., 2021), but we will provide an example demonstrating how small 

inaccuracies collection or analysis can lead to erroneous conclusions from cytometry data.

We recently collected 22-color flow cytometry data of brain metastasis-infiltrating CD8+ T 

cells on a four-laser spectral flow cytometer (Sudmeier et al., 2022). All antibodies in the 

staining panel were expected to bind to at least some proportion of T cells; some cells had 

16 or more bound fluorophores. Thus, both the difficulty of compensation and sensitivity to 

compensation error in this experiment were high. Given the high number of parameters, we 

used UMAP to reduce data collected from CD8+ T cells to two dimensions for visualization 

(McInnes et al., 2018). This analysis showed an exhausted CD8+ T cell population with high 

expression of immune checkpoint molecules PD-1 and CTLA-4 (Fig. 5B–C).

As expected, nearly all CD8+ T cells were negative for expression of FOXP3, a transcription 

factor expressed in regulatory CD4+ T cells (Rudensky, 2011) (Fig. 5D). However, a false 

positive population of FOXP3+ CD8+ T cells can be generated through errors in analysis 

– or even choices in data visualization. Compressing the scale of FOXP3 fluorescence 

intensity produces the appearance of a small population of FOXP3hi CD8+ T cells, 

even when data are properly compensated (Fig. 5E). When compounded by an error in 

compensation, the result is a striking - and false - FOXP3+ population that represents 12% of 

CD8+ T cells (Fig. 5F).

The experimental details needed to decipher such an erroneous result are often not reported 

alongside the data; unlike scRNA-seq experiments, deposition of raw cytometry data is not 

yet (Kozlov, 2022) required for most publications. While dimensionality reduction methods 

such as UMAP (McInnes et al., 2018) or tSNE (Van der Maaten and Hinton, 2008) are 

frequently used to visualize and analyze high-dimensional data (Keyes et al., 2020), their 

use often results in limited inspection and presentation of direct fluorescence measurements. 

In our example, “old-fashioned” examination of the individual parameter channels in low-

dimensional space (Fig. 5G–H) is crucial to revealing these issues. Further, the inclusion 

of scales is critical to assess antibody staining, particularly when using color scales in 

dimensionality reduction projections. Finally, when in doubt, positive control samples or 
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populations should be used to validate expression of key markers. In this example, FOXP3 

expression on CD8+ T cells can be compared to a known positive population (CD4+ Tregs) 

to quantify the true level of FOXP3+ cells in this sample and to guide gating strategies 

(Fig. 5H). However, as described above, these controls may not always be available if the 

expression of the marker in question is cell-type or spatially restricted.

Induced sources of heterogeneity

Experimental uncertainty is also introduced into flow cytometry and scRNA-seq 

experiments through artifacts from sample processing. Batch effects result from the 

separate sample collection, processing, and/or data acquisition of different samples, and can 

introduce artificial heterogeneity. When data are collected from different patients, cell types, 

or tissues at different times, technical variation may also obscure true biological differences 

(Hicks et al., 2018). This is a particular problem in samples like tumors where significant 

biological heterogeneity is already present. Preclinical studies often allow the simultaneous 

processing of samples from different treatment groups or separate animals, but batch effects 

remain a particular challenge in human studies, where patient samples are often collected 

over many weeks or months. In such cases, batch effects can be quantified and controlled 

by including a reference cell population in each technical sequencing run (Stuart et al., 

2019). For single-cell studies, an additional strategy is to prepare samples and acquire data 

from different individuals and/or experimental conditions simultaneously. In flow cytometry 

experiments, this can be done by barcoding individual samples with unique fluorophores 

(Krutzik and Nolan, 2006), but this technique is more relevant in single-cell sequencing 

studies where cells from each analyzed sample can be barcoded with a unique, DNA-labeled 

sequencing antibody specific for a ubiquitously-expressed antigen (Stoeckius et al., 2018). 

This technique, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (Stoeckius 

et al., 2017), or CITE-seq, is also a powerful method for detecting hundreds of proteins 

simultaneously on single cells. Panels of over 250 antibodies have been used to characterize 

immune tumor infiltrate with this method (Pombo Antunes et al., 2021), and large CITE-seq 

antibody cocktails are now available commercially, providing unprecedented insights into 

the heterogeneity at the protein level. As fluorescence spillover is not an issue in CITE-seq 

experiments, it is an excellent complementary and confirmatory technique to flow cytometry.

In human studies, T cell phenotype may also be affected by the current and previous 

medical and pharmacological history of the patient cohort. Importantly, immunotherapies 

may directly change T cell phenotype, abundance, and clonality within the tumor, and this 

likely varies by treatment type. PD-1 pathway blockade does not markedly change exhausted 

T cell phenotype, which is limited by stability of a dysfunctional epigenetic state (Pauken 

et al., 2016). Instead, in both preclinical mouse models and human tumors, PD-1 pathway 

blockade results in a higher abundance of classically-exhausted CD8+ T cells (Bassez et 

al., 2021; Hudson et al., 2019a; Zhang et al., 2021) caused by division and differentiation 

of the TCF-1+ stem-like population (Im et al., 2016). Most – but not all – human tumor 

studies show responding cells originate from pre-existing clones found in the pre-treatment 

tumor (Bassez et al., 2021; Chang et al., 2020; Liu et al., 2021; Yost et al., 2019). As with 

differentiation trajectory analysis, the interplay of methodology with T cell biology in such 

studies is critical to interpretation of these results. In the chronic LCMV infection model, the 
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stem-like population is spatially restricted to lymphoid tissues and contains a more diverse 

TCR repertoire (Chang et al., 2020; Im et al., 2020). In human cancer, the TCR repertoire 

varies spatially throughout the tumor microenvironment (Joshi et al., 2019; Sudmeier et al., 
2022). Thus, appropriate sequencing depth and spatial sampling are critical to accurately 

define changes in T cell phenotype and TCR repertoire in response to immunotherapy.

In contrast to PD-1 pathway blockade monotherapy, its combination with IL-2 

administration results in drastic changes in antigen-specific CD8+ T cell phenotype 

(Hashimoto et al., In press; West et al., 2013). Immunologic effects of other medications 

should also be considered when assessing TIL phenotype and function in patients. 

Glucocorticoids, for example, are used both to directly treat various hematological 

malignancies and also to manage sequelae of other cancers (Keith, 2008) but may promote 

T cell dysfunction in the tumor microenvironment (Acharya et al., 2020). Systemic 

chemotherapy agents may also induce changes in T cell phenotype within the tumor 

microenvironment (Zhang et al., 2021).

Tissue disruption and cell isolation is an additional processing step with the potential 

to confound interpretation of cell states. Enzymatic digestion with various proteases is 

commonly used to generate viable single-cell suspensions from tumors and other tissues 

(Carney and Malmgren, 1967; Corgnac et al., 2021; Reichard and Asosingh, 2018; 

Rodriguez de la Fuente et al., 2021). While this method is employed to obtain the 

highest possible number of viable cells, these digestion steps can cleave or otherwise 

alter extracellular proteins, creating false negatives in flow cytometry or CITE-sequencing 

experiments (Autengruber et al., 2012; Hines et al., 2014). A more insidious effect of 

enzymatic digestion is its effects on cellular transcriptomes. Incubation of immune cells 

at room temperature for as little as two hours can impact gene expression (Massoni-

Badosa et al., 2020). Collagenase digestion at 37 °C causes large changes in cellular 

transcriptomes, including upregulation of immune-associated genes such FOS, JUN, and 

NR4A1 (O’Flanagan et al., 2019). Even though these changes may only be present 

in a subset of digested cells, the magnitude of these changes can be high, requiring 

careful inspection of clusters in single-cell experiments in addition to careful analysis of 

stressrelated genes in bulk RNA-sequencing experiments (van den Brink et al., 2017). As 

a potential remedy, some groups and commercial suppliers have investigated fixation to 

“lock-in” cell states before subsequent downstream processing (Alles et al., 2017). While 

this method may introduce transcript length and GC content-dependent bias (Wang et al., 

2021), it also enables cell isolation based on fluorescence sorting with intracellular markers 

(Thomsen et al., 2015).

Location, location, location

Generation of single-cell suspensions from tumors or other tissue may result in the 

underestimation of target cell abundance (Stark et al., 2018; Steinert et al., 2015) and 

causes the loss of spatial information. Recent studies have shown that spatial restriction of 

CD8+ T cell subsets is not limited to differences among tissues, but T cell phenotype is 

also closely linked to position within the TME. For example, TCR repertoires vary across 

space in tumors (Joshi et al., 2019), and TCF-1+ cells are more likely to be situated in 
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tertiary lymphoid structures or stromal antigen-presenting “niches” (Jansen et al., 2019). 

Spatial biology has advanced significantly in recent years, allowing the detection of many 

proteins and gene expression signatures in situ in tissue sections. While low-parameter 

immunohistochemistry has been a mainstay of cancer pathology for decades, new methods 

have been developed to measure multiple proteins by microscopy, with multiplexing ranging 

from a handful to 40 or more detected markers (Tan et al., 2020). When combined with the 

ability to image whole tumor sections, the spatial architecture of cell types within the TME 

can be defined and even correlated with clinical outcomes (Berry et al., 2021; Jansen et al., 
2019).

Interrogating the spatial architecture of the TME has already provided significant insights, 

such as demonstrating the importance of immune cell co-localization - spanning from 

small lymphoid aggregates to fully-fledged tertiary lymphoid structures (TLS) - for anti-

tumor immunity and response to ICIs (Berry et al., 2021; Helmink et al., 2020; Jansen 

et al., 2019; Schumacher and Thommen, 2022). As mentioned, tumor-specific T cells 

express the B cell chemoattractant CXCL13 and are thus equipped to potentially remodel 

their microenvironment, with CXCL13+ cells being found in close proximity to tumor-

infiltrating B cells and within TLS (Gu-Trantien et al., 2017; Ukita et al., 2022). TLS 

and smaller immune structures have been suggested to provide a protective niche for 

the local maintenance of stem-like CD8+ T cells (Jansen et al., 2019; Pagliarulo et al., 

2022). However, most protein-based multiplex imaging approaches do not provide antigen-

specificity information of interrogated cells, hindering discrimination of bystander and 

tumor-specific cells. One notable exception is in situ tetramer staining, which has shown 

the presence of EBV- and influenza-specific CD8+ T cells in glioblastoma (Ning et al., 
2022).

A potential solution to this problem lies in spatial transcriptomics, a new technique 

that permits the measurement of RNA levels – often on a whole-transcriptome basis – 

in situ within tissue sections (Rao et al., 2021). While spatial transcriptomics currently 

provides neither the resolution nor the sequencing depth of scRNA-seq, integration of 

the two modalities can elucidate significant biological insight (Longo et al., 2021). 

Spatially-resolved methods that can capture complete transcriptomes may be a particular 

boon for tumor immunology. Targeted amplification with these techniques can recover 

lymphocyte antigen receptor sequences; we recently used targeted TCR amplification 

combined with spatial transcriptomics to show that clones with a CD39+ phenotype were 

preferentially enriched within tumor beds, whereas clones expressing TCF-1 were found 

in the surrounding stroma (Hudson and Sudmeier, 2022; Sudmeier et al., 2022). Similar 

techniques have also been used to identify B cell receptor sequences in tumors (Meylan et 

al., 2022). Long-read sequencing could also be used to detect mutated mRNAs and copy 

number variations in cancer, aiding in localization of neoantigen-expressing tumor cells 

(Erickson et al., 2022; Lebrigand et al., 2022). The combination of these modalities will 

allow extremely detailed studies of the TME, such as determining how the distribution and 

gene expression patterns of neo-antigen-specific T cell clones are influenced by expression 

of their cognate antigens.
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Putting it all together

The emergence of new multidimensional technologies such as scRNA-seq, high-parameter 

flow cytometry, and spatial transcriptomics have transformed our view of anti-tumor 

immune responses. In the future, as these technologies expand in capability and are 

adopted more widely, they will provide deep insights into immune cell behavior within 

the TME. Such knowledge has the potential to form the foundation of rationally-designed 

and more effective immunotherapies. To achieve this goal, however, the sheer volume of 

data generated by these technologies must be matched by focused experimental questions, 

accurate analysis, clear interpretation, and supportive mechanistic studies.

Recent years have witnessed a slowdown in FDA approval of ICIs, and the vast majority 

of approvals have targeted the PD-1/PD-L1 inhibitory pathway (de Miguel and Calvo, 

2020). To accurately identify targets for next-generation ICIs, determination of antigen 

specificity within the TME must be a crucial component of future immuno-oncology studies. 

Studies identifying tumor-specific T cells (Eberhardt et al., 2021; Oliveira et al., 2022; 

Oliveira et al., 2021; Simoni et al., 2018) have already provided important insights into 

their differentiation states; studying the signaling pathways within and in spatial proximity 

of tumor-specific cells is an important task to identify effective and specific ICI targets. 

Understanding tumor-specific T cells will also inform strategies for engineering improved 

function of CAR and TCR transgenic T cells, which have been widely used for hematologic 

malignancies and are now seeing use in other tumor types (Leidner et al., 2022; Majzner 

et al., 2022; Singh and McGuirk, 2020). While infiltration of bystander T cells may 

complicate the study of tumor-specific cells, they also represent an important therapeutic 

target, particularly to increase infiltration of “cold” tumors or promote inflammation and 

antigen processing in patients with poor pre-existing anti-tumor T cell responses (Lapteva et 

al., 2014; Rosato et al., 2019; Wang et al., 2020). Thus, the study of antiviral immune 

responses in the infectious disease and basic immunology fields also directly benefits 

immuno-oncology research efforts.

Generating therapies and therapeutic strategies – or even working biological hypotheses 

– from this deluge of -omics data may represent the greatest current challenge in 

immunology and most other fields of biology (Anderson, 2008; Denecker and Lelandais, 

2022; Krassowski et al., 2020). As we have discussed here, it is crucial to be aware of 

the intrinsic limitations and potential sources of error in modern immunology techniques. 

As ever more raw data are collected, processed data attract more of our attention, often 

obscuring experimental error and true biological complexity in the process (Chari et al., 

2021; Gorin et al., 2022). To combat this, the use of complementary techniques can test 

and control for both biological, experimental, and analytical sources of error. For example, 

CITE-seq and scRNA-seq respectively measure protein and transcript levels in single cells, 

providing two independent measurements of gene and gene product expression. CITE-seq 

and flow cytometry both measure single-cell protein expression but have different cell 

throughput and sources of experimental error. However, while these complementary and 

multidimensional techniques provide unprecedented insights into human anti-tumor immune 

responses, they are intrinsically descriptive, should be mostly used for hypothesis generation 

and ultimately require experimental validation for establishing causal relationships.
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While recent advances, such as an ex vivo tumor platform to assess patient response to ICIs 

(Voabil et al., 2021), have permitted more mechanistic study of human tumors, preclinical 

tumor immunology models remain an irreplaceable cornerstone to evaluate findings in the 

- omics era. These models allow the normalization of many variables across treatment 

groups, most notably antigen specificity, tumor burden, age, and genetic background. Much 

work has been performed to make these models better recapitulate human cancer, including 

varied processes for tumor initiation and the use of different tumor antigens (Connolly et 

al., 2022). In these models, the use of technologies such as scRNA-seq, high-parameter 

flow cytometry, and spatial transcriptomics can deliver unparalleled phenotypic data that 

can be directly attributed to an experimental treatment or condition. Such studies combining 

hypothesis-driven science with emerging immunological techniques have the potential to 

create accurate models of immune function, provide invaluable insights into anti-tumor 

immune responses, and ultimately to improve patient outcomes.
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Figure 1: 
Human CD8+ T cell differentiation and associated phenotypic markers. Tumor-specific 

phenotypes are shown in red. Upon antigenic encounter, naïve CD8+ T cells differentiate 

into effector cells and further differentiate into different states depending on antigen 

clearance and chronic/recurrent antigen loads. Memory T cells specific for yellow fever 

virus (YFV) and the common human pathogens Influenza virus (Flu), Epstein-Barr virus 

(EBV) and cytomegalovirus (CMV), as well as tumor-specific cells (stem-like/progenitor 

exhausted and terminally differentiated) are shown along a schematic continuum of antigen 

load/recurrence. Of note, CMV- and EBV-specific memory CD8+ T cells can adopt various 

phenotypes and even resemble the phenotype of tumor-specific stem-like CD8+ T cells. 

Figure created with BioRender.
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Figure 2: 
Inference of a reverse differentiation trajectory from scRNA-seq data. A: TCR-transgenic 

CD8+ T cells were transferred to mice which were subsequently infected with LCMV 

Armstrong. At illustrated timepoints, cells were sorted and subjected to scRNA-seq. B: 

Expression of T cell differentiation markers at indicated time points. C: UMAP projection 

of sequenced cells, with an illustrated arrow showing actual cell differentiation trajectory. D: 

Identical UMAP projection, with inferred trajectories. E: Heatmap of T cell differentiation 

marker expression, with cells in real-time order. F: Heatmap of T cell differentiation 

marker expression, with cells in pseudotime order. Raw data are from (Kurd et al., 2020). 

Code and data to reproduce the scRNA-seq analysis are available on Mendeley Data, doi: 

10.17632/3dvt79c7yt.1.
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Figure 3: 
Expression of an exhaustion-associated gene set in non-

exhausted CD8+ T cells. A: Relative expression of the 

GSE41867_MEMORY_VS_EXHAUSTED_CD8_TCELL_DAY30_LCMV_DN gene set 

(Godec et al., 2016) in CD8+ T cells following acute infection. B: Exhaustion-associated 

genes are significantly enriched in day 6 vs day 90 cells, despite neither subset being 

biologically exhausted.
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Figure 4: 
Quantification of TIM-3 on human T cells. A: CCR7 and TIM-3 staining on circulating 

T cells of a healthy donor. With this tissue only, it is unclear if TIM-3 staining was 

successful, and if so, where TIM-3+ cells should be gated. B: CCR7 and TIM-3 expression 

on tumor-infiltrating T cells, stained at the same time as PBMCs in (A). C: Overlay of CCR7 

and TIM-3 staining in healthy donor PBMCs (red) and TILs (black). D: Estimates of TIM-3 

expression on circulating T cells of healthy donors from various studies. Flow data in panels 

A-C were previously reported (Sudmeier et al., 2022).
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Figure 5: 
Perils of data visualization and analysis in high-parameter flow cytometry. A: As more 

parameters are collected in a flow cytometry experiment, the potential biological insight 

increases. Unfortunately, both the difficulty of analysis and sensitivity of the experiment to 

such error also increase. An example is shown in panels B-H, where tumor-infiltrating 

lymphocytes from a brain metastasis patient were analyzed with a T cell-focused, 22-

color flow cytometry panel. B-D: UMAP projection of CD8+ T cells, with cells colored 

by expression of PD-1 (B), CTLA-4 (C), and FOXP3 (D). Data shown are properly 

compensated and scaled. E: UMAP projection of CD8+ T cells, with cells colored by 

expression of FOXP3. The color intensity scale has been modified compared to panel (D); 

data are properly compensated. F: UMAP projection of CD8+ T cells, with cells colored 

by expression of FOXP3 (same scale as panel E). Fluorescence spillover of CTLA-4 PE/

Dazzle into FOXP3 PE/Cy5 has been undercompensated by 10%. (G) An alternate display 

method, such as a histogram, using an internal positive control for FOXP3 expression would 

reveal improper scaling of FOXP3 fluorescence intensities (circled population). H: The true 

percentage of FOXP3+ CD8+ T cells in this sample is <0.5%. Data to reproduce the flow 

cytometry analysis are available on Mendeley Data, doi: 10.17632/3dvt79c7yt.1.

Hudson and Wieland Page 32

Cancer Cell. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	The promise of immunotherapy
	The heterogeneity of the tumor microenvironment
	Specificity is key: bystanders within the TME
	Looks can be deceiving
	Pitfalls of trajectory analysis
	Markers of tumor-specific T cells
	Studying T cell differentiation states
	Induced sources of heterogeneity
	Location, location, location
	Putting it all together
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:

