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Abstract

A synthetic method for the reductive transformation of nitroarenes into ortho-aminated and 

-annulated products is reported. The method operates via the exhaustive deoxygenation of 

nitroarenes by an organophosphorus catalyst and a mild terminal reductant to access aryl nitrenes, 

which after ring expansion are trapped by amine nucleophiles to give dearomatized 2-amino-3H-

azepines. Treatment of these ring-expanded intermediates with acyl electrophiles triggers 6π 
electrocyclization to extrude the nitrogen atom and restore aromaticity of the phenyl ring, 

delivering via C–H activation 2-aminoanilide and benzimidazole products—important scaffolds 

in industrially relevant and bioactive molecules.
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Nitroarenes are readily-accessed and versatile starting materials for synthesis.1 The nitro 

moiety itself can be transformed through direct reductive transformation2–3,4 or ipso 
substitution5 to provide routes to a range of synthetically useful benzenoid intermediates 

(Figure 1A, a). Alternatively, the nitro moiety can be used to facilitate C–H functionalization 

reactions6 that decorate the aryl periphery with retention of the nitro group.7 Such 

methods include vicarious nucleophilic substitution (SNArH, Mąkosza reaction), oxidative 

nucleophilic substitution of hydrogen (ONSH) reactions,8,9 and directed transition metal-

catalyzed C–H functionalization (Figure 1A, b).10,11 A valuable subclass of nitroarene 

functionalization reactions accomplishes both nitro group reduction and proximal C–H 

functionalization simultaneously, permitting annulation as exemplified in the Bartoli indole 

synthesis12 and catalytic indole-forming methods (Figure 1A, c).13 To move beyond indole 

synthesis, a complementary annulative approach to nitroarene C/N-difunctionalization 

would ideally provide a synthetically modular method for the synthesis of heterocyclic ring 

systems, providing the synthetic chemist with control over the functionality incorporated 

into annulated products (Figure 1A, d).

Towards this goal, a one-pot, three-component coupling protocol utilizing commercially 

available components was conceived, which relies on the potential of transient nitrogen 

intermediates—formed under mild conditions from abundant nitroarenes—to participate 

both as direct sites of bond formation and as indirect activators of proximal sites (Figure 

1B). On the basis of prior work,14 we expected that a redox-active organophosphorus 

catalyst could drive exhaustive deoxygenation of a nitroarene substrate by P(III)/P(V) 

cycling15 to yield a high-energy arylnitrene intermediate (Figure 2). Commonly generated 

by direct photolytic decomposition of phenylazide,16

Phenylnitrene17 (I) is well-known to isomerize to benzazirine18 (II) and dehydroazepine19 

(III) valence tautomers, which are susceptible to interception by nucleophilic trapping 

agents such as amines to give 2-amino-3H-azepines (V) by ring expansion.20–21,22 

Subsequent isomerization of V was envisioned on the conjecture23 that an azepine-to-

azanorcaradiene 6π electrocyclization24 (VI→VII) would be favored by N-acylation, and 

that decomposition of the fused bicyclic aminal VII could evolve with rearomatization of the 

arene core.25 The resulting 2-aminoanilide product VIII is then poised to undergo thermal 

cyclization under established conditions to arrive at the desired benzimidazole product.
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Overall, this synthetic approach would result in a reductive amination of the substrate 

nitroarene, in which both nitro group reduction and C(sp2)–H amination are accomplished 

through a transient ring expansion of the original aromatic system. The method presents 

a complement to recent work by Burns,26 which leverages the intermediacy of the 

azepine ring to perform a nitrogen-for-carbon switch to yield 2-aminopyridines upon ring 

contraction. Here, we report the development of a one-pot synthetic method for the reductive 

C/N-difunctionalization of nitroarenes via the intermediacy of high-energy arylnitrenes.27 

This ability to generate arylnitrenes from nitroarenes under thermal catalytic conditions 

enables an expedient entry to 2-aminoanilide and benzimidazole products scaffold useful in 

pharmaceutical discovery.28,29

In prior work from our group, we established that reductive functionalization of nitroarenes 

with primary and secondary amine nucleophiles under conditions of P(III)/P(V)=O redox 

cycling proceeds by direct N-functionalization, culminating in N–N bond formation to 

yield unsymmetrical hydrazine products.4f However, as exemplified by the reaction of 

4-trifluoromethylnitrobenzene (2) and diethylamine (3), we find that related conditions (15 

mol % of 1,2,2,3,4,4-hexamethylphosphetane P-oxide 1·[O]30 as catalyst, 2.0 equivalents of 

phenylsilane as terminal reductant) but with omission of an explicit Brønsted acid31 lead 

instead to 2-diethylamino-5-trifluoromethyl-3H-azepine (4) in 78% yield. Presumably, under 

these conditions, the nitroarene 2 is iteratively deoxygenated by the P(III)/P(V)=O redox 

catalyst to generate the corresponding arylnitrene,4b which then evolves along the sequence 

indicated in Figure 2A to the 2-amino-3H-azepine. These thermal P(III)/P(V)=O catalytic 

conditions can be applied broadly for formation of 2-substituted-3H-azepines; a synthetic 

scope for this conversion is included in the SI (Figures S1 and S2).

Importantly, as shown in Figure 2C, the conditions optimized for the formation of azepine 

4 could be extended to a two-part synthetic expansion/contraction synthetic sequence, 

achieved in a single reaction vessel. Specifically, reaction of nitroarene 2 and diethylamine 

(3) with 15 mol% of 1,2,2,3,4,4-hexamethyl phosphetane P-oxide (1·[O]) and 2.0 equiv of 

phenylsilane in t-BuOAc for 12 h, followed by a solvent swap to PhMe and addition of 2.0 

equiy each of acyl chloride 5 and DABCO lead directly to isolation of ortho-aminoanilide 

6 in 78% yield (0.5 mmol scale). As a synthetic transformation, this manipulation brings 

together readily available nitroarene substrates like 2 with exogenous amines and acyl 

electrophiles to assemble highly decorated products in a modular fashion by tandem C/N-

difunctionalization of the nitroarene substrate.

The scope and potential utility of this method are exemplified in Figures 3–5. 2-

Aminoanilide products are reliably accessed by assembly from a range of nitroarenes, 

secondary amines, and acyl electrophiles (Figure 3). With respect to the amine component, 

beyond the use of diethylamine (7, 8) as a trapping amine nucleophile, several of 

the most prevalent secondary amine heterocycles found in pharmaceuticals including 

piperidine (9, 10, 14), piperazine (11), and morpholine (15–17) derivatives are also 

readily accessed. Arylalkylamine (13) derivatives are similarly incorporated, but less 

nucleophilic diarylamines are insufficiently reactive to trap the benazirine/dihydroazepine 

intermediate. In terms of electrophilic reaction partners, substituted benzoyl (7–9, 11–12, 
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14–15) and related heteroaryl derivatives (16) are viable partners, as are alkanoyl (10) and 

fluoroalkanoyl (13) compounds, providing (fluoro)acylated products in good yields.

In terms of regiochemistry, nitroarenes bearing a symmetrical substitution patterns only 

generate one isomer following the ring expansion/contraction reaction sequence (for 

instance, 7-13, 16). However, for nitroarene substrates with substitution lacking mirror 

symmetry, two possible regioisomeric products are in principle possible. To a first 

approximation, the position of apparent C-H amination is dictated by steric considerations. 

For instance, product 14 is formed in as a single regioisomer, as a result of the 

insertion of arylnitrene to the sterically less encumbered position distal from the methyl 

substituent. Nevertheless, in the absence of a large steric bias, electronic effects dominate the 

regioselectivity, as exemplified by the product 15, in which arylnitrene prefers the insertion 

at the more electronically rich position. Consistent with electronic arguments, the quinolyl 

substrate (17) exhibits regioselectivity with apparent C-H amination proximal to the ring 

fusion. The unobserved regioisomer of the C/N-difunctionalization would need to arise from 

a benzazirine intermediate that enforces quinoidal structure on the heterocyclic system, 

whereas as the benzazirine leading to the observed C/N-difunctionalization product does not 

require disruption of heteroaromatic stabilization of the pyridyl subunit. Taken together, the 

C/N-difunctionalization method proceeds with predictable regiochemical preference if both 

steric and electronic factors are adequately considered.

Reactions with primary amines similarly enable the formation of corresponding 2-

aminoanilide products, provided that the acyl electrophile employed is sterically encumbered 

(for instance, 2,6-chlorobenzoyl as in 12). However, when a primary amine nucleophile 

(e.g. benzylamine) is employed in conjunction with a sterically unencumbered acyl moiety 

(e.g. trifluoroacyl) then a subsequent cyclodehydration reaction spontaneously ensues under 

the reaction conditions to furnish a benzimidazole (18, Figure 4). A brief optimization 

revealed that the azepine contraction and subsequent aromatization/annulation could be 

achieved in a simple one-pot procedure (Table S2). This strategy could be applied to form 

benzimidazoles directly from nitroarenes, secondary amines, and acyl electrophiles (Figure 

4); benzimidazole derivatives with N-benzyl (18-20, 23-24), N-aryl (21), and N-alkyl (22) 

substitution could be prepared with the same reductive selectivity for the nitro moiety 

compared to other reducible (ester 19, amide 24) functionality. With 3-nitroanisole as 

substrate, the reductive C/N-difunctionalization proceeds with excellent regioselectivity to 

give 1,2,6-trisubstituted benzimidazoles (25, 26) as the major product. Variation of the acyl 

electrophile allows control over substitution at the 2-position of the benzimidazole.

The modularity and regiochemical predictability of the reductive C/N-difunctionalization 

allows the benzimidazole to be viewed as a retron accessible by an annulative C/N-

difunctionalization transform from simple nitroarenes possessing accessible ortho C-H 

positions. Practically, this feature may have use for the preparation of benzimidazoles 

with challenging substitution patterns, for instance where direct N-functionalization of the 

parent N–H benzimidazole would be unselective or unfavorable due to steric considerations 

affecting the pseudosymmetry of the N1 and N3 positions.32 In this vein, Figure 5 collects 

examples of various benzimidazole derivatives synthesized by this protocol with sterically 

encumbered N-alkyl substituents in the presence of 2-and 7-substitution. Annulated systems 
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with N-substitution next to primary (27, 28, 31, 32) and secondary (29, 30) carbon sites 

could be synthesized in synthetically useful yields. Collectively, this modular one-pot 

procedure could be used to access a variety of 2-aminoanilides and benzimidazoles from 

a range of nitroarenes, primary and secondary amines, and acyl electrophiles.

In summary, the results described above constitute a novel strategy for reductive C–H 

amination of nitroarenes that leverages tandem C- and N-functionalization to construct 

valuable 2-aminoanilide and benzimidazole products from readily accessible reaction 

partners. Integral to the success of this method is the efficient thermal generation of 

reactive arylnitrenes from nitroarenes, and the ability to achieve ring contraction and 

aromatization of 3H-azepine intermediates. Taken together, these developments enable new 

expedient routes to 2-aminoanilides and benzimidazoles via a novel synthetic sequence 

for C–H functionalization and annulation. In connection with our efforts to explore the 

biphilic catalytic reactivity of phosphetanes for reductive O-atom transfer processes via 

the P(III)/P(V)=O redox cycling, this study portends future developments in tandem C/N-

difunctionalization of nitroarenes and homologues to access a wide range of elaborated 

products.
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Figure 1. 
(A) Mono- and difunctionalization of nitroarenes. (B) Reductive C/N-difunctionalization of 

nitroarenes as modular entry to 2-aminoanillides and benzimidazoles.
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Figure 2. 
(A) Mechanistic outline for the reported C/N-difunctionalization of nitroarenes. (B) 

Conditions for the reductive ring expansion of nitroarenes via arylnitrenes. (C) Synthetic 

conditions for the one-pot C/N-difunctionalization of nitroarenes.
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Figure 3. 
Synthesis of 2-aminoanilides by reductive C/N-difunctionalization of nitroarenes. a 8:1 

regioisomeric ratio. See SI for full experimental details.
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Figure 4. 
Synthesis of benzimidazoles by reductive C/N-difunctionalization of nitroarenes. See SI for 

full experimental details.
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Figure 5. 
Regiospecific preparation of 1,2,7-benzimidazoles. See SI for full experimental details.
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