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Summary

Clear cell renal cell carcinomas (ccRCCs) represent ~75% of RCC cases and account for most 

RCC-associated deaths. Inter- and intra-tumoral heterogeneity (ITH) results in varying prognosis 

and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform 

integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor 

segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and 

molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature 

heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased 

hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, 

where UCHL1 expression displays prognostic value. Single nuclei RNA-seq of the adverse 

sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor 

evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome 

targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform 

more effective treatment strategies.
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eTOC Blurb

Li et al. integrate histopathologic, proteogenomic, and metabolomic data from 305 tumor 

segments and reveal intratumoral heterogeneity in at least 90% of clear cell renal cell carcinomas, 

signatures for sarcomatoid and rhabdoid features, and prognostic value of UCHL1. This study 

molecularly stratifies aggressive histopathologic subtypes to inform effective treatment strategies.
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Introduction

Renal cell carcinoma (RCC) is among the ten most diagnosed cancers worldwide and 

comprises a wide array of histologic and genetic subtypes.1,2 and clear cell RCC (ccRCC) 

accounts for the majority (75%) of renal cancer-associated deaths.1 While treatment for 

localized ccRCC is surgical resection or ablation, therapeutic choices for advanced disease 

are limited due to chemotherapy resistance and lead to an emphasis on research-driven 

targeted therapies.3–7 Therapeutic combinations of tyrosine kinase inhibitors (TKIs), such 

as axitinib, cabozantinib, and lenvatinib, and immune checkpoint inhibitors (IMIs), such as 

pembrolizumab, nivolumab, and ipilimumab have proved their utility.7–9 However, these 

treatments have a variable impact on tumor inhibition and individual patient survival, 

meaning newer options are necessary to improve patient outcomes.
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ccRCC is associated with a deregulation of hypoxia-inducible factor (HIF1) signaling, 

alteration of chromatin-modifying enzymes, metabolic reprogramming, and a distinct tumor 

immune microenvironment.10 Pseudohypoxic activation of HIF signaling is caused by the 

nearly ubiquitous bi-allelic loss of the VHL gene.11–13 Chromosome 3p loss also affects 

some or all three chromatin remodeling genes encoded within the same region, PBRM1, 

SETD2, and BAP1, the deficiency of which has been associated with disease progression 

and more aggressive phenotypes.14–17 The Cancer Genome Atlas (TCGA) ccRCC genomic 

analyses highlights tumor-specific shifts in multiple metabolic pathways associated with 

patient outcome, confirms the previous observation of high levels of intratumoral immune 

infiltration, and demonstrates significant heterogeneity across ccRCC patients.14,17–20

Significant intratumoral heterogeneity (ITH) encountered in ccRCC, results in confinement 

of several driver events to subclonal tumor populations.21–23 This observation suggests that 

multiple tumor subclones may reach metastatic potential and could independently influence 

response to therapies. Single-cell transcriptomic analyses now provide higher resolution 

insights into the tumor microenvironment (TME), cell of origin, and ITH within ccRCC 

and their relevance to therapeutic response,24,25 but the full extent of these factors remains 

unknown. Progress on these fronts will likely significantly impact treatment outcomes.

The initial Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigation of 

ccRCC provides a landmark integrated proteogenomic characterization of 103 tumors that 

highlighted a variety of early chromosomal translocation alterations leading to chr3p loss, 

identifies tumor-specific proteomic and phosphoproteomic alterations that are independent 

of mRNA expression, and define specific immune-based subtypes based upon a combination 

of mRNA, proteome, and phosphoproteome markers.13 The current study expands CPTAC 

ccRCC cohort to 305 tumor segments from 213 cases. In addition, we evaluate ITH 

in multiple tumor areas from 40 cases and provide single-cell RNA expression analysis 

of 12 tumor segments from 4 cases. 5 RCC-derived cell line models were used to 

investigate the clinical translational relevance of kinase targets from initial observations. 

To investigate metabolic aberrations associated with patient outcomes in ccRCC, we 

first analyze metabolome profiles of 50 tumors and 7 normal adjacent tissues (NATs) 

and subsequently examine a validation set of 56 tumors and 15 NATs. Extensive tumor 

histopathologic reviews following the latest methodological recommendations for evaluating 

heterogeneity in ccRCCs were performed.26 Proteomic analyses were also expanded to 

include both mass spectrometry-based Data Independent Acquisition (DIA) methodology 

from global proteomics to phosphoproteomics and glycoproteomics.

These analyses collectively stress the importance of genetic instability and increased 

hypermethylation as markers of poor patient outcome, the relevance of proteomic changes, 

including phospho- and glycoproteins as specific indicators of differential ccRCC biology 

and patient outcome, and highlight the ITH of ccRCC, particularly concerning the immune 

landscape within a tumor. These discoveries should facilitate clinical translation, including 

elucidation of prospective patient outcome-dependent signatures and therapeutic targets to 

aid in personalized treatment of ccRCC patients.
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Results

Overview of study design, cohort, and data types

CPTAC previously characterized 103 treatment-naïve ccRCC cases using Tandem Mass 

Tagging (TMT)-based global proteomics and phosphoproteomics platforms.13 This study 

increased the cohort size to 213 cases, with 40 cases being selected for multiple-segment 

profiling of an additional 92 segments to evaluate tumor evolution and ITH. The dataset 

contained 305 tumor samples, 165 paired NATs, and 213 blood normal samples among 16 

different data types from the initial (INI), expanded (EXP), and ITH cohorts (Figure 1A; 

Table S1). Samples were genomically and epigenetically characterized as before,13 while 

DIA-based proteomic analysis was used to profile all samples for the global proteome 

and the newly added 110 cases for phosphoproteome and glycoproteome (Figure 1A). 

Integrating metabolomics of 106 selected cases, and single-nuclei RNA-seq (snRNA-seq) 

of 15 tumor specimens from 7 cases with the other multi-omics data helped investigate 

both tumor-intrinsic cell populations and TME (Figure 1A). In parallel, a comprehensive 

histopathologic evaluation was performed based on 21 parameters (STAR Methods) to 

define low- and high-grade features, spatial architecture, and TME. Molecular profiles and 

histopathologic annotations were integrated to characterize distinct histological features, 

understand molecular mechanisms that drive ccRCC, and provide a reference for selecting 

effective therapy (Table S1).

Molecular underpinnings of ccRCC histopathologic heterogeneity

ccRCC tissues display extensive histopathologic heterogeneity within the tumor epithelia 

manifesting as differences in nuclear/nucleolar features that form the basis of clinical 

Fuhrman grading.27,28 Heterogeneity also exists in tumor architecture, cytology, and 

changes in microenvironment.26 High-grade tumors are associated with higher post-surgical 

disease recurrence risk and may benefit from increased surveillance. Differences in 

cytological patterns have also recently been linked to aggressive disease.26,29 To identify 

underlying molecular changes associated with histopathologic heterogeneity in the first 

approach based on tumor grade and the presence of sarcomatoid or rhabdoid features 

(GSR), we classified the 213 ccRCC cases into four histopathologic subtypes and performed 

integrative multi-omic analysis (Figure 1B; Table S1). Low-grade ccRCC (CL) tumors (G1 / 

G2: N = 121) and high-grade ccRCC (CH) tumors (G3 / G4: N = 92) are fairly represented 

in the cohort. Among the CH group, 14 exhibited sarcomatoid features (CH-S), and 3 

showed rhabdoid features (CH-R) that were linked to the distinct morphological pattern as 

shown in H&E (Figure 1B; Table S1). Overall, CH-R and CH-S were associated with worse 

prognosis compared to CL (Figures S1A–B). Differential expression (DE) analysis identified 

tumor markers associated with these four major histopathologic subtypes. Notably, LRRC59 

and SERPINH1 were highly expressed in CH-S. KIF2A has been reported to be aberrantly 

expressed and correlated with patient survival,30 with significantly increased expression in 

CH-R (Figure 1C; Table S1). Methylation subtype Methyl1 was significantly enriched in 

high-grade tumors while VEGF immune desert was associated with CL (p = 2.15e-10; 

1.69e-10) (Figure 1C). Although limited in number, all 3 CH-R tumors demonstrated BAP1 
mutations and chr14 loss in addition to VHL mutation. Interestingly, high-grade tumors 

had significant enrichment of high weighted Genome Instability Index (wGII) scores (> 
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0.4, p = 0.0023), and enrichment for loss of chr9, and 14q (respective p = 0.00058; 

0.0019; 6.36e-7) (Figure 1C). Following the initial clonal chr3p loss and acquisition of 

3p driver gene mutations, a subset of ccRCC undergoes whole-genome duplication (WGD), 

resulting in tetraploidy. Following WGD, a significant subset of these tumors acquires 

several additional copy number changes (gains/losses) at an increased rate, resulting in 

genomic instability (GI). Distinguishing patient subsets with high GI may have clinical and 

therapeutic implications. GI we quantified here by wGII score correlated (r = 0.54) with 

ploidy in the wGII high group (Figure S1C).

In our second approach, we conducted a systematic histopathologic review of 197 tumors 

(with available H&E slides) for 21 morphological parameters (STAR Methods). To identify 

molecular changes associated with histopathologic heterogeneity, 7 high-grade morphologic 

features including eosinophilic/granular change, thick trabeculae, alveolar, solid, papillary/

pseudopapillary patterns, and rhabdoid or sarcomatoid cytology (Figures 1B, S1D–E), were 

systematically assessed and quantified as High-Grade Feature Count (HGFC) per tumor. 

High-grade features contributing to histologic heterogeneity within tumors were specifically 

enriched among CH-S and CH-R tumors shown in the histopathologic annotation block of 

the heatmap (Figure 1C), with potential clinical implications.26,29

In addition to identifying sarcomatoid and rhabdoid feature-associated events, we 

ascertained the differentially expressed proteins (DEPs) of other high-grade features by 

comparing corresponding tumors to controls (tumors without any of the above-mentioned 

7 high-grade features) (Figure S1F; Table S1). Papillary/pseudo-papillary feature noted in 

10.2% of the tumors was associated with upregulation of HIGD1A and ROMO1 (Figures 

S1E–F). Some markers were not specific to a certain high-grade feature but generally 

overlapped with the high-grade-tumor DEPs (G3/4 tumors vs. G1/2 tumors). The top altered 

proteins included SQSTM1, GAL3ST1, and PLOD2 (Figure S1F). Protein abundances for 

LRRC59, RPN2, and SERPINH1 were converted into an integrative signature score that 

could serve as a potential prognostic indicator (Figures 1C, S1G). The group with a high 

signature score carries a statistically significant higher hazard ratio of 4.1 with a p-value 

of 0.049 adjusting by age, sarcomatoid feature status, tumor stage, and immune subtype 

in the Cox proportional hazards (Cox) models. Considering the status of all 7 high-grade 

features, an HGFC was determined (range from 0 to 7) for each tumor and evaluated for 

its prognostic value. Among the 197 tumors with evaluable H&E images and annotations, 

68 (34.5%) presented an HGFC ≥3 that was associated with a worse prognosis (p = 0.003) 

(Figure S1H). By adjusting for other covariates (histopathologic subtype, age, sex, BAP1 
mutation) in the Cox model, the hazard ratio of this group was 3.7 (p = 0.039) compared to 

(< 3) HGFC group (Figure S1H).

We evaluated associations between the omic layers and each of the seven high-grade 

histopathologic features mentioned above to identify the top three most informative omics 

layers that may be useful to describe the different phenotypes (Table S1). For example, 

methylation subtype, immune subtype, and BAP1 mutation showed strong associations with 

the sarcomatoid phenotype (Table S1). Tumors presented distinct features compared to 

NATs, as revealed by immune cell-type deconvolution analysis (Figures S1I–J). Abundances 

of macrophages and CD8+ T cells were significantly higher in tumors, while CD4+ T cells 

Li et al. Page 5

Cancer Cell. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were enriched in NATs, a consistent feature across the ccRCC cohorts (Figure S1J). Among 

the 305 ccRCC specimens (Figure S1K), we detected four distinct immune subtypes (CD8+ 

inflamed with high immune infiltration; CD8− inflamed with high fibroblast; metabolic 

desert with high epithelial; and VEGF desert with high endothelial signature), which were 

largely consistent with the four previously reported immune subtypes.13 Tumors in the 

CD8+ inflamed group may be more likely to respond to immunotherapy than immune-desert 

tumors (Figure S1K; Table S1). Among the 19 patients who received adjuvant postoperative 

immunotherapy, four were classified as CD8+ inflamed subtype. We will follow up with 

their therapeutic and survival status for further investigation of this hypothesis. This 

immune subtyping approach provided an additional resolution to immune-inflamed and 

immune-desert tumors,31 identifying two distinct immune-desert subtypes, and shared 

some similarities with the unsupervised transcriptomic subtypes previously reported.32 

By integrating CNV, gene expression, and global protein abundance in non-negative 

matrix factorization (NMF), we identified three major multi-omic subtypes, NMF1, NMF2, 

and NMF3 associated with metabolic desert, VEGF desert, and CD8− inflamed tumors, 

respectively (Figure S1L). These correlated with other molecular and clinical features such 

as wGII high and high-grade tumors that were enriched in NMF1 (Table S1). Moreover, a 

cluster membership score was calculated for each sample that defined the “cluster core”, 

a set of samples most representative of a given cluster (STAR Methods). Among the core 

samples in the three subtypes, overall survival differed significantly (p = 0.038) as NMF1 

was associated with a worse prognosis, and compared with NMF3, carried a higher hazard 

ratio of 9.98 (p = 0.059) adjusting by age, sex, and tumor grade in the Cox model. In 

our comprehensive exploration of phenotype-genotype association, we integrated details of 

histopathologic heterogeneity in multi-omic analysis. Using this approach, we identified 

clinical and molecular features associated with high-risk disease, including Fuhrman grade, 

HGFC, genome instability (underexplored in the current literature), and proteomic markers. 

We further characterized UCHL1 protein expression as a prognostic biomarker associated 

with poor survival, BAP1 mutation, high wGII, and specific DNA methylation subtype. 

Detailed characterization of UCHL1 is presented in the DNA methylation section below. 

In summary, the results revealed a higher level of intertumoral heterogeneity in high-grade 

tumors compared with low-grade tumors (p = 1.02e-04) (Figure 1D; Table S1).

ccRCC proteogenomic and TME ITH characterization by multi-segment integrative analysis

To study the association between histopathologic features and molecular profiles for a 

deeper understanding of ccRCC ITH we generated multi-omic proteogenomic data on 132 

tumor segments from 40 patients, and performed integrative analysis (Figure 2A; Table S2). 

Following the pathology review schema described in the previous section, we determined 

GSR and HGFC parameters for each segment from the corresponding H&E (N = 101). 

Briefly, each segment was scored against pre-decided 4 low and 7 high-grade features, 

including identifying areas of transition between phenotypes, broad features relatively 

prevalent in a subset of tumors (e.g., hyalinization and multi-nodularity), and some unique 

features in selected cases (Figure 2A; Table S2). In parallel, our ITH workflow generated 

bulk proteogenomic data that captured genomic and expression heterogeneities and snRNA-

seq for select samples to characterize ITH at single-cell resolution (Figure 2A).
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Proteomic impact of ccRCC somatic aberrations ITH is underexplored. Upon sorting the 

cases by variances of HGFC (Figure 2B) we observed heterogeneities at various levels 

(features enclosed with red rectangles) (Figure 2B; Table S2). ITH at histopathologic and 

genomic levels was more prevalent in a subset of cases (Figures 2B–C). Among the five 

segments profiled from case#1, two lacked sarcomatoid or rhabdoid features, placing them 

into a different histopathologic subtype, and while SETD2 mutation was found in only one 

segment VHL and BAP1 mutations were common to all. Furthermore, 2 segments from 

case#1 showed additional distinct patterns such as high wGII, Methyl1, metabolic desert, 

high structural variation (SV) counts, copy number variation (CNV) gain and loss in chr7, 

and chr9p (Figure 2B; Table S2). Overall, heterogeneity in at least 1 of the 8 features was 

noted in 90% (36/40) of the cases and more than half showed immune or histologic feature 

heterogeneity (Figure 2C). Among ccRCC driver genes, VHL mutations were largely clonal, 

while PBRM1 contained frequent subclonal events (Figure S2A). The fractions of segment-

specific, shared-subclonal, and shared-clonal events varied across tumors or segments of a 

given tumor (Figure S2B). Additionally, CNV heterogeneities (Figure S2C) will contribute 

to significant variation in the proteo-transcriptomic expression milieu in the tumor epithelia 

as evidenced in Figures S2D–E.

Using data-driven approaches and histopathologic review, we classified the immune 

heterogeneity level at segment level for a given case (Figure 2B). By comparing signature 

distributions (e.g., CD8+ T, endothelial cell, overall immune score) between groups with (w 

I-ITH) and without (w/o I-ITH) intratumoral immune heterogeneity, the signature difference 

tended to be higher in the w I-ITH group (p < 0.05) (Figure 2D), and 6 representative 

tumors (3 in w I-ITH and 3 in w/o I-ITH) were presented in Figure 2E. Overall, the w I-ITH 

group showed a high level of immune ITH. Heterogeneity in immune presentation could 

affect immunotherapy response and ultimately treatment failure or inappropriate therapy 

choices. Panoptes-based multi-resolution neural network models trained to predict immune 

subtypes based on H&E33 were also provided with transcriptomic immune subtyping data. 

They showed high consistency of immune subtype prediction (Figure 2F; Table S2). Tiles 

with similar histopathologic features related to immune subtypes clustered together (Figure 

S2F) and we also confirmed the consistency between the histopathologic review and data-

driven delineation of the immune signature (Figure S2G). Heterogeneities in wGII status 

or mutations in ccRCC driver genes were associated with worse prognosis with hazard 

ratios of 16.03 (p = 0.003) and 8.09 (p = 0.012) (Figure S2H), respectively, after adjusting 

by age, sex, and tumor grade in the Cox model. Our ITH analysis showed that regional 

histologic and proteogenomic variations including somatic driver clonality and CNVs within 

a patient’s tumor are common in ccRCC and might play a significant role in shaping the 

observed regional TME heterogeneity. We next explored ITH and how some histologic 

features such as CH-S and CH-R associated with aggressive diseases can be characterized by 

snRNA-seq.

Single-cell analysis identified ITH, sarcomatoid and rhabdoid expression signatures

We studied transcriptomic ITH by snRNA-seq in 12 tumor segments from 4 cases 

selected based on certain features, including rhabdoid, sarcomatoid, multi-nodularity, and 

hyalinization (Figures 3A–B; Table S3). Among the 104,654 nuclei sequenced, 62% formed 
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a main tumor cluster that contained case-specific sub-clusters, expressed tumor-intrinsic 

markers associated with certain features and the corresponding enriched pathways at the 

case level (Table S3) and 38% represented TME including, T, NK, B, macrophages, 

fibroblasts, and endothelial cells that formed cell-type-specific clusters (Figures 3A). 

Collectively, these data captured the cellular ITH in both tumor and TME compartments 

(Figures 3A–C, S3A–B). Cell-type fractions reflected molecular and pathologic annotations, 

for instance, case C3N-00149 containing fibrotic features was distinct from the others and 

concordantly showed higher abundance of fibroblasts (Figures 3A–B, S3A). Comparing the 

four segments from C3N-00148, revealed extensive ITH in TME compartment as CD8+ T 

cells were significantly enriched in segment 4 (seg 4), the only region classified as CD8+ 

inflamed with a higher immune infiltration post tumor content adjustment (Figures 3B–C; 

Table S3). −305.7207 pt. 392.3809 pt

Sarcomatoid differentiation, a poor-prognosis feature, was variably distributed across 

segments in C3N-00148. Trajectory analysis (Figure S3C) of C3N-00148 revealed 

enrichment differences of segments in distinct branches and predicted a later evolution 

of tumor subpopulations in seg3 labeled as C0 with high expression of GLUL as a high-

grade-tumor DEP (Figure S1F), chr9q loss (associated with sarcomatoid changes in RCC),34 

and enriched Hippo signaling pathway corresponding to the trajectory branches (Figures 

3D, S3D–E). Furthermore, we captured two subpopulations (e.g., C0A, C0B) in C0 as 

C0A, showed unique expression signatures (Figures 3D, Table S3). In agreement with the 

histopathologic review, the sarcomatoid and fibroblastic proliferations were mainly observed 

in seg3 (25–30%), while the others had little or focal fibroblastic proliferation mainly in 

high-grade areas (< 10%) (Figures S3F).

Rhabdoid phenotype, another poor prognosis ccRCC histology noted in C3N-01287 was 

juxtaposed next to clear cell area, and snRNA-seq captured both tumor features as distinct 

cell clusters (Figure 3E). We further annotated these tumor subclusters, with inferred CNV 

from snRNA-seq and WES-based CNV obtained from microdissected rhabdoid and clear 

cell regions (Figures 3E, S3G–H). Rhabdoid cell cluster (C0)/region contained BAP1 
mutation, chr3q and 8q copy gains, and enrichment of PI3K-AKT and Rho GTPase 

signaling. Clear cell cluster/region contained BCL7A mutation and chr2 and 5 gains, while 

VHL mutation was common to both regions (Figures 3E, S3G–H).

We used such representative genomic alterations and marker expressions to render additional 

evidence for our feature-associated subcluster annotation. C0A in C3N-00148 showed 

significantly higher expressions in TIMP1, C1R, and TGFBI (Figures 4A; Table S3), 

and interestingly TIMPs overexpression in sarcomatoid RCCs has been reported.35 To 

further strengthen and validate our observations we sequenced two additional sarcomatoid 

cases for snRNA-seq integration (Figure 4B). ClusterC0A which highly expressed TIMP1, 

C1R, and TGFBI both at integration and case levels was found in all sarcomatoid cases 

(Figure 4C; Table S3). We validated TGFBI expression in two representative cases by 

immunohistochemistry (IHC) where we saw signal (high and diffuse staining) only in the 

sarcomatoid areas and not in conventional nested clear cell regions (Figure 4D). As for 

the subcluster with rhabdoid features in C3N-01287, it presented higher expression profiles 

of KIF2A, NAMPT, and GALNT2 (Figure 4E; Table S3) and was confirmed by another 
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independent case with rhabdoid features (Figures 4F–G; Table S3). We independently 

validated KIF2A expression by IHC and saw strong positive staining intensity specifically in 

the rhabdoid area while the nested clear cell region was negative (Figure 4H). These markers 

also showed consistent patterns in bulk RNA expression and global protein abundance, such 

as high KIF2A in rhabdoid cases compared with control low-grade tumors (Figure S3I; 

Table S3).

DNA hypermethylated Methyl1 subtype is associated with BAP1 mutations and various 
other features linked to poor survival

Dysregulation of the epigenetic DNA methylation marks is considered an early event in 

carcinogenesis.36–39 Previous pan-RCC genomic studies have noted a strong association 

between increased DNA methylation and worse prognosis in ccRCC.17 Identification of 

specific prognostic markers to distinguish this patient subset remains an unmet clinical 

need and can now be explored with our extended cohort. Among the 8,000 most variable 

CpG sites (probes) that distinguished tumors from NATs, we identified the signature probes 

and related genes associated with histopathologic subtypes (Table S4; STAR Methods). 

For instance, we noticed 7 probes in the RNF39 CpG island were hypermethylated in 

CH-S (FDR < 0.05 & beta value difference > 0.1 & in CpG) as a part of an altered 

methylation profile (Table S4). Three methylation subtypes (Methyl1–3) were detected in 

both CPTAC ccRCC and TCGA KIRC cohorts by applying consensus clustering on the 

8000 probes (Figures 5A; Table S4). Methyl1 was significantly associated with samples 

containing higher tumor grades, higher stemness score, and worse prognosis, as well as 

metabolic desert followed by CD8+ inflamed, and molecular features such as high ploidy, 

high wGII, losses of chr9,14q, and BAP1 mutations (Figures 5A–B, S4A–B). Panoptes-

based models were trained to predict methylation subtypes from H&E (Figure S4C). 

The best-performing model achieved a macro-averaged multi-class per-slide area under 

the receiver-operating characteristic (ROC) curve of 0.836 (95% CI: 0.830–0.841) on the 

test set (Table S4). We further connected the prediction with histopathologic annotations. 

For example, in C3N-00148, classified into Methyl2, we observed heterogeneous features 

where the immuneinfiltrate, fibroblastic-rich area was called Methyl3, while the majority of 

conventional ccRCC area with marked trabecular change was labeled Methyl2 (Figure S4C).

As Methyl1 was significantly associated with worse disease prognosis (Figure 5B), we 

captured the differentially methylated (DM) probes in both CPTAC ccRCC and TCGA 

KIRC cohorts14,17 and prioritized them as signature probes if (1) common DM probes were 

significant in both cohorts; (2) beta value differences were > 0.2; (3) probes were located 

in CpG island followed by shelf and shore regions; (4) corresponding genes identified as 

tumor-intrinsic were more highly expressed in tumor/epithelial cells than in immune or 

stromal cells. In total, we found 235 common significant DM probes corresponding to 

198 genes showing an overall negative correlation (R = −0.5, p = 0.033) with cognate 

gene expressions (Figure 5C; Table S4). The top Methyl1 signature probes, located in 

CpG islands, include cg04917181 (TSPYL5), cg05523911 (TCHH), cg14875171 (NRXN1), 

cg16232126 (SLC5A7), and cg25809561 (MYO1D) (Figure 5C). To learn the characteristics 

of each methylation subtype, we conducted the DE analysis on both RNA level and protein 

abundance. Methyl1 showed significant upregulation of 251 candidates as both DEGs and 
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DEPs, including UCHL1. While 204 markers significantly up only as DEPs contributed 

to pathways including cellular responses to stress (Figure 5D; Table S4). Methyl3, being 

enriched with VEGF desert, PBRM1 somatic mutations, and high tumor purity, carried 60 

markers as both DEGs and DEPs and 116 additional DEPs contributing to the pathways 

including glycolysis/gluconeogenesis (Table S4).

UCHL1, in addition to being enriched in Methyl1, was significantly associated with 

BAP1 mutants and the wGII-high category based on RNA expression, protein abundance, 

quantified UCHL1 immunohistochemistry (IHC) score, and IHC staining (Figures 5E–F, 

S4D; Table S4). UCHL1, a deubiquitinase, could serve as a prognostic marker of ccRCC 

whose high expression is associated with worse prognosis in both the CPTAC ccRCC 

and TCGA KIRC cohorts (Figures 5G, S4E). We evaluated 32 representative cases by a 

panel of IHC markers (UCHL1, BAP1, and CA9) to validate UCHL1 associations with 

BAP1 mutated and Methyl1 subgroups. IHC-based UCHL1 proteome abundance assessment 

showed a high correlation between quantified UCHL1 protein abundance and UCHL1 

IHC score, where BAP1 mutants frequently displayed higher levels of UCHL1 (Figures 

S4F–G). BAP1 IHC is currently used in the clinic as a diagnostic marker to evaluate 

BAP1 protein loss. In this context, all 14 BAP1 deleterious mutants we tested showed 

loss of BAP1 staining, and 12 of these cases were positive for UCHL1. Among the 7 

BAP1 missense mutants we examined, only 3 were negative for BAP1, and 1 positive 

for UCHL1. Contrariwise among 4 BAP1 missense mutants with BAP1 positivity, only 1 

was UCHL1 positive (Figure S4D). ccRCC clinical marker CA9 was positive in all the 

ccRCC cases evaluated (Figure S4G). When these data were analyzed for methylation 

subtypes, 68.7% (11/16) of Methyl1 showed UCHL1 positivity and was significantly 

different from the Methyl3 group (Table S4). In addition, UCHL1 staining of a matched 

RCC primary (renal mass) and metastatic RCC (ovarian tubular mass) tumor from a patient 

with pathogenic germline BAP1 mutation40 also showed strong UCHL1 positivity (Figure 

S4H). Thus, UCHL1 positivity appears to be associated with BAP1 mutation, wGII high, 

worse survival, and Methyl1 (Figures 5E–H, S4D–H) in a collective manner, making it an 

important candidate prognostic marker that warrants additional validation in independent 

cohorts. Examination of an independent RCC primary tumor patient cohort (n = 16) 

who subsequently developed metastatic RCC, indicated that 68% (11/16 cases) of the 

primary tumors showed strong UCHL1 positivity. This was a dramatic increase compared 

to the 10–15% cases with UCHL1 expression noted in unenriched RCC primary tumor 

cohorts (CPTAC and TCGA). We also observed several different histopathologic features 

in these tumors (Figure S4I). Finally, we characterized UCHL1 staining topographically 

in one of the 16 independent clinically aggressive cases which showed morphological 

heterogeneity (Figure 5I), where the rhabdoid nodule and high-grade tumor showed strong 

and moderate UCHL1 staining, respectively, while the staining was negative in the low-

grade clear cell area (Figure 5J). Hence, we were able to demonstrate alignment of UCHL1 

expression with ITH. Panoptes-based models were trained to classify BAP1 mutated and 

WT samples. Overall, the cluster of BAP1 mutated tiles showed higher-grade aggressive-

looking phenotypes, while the BAP1 WT tiles contained predominantly low-grade tumor 

components, such as acinar and tubular with areas of hemorrhage and hemosiderin-laden 

macrophages and hyalinization (Table S4). Encouraged by the availability of UCHL1 small 
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molecule inhibitor (CAS 668467–91-2, also known as LDN-57444) and preliminary studies 

on its targetability from triple negative breast and neuroendocrine lung cancer models,41 

we performed cell viability assays in RCC cell line models. Renal cancer cell lines Caki-1 

and 786-O showed dose-dependent inhibition of cell viability with CAS 668467–91-2, 

while the normal kidney HK-2 cell line was resistant to the treatment (Figure S4J; STAR 

Methods). CAS 668467–91-2 treatment in 786-O renal cancer cells resulted in altered 

morphology being elongated and stressed (Figure S4K). Western blot analysis in 786-O cells 

demonstrated that UCHL1 inhibition suppressed activation of the Akt signaling pathway in a 

dose-dependent manner (Figure S4L).

Key phosphorylation signaling pathways and kinase-substrate interactions in ccRCC

To identify key phosphorylation signaling pathways in ccRCC, we investigated altered 

phosphosignaling networks based on the association of kinase-substrate (K-S) pairs. Our 

phosphoproteomic datasets contained 110 EXP cohort cases by DIA-based and 103 INI 

cohort cases by TMT-based methods13 (Figures 6A, S5A; Table S5). Approximately 80% of 

the K-S pairs with the highest phospho-substrate abundance (tumors vs NATs) identified, 

including signaling networks involving EGFR, MEK, ERK, and WEE1, were from 

both DIA or TMT-based analysis thereby providing good cross-verification. Furthermore, 

phosphorylations of PRKCZ and PARD3 were positively associated, and both proteins are 

involved in the Rap1 signaling pathway. Likewise, an association between phosphorylations 

of RPS6KA3 and RPS6 proteins was intriguing as they belong to the mTOR signaling 

pathway.

To examine ccRCC inter-tumor phosphoproteomic heterogeneity, we used phosphorylation 

events with coefficient of variation (CV) in > 25% quartile from 110 tumors to construct 

unbiased phosphoproteomic clustering whereby four major ccRCC phosphoproteomic 

subtypes emerged (P1 to P4) (Figures 6B, S5B–C; Table S5). Among these subtypes, tumors 

in P1 had higher grades and stages and were enriched in BAP1 mutation, Methyl1, CD8+ 

inflamed, and metabolic desert. Groups P2 and P3 had lower grade tumors, with a higher 

percentage classified as Methyl2 and VEGF desert, respectively, while P4 showed a more 

mixed profile. PTM-SEA42 analysis of the tumor phosphoproteomics based on the changes 

in phosphosite abundance revealed distinct signatures for the phospho subtypes (Figure 

6C; Table S5). MAPK14 and MAPKAPK2 were significantly enriched in P1. MAPK14 

and downstream pathways are activated in response to various stresses and inflammation; 

moreover, activation of MAPKAPK2 by MAPK14 associates with biological processes, 

such as apoptosis and cell cycle; MAPK14 and MAPKAPK2 potentially play a role in 

cancer cell survival.43,44 P2 tumors showed phosphosite-driven activation of the leptin 

pathway, and leptin is associated with ccRCC progression and poor clinical outcome.45 P3 

subtype was associated with the EGFR pathway and other kinases such as ROCK1, MAPK3 

(VEGF/angiogenesis signaling), and MAPK9, GSK3B (focal adhesion). ROCK could be a 

potential target for P3 tumors since P3 was enriched with VEGF-desert samples, and ROCK 

inhibitors can reduce VEGF-induced angiogenesis.46,47 Both P1 and P4 showed enrichment 

in the TIE2 pathway, whose activity is associated with the activation of MAPK14, ERK1/2, 

and PI3K/AKT pathways.48,49
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Our previous work13 used case-matched ccRCC tumors and NATs to examine the 

differentially-expressed K-S pairs. We found elevated levels in the majority of ccRCC 

tumors for K-S pairs, including cell cycle regulator WEE1 and ERK signaling. Similar 

results were found in the EXP cohort. The current study investigated the functional 

impacts of select kinases using inhibitors focusing on a panel of six K-S pairs prioritized 

previously (Figure 6D; Table S5). We characterized the phosphoproteome of 5 RCC cell 

lines treated with inhibitors targeting MAPK, EGFR, mTOR signaling, and WEE1 via 

DIA-MS. Variations in the inhibitory effects among the cell lines were observed based on 

the phosphorylation level of the downstream targeted substrates. Among the five drugs, 

inhibitors of WEE1 (AZD-1775), dual mTOR complex (TAK-228), and MEK (Trametinib) 

showed better responses. AZD-1775 reduced CDK1 phosphorylation levels in all five cell 

lines, with the highest reduction observed in CAKI-2 relative to the others. TAK-228 

reduced phosphorylation of the mTOR complex component, AKT1S1, and its downstream 

phospho-substrate target, EIF4EBP1, while the MEK inhibitor reduced phosphorylation 

of both MAPK1 and MAPK3. In contrast, Everolimus (mTORC1 inhibitor) and gefitinib 

(EGFR inhibitor) showed minimal impact on their signaling-related phosphorylation events.

In order to identify BAP1 mutation-related events we examined phospho-substrates levels 

in BAP1 mutant 769-P versus the remaining cell lines and compared our observations with 

results from BAP1 mutant versus wildtype tumors in the EXP cohort (Figure S5D; Table 

S5). The identified events were related to biological functions, such as cell cycle (e.g., 

ANKRD17, SMC4) and DNA-binding (e.g., KLF3), that showed distinct expression profiles 

in the clinical cohort and drug-treated cell lines (Figure S5D). Intriguingly, ANKRD17 

is a known interactor of BAP1 protein.50 ROC analysis of ANKRD17-S2400, KLF3-S92, 

and MAP1B-S1785 demonstrated the ability to distinguish BAP1 mutation and wild-type, 

with the area under the curve (AUC) of 0.80, 0.81, and 0.77, respectively. AUC was 

further improved to 0.87 when combining the three phospho-substrates (Figure S5E). The 

phosphoproteomic analysis identified multiple signaling pathways activated in tumors and 

revealed four major phosphoproteomic groups in ccRCC linked to unique K-S pairs. A 

subsequent kinase inhibition study and ROC analysis suggested additional targets, especially 

targets involving MAPK signaling. Among the drugs tested, MEK inhibitor showed superior 

performance in reducing phosphorylation of downstream phospho-substrates and inducing 

death at a low IC50. Taken together, the current results indicated a possibility of expanding 

treatment options beyond the current FDA-approved therapies targeting VEGF and mTOR.51

Alteration of protein glycosylation specific to ccRCC and high-grade ccRCC

Aberrant glycosylation of cell surface proteins observed in cancers can affect various 

biological functions, e.g., cell signaling.52,53 Glycoproteomic DE analysis of ccRCC tumors 

versus NATs identified 51 upregulated and 131 downregulated intact glycopeptides (IGPs) 

(Figure 7A; Table S6). Among them, four IGPs from four glycoproteins (FN1, FBLN5, 

BGN, and TNC) demonstrated an ability to differentiate tumor and non-tumor tissues 

with the AUCs ranging from 0.75 to 0.86 (Figure 7B). AUC increased to 0.89 when 

combining the four glycopeptides into a panel. Additionally, ECM-receptor interaction, 

focal adhesion, and PI3K-Akt signaling pathways were enriched from the glycoproteins of 

positively-regulated IGPs. On the other hand, renin-angiotensin system, glycosaminoglycan 
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degradation, and lysosome pathways were enriched from negatively-regulated IGPs (Figure 

S6A).

According to the monosaccharide composition of the identified glycopeptides, five 

glycan types were investigated: glycans containing only oligomannose (High-Man), sialic 

acid containing glycans (Sialic), glycans containing sialic acid and fucose (Sialic-fuc), 

fucosylated glycans only (Fucose), and other glycans (Others). Fucose or Sialic-fuc glycans 

were enriched for the upregulated glycopeptides, whereas most of the downregulated 

glycopeptides were High-Man, Sialic, or other glycans (Figure 7C; Table S6). The 

glycopeptide abundance was regulated in both protein level and glycosylation by different 

glycans (Figure 7D). The alteration of IGPs was positively correlated to the cognate global 

protein expression. However, heterogeneities were noted in IGP abundances from the same 

proteins due to different glycan types.

Glycans that modify glycoproteins are regulated by glycan biosynthesis enzymes. We found 

upregulation of glycosylation enzymes, including MAN1C1, MGAT1, and ST6GAL1, in 

tumors relative to NATs at protein level (Figure S6B; Table S6). MAN1C1 and MGAT1 

regulate the synthesis of complex glycans, while ST6GAL1 is responsible for transferring 

sialic acid from CMP-sialic acid to galactose-containing acceptor substrates. The altered 

glycosylation enzymes could be used as potential therapeutic targets, which would require 

further investigation.

While exploring intertumoral heterogeneity in glycoproteomics data, we observed 

three major ccRCC glycoproteomic subtypes (Glyco1–3, Figure 7E) with three intact 

glycopeptide clusters (IPC 1–3, Figure S6C). Among the three glycoproteomic subtypes, 

tumors in Glyco1 were associated with higher grade, BAP1 mutation, Methyl1 subtype, 

CD8+ inflamed, and IPC 1 compared to the other glyco subtypes (Figures 7E, S6D). The 

significantly upregulated IGPs in Glyco1 were mostly occupied by High-Man and Fucose 

type glycans (Figure S6E), and there were glycopeptides from glycoproteins (e.g., HYOU1) 

that influence metastasis of various cancers.54 Comparison between CL and CH tumors 

suggested that HYOU1 elevation in the latter hence could serve as a prognostic marker with 

an AUC of 0.76 (Figures 7F, S6F; Table S6). Immunohistochemistry evaluation of HYOU1 

protein expression showed higher HYOU1 expression in CH tumors where the strongest 

signal came from immune cells (Figure S6G). Moreover, we examined the association 

between HYOU1 expression and survival using CPTAC ccRCC and TCGA KIRC cohorts. 

HYOU1 abundance could serve as a potential prognostic indicator only at the protein level 

in the CPTAC cohort but not at the RNA level in both cohorts (Figures 7G, S6H–I). HYOU1 

protein abundance also showed a significant association with high-grade (G3/G4) tumors (p 

= 1.81e-7, Figure S6J). Furthermore, Glyco2 had an association mainly with IPC 2 (Figure 

S6D). The significantly upregulated IGPs in Glyco2 were occupied by sialylated glycans 

(Figure S6E). Since Glyco2 and 3 were dominated by low-grade and immune-desert tumors, 

targeted therapy against sialylated glycans could be a potential alternative approach for 

Glyco2 and 3 subtypes.
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Metabolic signatures of high-grade ccRCC and low-grade ccRCC

Reprogrammed tumor metabolism is a hallmark of cancers, manifested through alterations 

in metabolite abundances and composition, and kidney cancer is strongly associated 

with metabolomic alterations.18,55 Herein, we quantified 183 metabolites across various 

metabolic pathways with high confidence from 50 ccRCCs and 7 NATs (STAR Methods; 

Table S7). PCA analysis found definitive separation between tumors and NATs, and 

distribution among the 50 tumors by histopathologic subtypes (Figure 8A; Table S7). 

We detected 55 metabolites with significantly higher tumor-specific abundance (FC > 2 

and FDR < 0.05) that contributed to arginine biosynthesis, alanine, aspartate/glutamate 

metabolism, pyrimidine metabolism, and purine metabolism, while 35 were reduced in 

tumors compared to NATs (Figure S7A).

Further, CH and CL tumors differed dramatically in their metabolic profiles (Figures 8A–C; 

Table S7). Arginine, used in protein biosynthesis,56 was decreased in tumors compared 

with NATs, but significantly higher in CL compared to CH tumors (Figure 8B). The top 

10 enriched pathways displayed distinct patterns between CH and CL tumors (Figure 8C). 

We used CL as a control group to capture the metabolic signature associated with CH-S 

(N = 4 with the sarcomatoid feature) (Figures S7B–C; Table S7). Differentially expressed 

metabolites (DEMs) such as GMP, N-acetyl-L-phenylalanine, and dGMP are high in CH, 

whereas inosine, and hypoxanthine were elevated in CH-S tumors (Figure S7B). To identify 

distinct high- and low-grade subsets associated with molecular and histological features, 

we identified four well-defined metabolomic subtypes (Figures 8D–E). M4 represented the 

7 NATs, while M1 was significantly enriched with high-grade histopathologic subtypes, 

Methyl1, BAP1 mutants, wGII-high status, a mostly mutual exclusivity from the VEGF 

desert, and female patients (Figures 8E, S7D). The three metabolomic subtypes related 

to tumors with similar features were confirmed using the validation set (Table S7) and 

investigated DEMs among the three metabolomic subtypes. As Methyl1 was significantly 

enriched in M1, we found a considerable overlap of M1-associated and Methy1-associated 

metabolites such as 4-Hydroxyphenyllactic acid (Figure S7E; Table S7).

Combining metabolomic and proteogenomics analyses, we correlated expression of 

metabolites with their enzymes, and associated the metabolomics with pathways, molecular 

and histopathologic features, and clinical information. Dramatic changes in arginine and 

proline metabolism were observed, including arginine biosynthesis and urea cycle for both 

metabolites and related enzymes (Figure 8F). Glutamine, α-ketoglutaric acid, ornithine, and 

citrulline were significantly high in tumors, while L-glutamic acid, and argininosuccinic acid 

were higher in NATs (Figure 8F). Correspondingly, homologous trends between metabolites 

and their enzymes were seen, such as elevated GLUL and reduced ASS1 in tumors (Figures 

8F, S7F). This correlated with previous studies showing that argininosuccinate synthase 1 

(ASS1), was strongly repressed in ccRCCs compared with non-tumorous kidney tissues, and 

re-expression of ASS1 in ccRCC xenograft models reduced tumor growth.57–59

Higher fractions of GLUL-high and GLS-high samples were present in the higher-grade 

tumors (Figure 8G). Inhibition of glutaminolysis is a potential cancer therapy and 

GLUL could be a therapeutic target.60 By performing inhibitor treatment (L-Methionine 

sulfoximine) and a cell viability assay on GLUL, skrc42.EV responded to the anti-GLUL 
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treatment, while the normal kidney HK-2 cell line was not sensitive to the treatment 

(Figure S7G). Moreover, tumors among the 3 metabolomic subtypes (M1–3) displayed a 

strong heterogeneity. Argininosuccinic acid and Fumarate were significantly elevated in 

M2, whereas Citrulline and Glutamine were high in M3 (Figure S7F), suggesting that 

any response to directed therapies, such as glutaminolysis inhibition may be dependent 

upon metabolomic subtype (Figure S7F). MYC-driven accumulation of 2-hydroxyglutarate 

(2-HG) has been associated with breast cancer prognosis,61 and 2-HG and MYC expression 

were significantly increased in Methyl1, with a worse prognosis (Figure S7H). Based on 

the comprehensive characterization depicting all available omics layers, we found that 48 of 

50 tumors presented unique characterization profiles, demonstrating the strong intertumoral 

heterogeneity in ccRCC (Figure 8H).

Discussion

Clear cell RCC is a complex disease defined by a histopathologic feature that has 

demonstrated ever-increasing levels of variability and heterogeneity through the increased 

use of diverse analytic methodologies. Building on the foundation of the initial CPTAC 

study,13 this study expanded both the patient cohort and analyses to include an enhanced 

histopathologic review, proteogenomic and single-nuclei analysis of multi-sampled tumors, 

in vitro analysis of therapeutically targeted tumor-specific phosphoproteomic events, tumor 

metabolomics, and the first analysis of tumor-specific glycoprotein signatures.

The multi-omic nature of this study highlighted the intertumoral heterogeneity present in 

ccRCC. Despite the heterogeneity, we demonstrated enrichment of specific proteogenomic 

features within the high-grade tumors, including distinct phospho- and glycoprotein 

signatures, and confirmed several features, such as BAP1 mutation, tumor hypermethylation, 

and sarcomatoid features, previously associated with poor patient outcomes.14,15,17,62 

An increased understanding of accurate and easily evaluable biomarkers for these 

specific proteogenomic features will be fundamental in producing effective and adaptable 

combination therapies. This study highlights UCHL1 expression, measurable by IHC, as one 

such potential biomarker for high-grade tumors with BAP1 mutation, genome instability, 

or increased tumor hypermethylation that could influence the clinical and therapeutic 

management of these patients.

Our comprehensive histopathologic review of the ccRCCs, based upon recent advances 

in the morphological evaluation of ccRCC,26 immediately highlighted the intratumoral 

heterogeneity present in this cohort and demonstrated the correlation of either sarcomatoid 

or rhabdoid features with significantly poorer patient outcomes. Protein markers were 

identified for each histopathologic feature, as well as for high-grade tumors in general, 

including SQSTM1, GPNMB, and GAL3ST1 which have previous associations with 

RCC.14,63–66 Notably, GPNMB is a cell surface protein for which an antibody-drug 

conjugate-based targeted agent, glembatumumab vedotin, is in clinical trials for advanced 

melanoma and breast cancer.67,68

Proteogenomic analysis of a subset of 40 multi-sampled cases expanded the expected 

subclonal nature of specific somatic mutation and copy number events to include ITH of 
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genome stability and DNA methylation, both shown to correlate with patient outcomes.21–23 

At least one feature demonstrated heterogeneity in 90% of these tumors. The ITH observed 

in immune subtyping is particularly important, as ccRCC is considered an immunotherapy-

sensitive tumor with increasing use of checkpoint inhibitors as first-line therapy for 

metastatic ccRCC and the degree of immune ITH could influence response.69 Furthermore, 

single-cell-based analysis within this study confirmed the differences in tumor, stromal, 

and immune components between segments and highlighted the ability to isolate specific 

subgroups of histopathologically distinct cells within a segment, such as those with 

rhabdoid or sarcomatoid features.70 Consequently, multi-segment profiling and single-cell 

analysis could better capture the full picture of the TME immune component to predict 

immunotherapy response to support precision oncology.

While refinement of combination therapies and the development of a specific HIF2 inhibitor 

(Belzutifan/MK-6482) represent great advances in the treatment of ccRCC, therapeutic 

options with biological targets are necessary to further improve patient outcomes.7–9,71–73 

This study highlighted several potential avenues for targeted therapy. The increased tumor-

specific hypermethylation is potentially therapeutically susceptible to demethylating agents 

such as decitabine (5-Aza-2’-deoxycytidine) or guadecitabine (SGI-110), and therapeutically 

induced demethylation has been proposed to potentially improve response to common 

immune-based advanced ccRCC therapies.74 Tumor-specific phosphorylation of the MAPK 

pathway was targeted in several ccRCC cell line models with MEK inhibitors that induced 

both effective on-target dephosphorylation and significant antiproliferative effects. MEK 

inhibitors have been previously considered for treating ccRCC, and this study strengthens 

support for their potential application.75–77 The increased expression of the glycoprotein 

HYOU1 in high-grade tumors ccRCCs and its correlation with poor survival makes it 

a potential therapeutic target and biomarker, and these correlations have been seen in 

other cancer types.54 Notably, this observation was not detectable at the RNA expression 

level and highlights the power of multi-omic protein analysis to identify potential IHC-

based biomarkers. Altered tumor-specific expressions of glycoproteins have been associated 

with invasiveness and metastatic potential in various cancers and have been considered 

therapeutic targets.78–81 Finally, metabolome analysis confirmed the increased abundance 

of glutamine and metabolites in the urea cycle in higher-grade ccRCC and both of these 

observations are currently being considered therapeutic targets.57,60,82

In summary, this study enhances our understanding of this complex and heterogeneous 

disease by utilizing a multitude of analytical approaches. Observations of histologic 

heterogeneity correlate closely with underlying molecular heterogeneity, but molecular 

heterogeneity also extends beyond that observed at the visualized tissue level. This study 

provides a wealth of data that will serve as an invaluable resource for further study and 

delineates proteogenomic features that can drive the translation of therapeutic research with 

the aim of improving the outcomes of ccRCC patients.
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STAR★Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Li Ding (lding@wustl.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability

• Clinical data and proteomic data (raw MS files and processed data 

files) reported in this paper can be accessed via the Proteomic Data 

Commons (PDC) at: https://pdc.cancer.gov/ (Project: CPTAC3 Discovery and 

Confirmatory, Disease Type: Clear Cell Renal Cell Carcinoma). Genomic, 

transcriptomic, and snRNA-seq data files can be accessed via Genomic Data 

Commons (GDC) at: https://portal.gdc.cancer.gov/projects/CPTAC-3 (Project: 

CPTAC-3, Primary Site: Kidney). Processed data used in this publication 

can also be found in the PDC, the Python package and LinkedOmics.108 

Pathology and radiology images can be accessed via Imaging Data 

Commons (IDC) at https://portal.imaging.datacommons.cancer.gov/explore/

filters/?collection_id=cptac_ccrcc (Collection: CPTAC-CCRCC), and The 

Cancer Imaging Archive at https://doi.org/10.7937/K9/TCIA.2018.OBLAMN27 

(Collection: CPTAC-CCRCC).109 In addition, other data including TCGA 

KIRC83 at https://portal.gdc.cancer.gov/ (Project: TCGA-KIRC), OmniPath84 

at https://omnipathdb.org/#faq, NetworKIN85 at https://networkin.info/, 

DEPOD86 at http://www.depod.bioss.uni-freiburg.de/, and SIGNOR87 at https://

signor.uniroma2.it/.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—A total of 213 participants, with an age range of 30–90, were included 

in this study. This cohort contained males (n = 149) and females (n = 64) and reflects the 

gender distribution of clear cell renal cell carcinoma (ccRCC).83 Only histopathologically 

defined adult ccRCC tumors were only included in the analysis. Institutional review 

boards at each Tissue Source Site (TSS) reviewed protocols and consent documentation, 

in adherence to Clinical Proteomic Tumor Analysis Consortium (CPTAC) guidelines.

Clinical Data Annotation—Clinical data were obtained from TSS and aggregated by the 

Biospecimen Core Resource (BCR, Van Andel Research Institute (Grand Rapids, MI)). 

Data forms were stored as Microsoft Excel files (.xls). Clinical data can be accessed 

and downloaded from the CPTAC Data Portal. Patients with any prior history of other 

malignancies within twelve months or any systemic treatment (chemotherapy, radiotherapy, 

of immune-related therapy) were excluded from this study. Demographics, histopathologic 
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information, and treatment details were collected and summarized in Table S1. The 

characteristics of the CPTAC ccRCC cohort reflect the general incidence of ccRCC.83

Cell Lines—The ccRCC cell line Caki-1 and a control cell line HK-2 were maintained in 

Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) culture medium 

(Gibco - 11320033) supplemented with 10% FBS (Sigma, F-9665) and 1% Pen Strep 

(Gibco, 10,000 U/mL - 15140122). 786-O cells were maintained in Gibco RPMI-1640 

supplemented with 10% FBS. In addition, 769-P, A-498, and Caki-2 were used for in vitro 

experiments assessing the impact of select kinase inhibition.

METHOD DETAILS

Sample Processing—The CPTAC Biospecimen Core Resource (BCR) at the Pathology 

and Biorepository Core of the Van Andel Research Institute in Grand Rapids, Michigan 

manufactured and distributed biospecimen kits to the Tissue Source Sites (TSS) located in 

the US, Europe, and Asia. Each kit contains a set of pre-manufactured labels for unique 

tracking of every specimen respective to TSS location, disease, and sample type, used to 

track the specimens through the BCR to the CPTAC proteomic and genomic characterization 

centers.

Tissue specimens averaging 200 mg were snap-frozen by the TSS within a 30 min cold 

ischemic time (CIT) (CIT average = 13 min) and an adjacent segment was formalin-fixed 

paraffin-embedded (FFPE) and H&E stained by the TSS for quality assessment to meet 

the CPTAC ccRCC requirements. Routinely, several tissue segments for each case were 

collected. Tissues were flash-frozen in liquid nitrogen (LN2) and then transferred to a liquid 

nitrogen freezer for storage until approval for shipment to the BCR.

Specimens were shipped using a cryoport that maintained an average temperature of under 

−140°C to the BCR with a time and temperature tracker to monitor the shipment. Receipt of 

specimens at the BCR included a physical inspection and review of the time and temperature 

tracker data for specimen integrity, followed by barcode entry into a biospecimen tracking 

database. Specimens were again placed in LN2 storage until further processing. Acceptable 

ccRCC tumor tissue segments were determined by TSS pathologists based on the percent 

viable tumor nuclei (> 60%), total cellularity (> 50%), and necrosis (< 50%). Segments 

received at the BCR were verified by BCR and Leidos Biomedical Research (LBR) 

pathologists and the percent of the total area of tumor in the segment was also documented. 

Additionally, disease-specific working group pathology experts reviewed the morphology to 

clarify or standardize specific disease classifications and correlation to the proteomic and 

genomic data.

Specimens selected for the discovery set were determined on the maximal percent in the 

pathology criteria and best weight. Specimens were pulled from the biorepository using an 

LN2 cryocart to maintain specimen integrity and then cryopulverized. The cryopulverized 

specimen was divided into aliquots for DNA (30 mg) and RNA (30 mg) isolation and 

proteomics (50 mg) for molecular characterization. Nucleic acids were isolated and stored 

at −80°C until further processing and distribution; cryopulverized protein material was 

returned to the LN2 freezer until distribution. Shipment of the cryopulverized segments 
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used cryoports for distribution to the proteomic characterization centers and shipment of the 

nucleic acids used dry ice shippers for distribution to the genomic characterization centers; 

a shipment manifest accompanied all distributions for the receipt and integrity inspection of 

the specimens at the destination.

Comprehensive Schematic Histopathology Evaluation—A comprehensive 

evaluation of the hematoxylin and eosin (H&E) stained histopathologic samples was 

undertaken with a focus on the tumor epithelial component and the surrounding tumor 

microenvironmental alterations including the immune cell characterization. The overall 

grading of the tumor samples was based on the findings noted from the previous 

histopathologic patient reports which were re-confirmed. Broadly the epithelial cell 

assessment was done under three categories of recognition of nodular areas/distinct 

sudden transitional areas and sub-dividing the morphologic patterns and cytology under 

low-grade and high-grade parameters. Every histopathologic tissue section was annotated 

for recognized low-grade features (nested, tubular/acinar, microcystic, and bleeding 

follicles) and high-grade features (eosinophilic/granular, thick trabecular, alveolar, solid, 

papillary/pseudo-papillary, sarcomatoid, and rhabdoid).26,29 Apart from the detailed spatial 

architecture and cytological assessment, tumor microenvironment evaluation was also 

performed detailing immune characterization (semi-quantitative scoring, type of infiltration-

intra-tumoral, intratumoral septal, peri-tumoral and stromal, and immune subpopulation 

types) and the presence or absence of necrosis. In addition, specialized histopathologic 

annotations such as the presence of hyalinization, fibrotic response, extensive multi-

nodularity, or histopathologic resemblance to other renal cell carcinoma subtypes were also 

noted. Thus, in each tumor sample instead of focusing on the higher grade or aggressive 

spatial topography, the whole tissue area was evaluated against the entire spectrum of 

morphological parameters as described above. These findings were recorded and tabulated. 

A semi-quantitative score for each tumor was rendered based on the presence (scored as 

1) or absence (scored as 0) of the individual histologic parameters. This way a detailed 

assessment of histologic tumor heterogeneity was assessed (Table S1).

Sample Processing for Genomic DNA and Total RNA Extraction—Our study 

sampled a single site of the primary tumor from surgical resections, due to the internal 

requirement to process a minimum of 125 mg of tumor issue and 50 mg of adjacent 

normal tissue. DNA and RNA were extracted from tumor and blood normal specimens in a 

co-isolation protocol using Qiagen’s QIAsymphony DNA Mini Kit and QIAsymphony RNA 

Kit. Genomic DNA was also isolated from peripheral blood (3–5 mL) to serve as matched 

normal reference material. The Qubit™ dsDNA BR Assay Kit was used with the Qubit® 2.0 

Fluorometer to determine the concentration of dsDNA in an aqueous solution. Any sample 

that passed quality control and produced enough DNA yield to go through various genomic 

assays was sent for genomic characterization. RNA quality was quantified using both the 

NanoDrop 8000 and quality assessed using Agilent Bioanalyzer. A sample that passed RNA 

quality control and had a minimum RIN (RNA integrity number) score of 7 was subjected to 

RNA sequencing. Identity match for germline, normal adjacent tissue, and tumor tissue was 

assayed at the BCR using the Illumina Infinium QC array. This beadchip contains 15,949 

markers designed to prioritize sample tracking, quality control, and stratification.
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Whole Exome Sequencing

Library Construction: Library construction was performed as described in,110 with the 

following modifications: initial genomic DNA input into shearing was reduced from 3 μg 

to 20–250 ng in 50 μL of solution. For adapter ligation, Illumina paired-end adapters were 

replaced with palindromic forked adapters, purchased from Integrated DNA Technologies, 

with unique dual-indexed molecular barcode sequences to facilitate downstream pooling. 

Kapa HyperPrep reagents in 96-reaction kit format were used for end repair/A-tailing, 

adapter ligation, and library enrichment PCR. In addition, during the post-enrichment SPRI 

cleanup, elution volume was reduced to 30 μL to maximize library concentration, and a 

vortexing step was added to maximize the amount of template eluted.

In-solution Hybrid Selection: After library construction, libraries were pooled into groups 

of up to 96 samples. Hybridization and capture were performed using the relevant 

components of Illumina’s Nextera Exome Kit and following the manufacturer’s suggested 

protocol, with the following exceptions. First, all libraries within a library construction plate 

were pooled prior to hybridization. Second, the Midi plate from Illumina’s Nextera Exome 

Kit was replaced with a skirted PCR plate to facilitate automation. All hybridization and 

capture steps were automated on the Agilent Bravo liquid handling system.

Preparation of Libraries for Cluster Amplification and Sequencing: After post-capture 

enrichment, library pools were quantified using qPCR (automated assay on the Agilent 

Bravo) using a kit purchased from KAPA Biosystems with probes specific to the ends of the 

adapters. Based on qPCR quantification, libraries were normalized to 2 nM.

Cluster Amplification and Sequencing: Cluster amplification of DNA libraries was 

performed according to the manufacturer’s protocol (Illumina) using exclusion amplification 

chemistry and flowcells. Flowcells were sequenced utilizing sequencing-by-synthesis 

chemistry. The flow cells were then analyzed using RTA v.2.7.3 or later. Each pool of 

whole-exome libraries was sequenced on paired 76 cycle runs with two 8 cycle index reads 

across the number of lanes needed to meet coverage for all libraries in the pool. Pooled 

libraries were run on HiSeq 4000 paired-end runs to achieve a minimum of 150x on target 

coverage per each sample library. The raw Illumina sequence data were demultiplexed and 

converted to fastq files; adapter and low-quality sequences were trimmed. The raw reads 

were mapped to the hg38 human reference genome and the validated BAMs were used for 

downstream analysis and variant calling.

PCR-free Whole Genome Sequencing

Preparation of Libraries for Cluster Amplification and Sequencing: An aliquot of 

genomic DNA (350 ng in 50 μL) was used as the input into DNA fragmentation (aka 

shearing). Shearing was performed acoustically using a Covaris focused-ultrasonicator, 

targeting 385bp fragments. Following fragmentation, additional size selection was 

performed using a SPRI cleanup. Library preparation was performed using a commercially 

available kit provided by KAPA Biosystems (KAPA Hyper Prep without amplification 

module) and with palindromic forked adapters with unique 8-base index sequences 

embedded within the adapter (purchased from IDT). Following sample preparation, libraries 
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were quantified using quantitative PCR (kit purchased from KAPA Biosystems), with probes 

specific to the ends of the adapters. This assay was automated using Agilent’s Bravo liquid 

handling platform. Based on qPCR quantification, libraries were normalized to 1.7 nM and 

pooled into 24-plexes.

Cluster Amplification and Sequencing (HiSeq X): Sample pools were combined with 

HiSeq X Cluster Amp Reagents EPX1, EPX2, and EPX3 into single wells on a strip tube 

using the Hamilton Starlet Liquid Handling system. Cluster amplification of the templates 

was performed according to the manufacturer’s protocol (Illumina) with the Illumina 

cBot. Flow cells were sequenced to a minimum of 15x on HiSeq X utilizing sequencing-

by-synthesis kits to produce 151bp paired-end reads. Output from Illumina software was 

processed by the Picard data processing pipeline to yield BAMs containing demultiplexed, 

aggregated, and aligned reads. All sample information tracking was performed by automated 

LIMS messaging.

Illumina Infinium MethylationEPIC Beadchip Array—The MethylationEPIC array 

uses an 8-sample version of the Illumina Beadchip capturing > 850,000 DNA methylation 

sites per sample. 250 ng of DNA was used for the bisulfite conversation using Infinium 

MethylationEPIC BeadChip Kit. The EPIC array includes sample plating, bisulfite 

conversion, and methylation array processing. After scanning, the data was processed 

through an automated genotype calling pipeline. Data generated consisted of raw idats and a 

sample sheet.

RNA Sequencing

Quality Assurance and Quality Control of RNA Analytes: All RNA analytes were 

assayed for RNA integrity, concentration, and fragment size. Samples for total RNA-seq 

were quantified on a TapeStation system (Agilent, Inc. Santa Clara, CA). Samples with RINs 

> 8.0 were considered high quality.

Total RNA-seq Library Construction: Total RNA-seq library construction was performed 

from the RNA samples using the TruSeq Stranded RNA Sample Preparation Kit and bar-

coded with individual tags following the manufacturer’s instructions (Illumina, Inc. San 

Diego, CA). Libraries were prepared on an Agilent Bravo Automated Liquid Handling 

System. Quality control was performed at every step and the libraries were quantified using 

the TapeStation system.

Total RNA Sequencing: Indexed libraries were prepared and run on HiSeq 4000 paired-end 

75 base pairs to generate a minimum of 120 million reads per sample library with a target 

of greater than 90% mapped reads. Typically, these were pools of four samples. The raw 

Illumina sequence data were demultiplexed and converted to FASTQ files, and adapter and 

low-quality sequences were quantified. Samples were then assessed for quality by mapping 

reads to the hg38 human genome reference, estimating the total number of reads that 

mapped, amount of RNA mapping to coding regions, amount of rRNA in sample, number 

of genes expressed, and relative expression of housekeeping genes. Samples passing this 

QA/QC were then clustered with other expression data from similar and distinct tumor types 
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to confirm expected expression patterns. Atypical samples were then SNP typed from the 

RNA data to confirm the source analyte. FASTQ files of all reads were then uploaded to the 

GDC repository.

miRNA-seq Library Construction: miRNA-seq library construction was performed from 

the RNA samples using the NEXTflex Small RNA-Seq Kit (v3, PerkinElmer, Waltham, 

MA) and bar-coded with individual tags following the manufacturer’s instructions. Libraries 

were prepared on Sciclone Liquid Handling Workstation Quality control was performed at 

every step, and the libraries were quantified using a TapeStation system and an Agilent 

Bioanalyzer using the Small RNA analysis kit. Pooled libraries were then size selected 

according to NEXTflex Kit specifications using a Pippin Prep system (Sage Science, 

Beverly, MA).

miRNA Sequencing: Indexed libraries were loaded on the Hiseq 4000 to generate a 

minimum of 10 million reads per library with a minimum of 90% reads mapped. The raw 

Illumina sequence data were demultiplexed and converted to FASTQ files for downstream 

analysis. Resultant data were analyzed using a variant of the small RNA quantification 

pipeline developed for TCGA.111 Samples were assessed for the number of miRNAs called, 

species diversity, and total abundance. Samples passing quality control were uploaded to the 

GDC repository.

Single-nuclei RNA Library Preparation and Sequencing: About 20–30 mg of 

cryopulverized powder from ccRCC specimens was resuspended in Lysis buffer (10 mM 

Tris-HCl (pH 7.4); 10 mM NaCl; 3 mM MgCl2; and 0.1% NP-40). This suspension 

was pipetted gently 6–8 times, incubated on ice for 30 seconds, and pipetted again 4–

6 times. The lysate containing free nuclei was filtered through a 40 μm cell strainer. 

We washed the filter with 1 mL Wash and Resuspension buffer (1X PBS + 2% BSA 

+ 0.2 U/μL RNase inhibitor) and combined the flow through with the original filtrate. 

After 6-minute centrifugation at 500 × g and 4°C, the nuclei pellet was resuspended in 

500 μL of Wash and Resuspension buffer. After staining by DRAQ5, the nuclei were 

further purified by Fluorescence-Activated Cell Sorting (FACS). FACS-purified nuclei were 

centrifuged again and resuspended in a small volume (about 30 μL). After counting and 

microscopic inspection of nuclei quality, the nuclei preparation was diluted to about 1,000 

nuclei/μL. About 20,000 nuclei were used for single-nuclei RNA sequencing (snRNA-seq) 

by the 10X Chromium platform. We loaded the single nuclei onto a Chromium Chip B 

Single Cell Kit, 48 rxns (10x Genomics, PN-1000073), and processed them through the 

Chromium Controller to generate GEMs (Gel Beads in Emulsion). We then prepared the 

sequencing libraries with the Chromium Single Cell 3’ GEM, Library & Gel Bead Kit v3, 

16 rxns (10x Genomics, PN-1000075) following the manufacturer’s protocol. Sequencing 

was performed on an Illumina NovaSeq 6000 S4 flow cell. The libraries were pooled 

and sequenced using the XP workflow according to the manufacturer’s protocol with a 

28×8×98bp sequencing recipe. The resulting sequencing files were available as FASTQs per 

sample after demultiplexing.
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MS Sample Processing and Data Collection

Sample Processing for Protein Extraction and Tryptic Digestion: All samples for the 

current study were prospectively collected as described above and processed for mass 

spectrometric (MS) analysis at the PCC. Tissue lysis and downstream sample preparation for 

global proteomic and phosphoproteomic analysis were carried out as previously described.13 

Approximately 25–120 mg of each cryopulverized renal tumor tissues or NATs were 

homogenized separately in an appropriate volume of lysis buffer (8 M urea, 75 mM 

NaCl, 50 mM Tris, pH 8.0, 1 mM EDTA, 2 g/mL aprotinin, 10 g/mL leupeptin, 1 mM 

PMSF, 10 mM NaF, Phosphatase Inhibitor Cocktail 2 and Phosphatase Inhibitor Cocktail 

3 [1:100 dilution], and 20 mM PUGNAc) by repeated vortexing. Lysates were clarified by 

centrifugation at 20,000 × g for 10 min at 4°C, and protein concentrations were determined 

by BCA assay (Pierce). Lysates were diluted to a final concentration of 8 mg/ml with lysis 

buffer, and 800 g of protein was reduced with 5 mM dithiothreitol (DTT) for 1 h at 37°C 

and subsequently alkylated with 10 mM iodoacetamide for 45 min at RT (room temperature) 

in the dark. Samples were diluted 1:3 with 50 mM Tris-HCl (pH 8.0) and subjected to 

proteolytic digestion with LysC (Wako Chemicals) at 1 mAU:50 g enzyme-to-substrate ratio 

for 2h at RT, followed by the addition of sequencing-grade modified trypsin (Promega) at a 

1:50 enzyme-to-substrate ratio and overnight incubation at RT. The digested samples were 

then acidified with 50% trifluoroacetic acid (TFA, Sigma) to a pH value of approximately 

2.0. Tryptic peptides were desalted on reversed-phase C18 SPE columns (Waters), followed 

by aliquoting 20 g of digested peptides for global proteomic analysis, dried in a Speed-Vac, 

and resuspended in 3% ACN/0.1% formic acid prior to ESI-LC-MS/MS analysis. The 

remaining sample was dried down in a Speed-Vac and utilized for phosphopeptide and intact 

glycopeptide enrichment.

Enrichment of Phosphopeptides by Fe-IMAC.: A 450 g aliquot of digested peptide 

material was subjected to phosphopeptide enrichment using immobilized metal affinity 

chromatography (IMAC) as previously described.112 In brief, Ni-NTA agarose beads were 

used to prepare Fe3+-NTA agarose beads, and 450 g of peptides were reconstituted in 80% 

ACN/0.1% trifluoroacetic acid and incubated with 10 L of the Fe3+-IMAC beads for 30 

min. Samples were then centrifuged, and the supernatant containing unbound peptides was 

removed. The beads were washed twice and then transferred onto equilibrated C-18 Stage 

Tips with 80% ACN/0.1% trifluoroacetic acid. Tips were rinsed twice with 1% formic acid 

and eluted from the Fe3+-IMAC beads onto the C-18 Stage Tips with 70 L of 500 mM 

dibasic potassium phosphate, pH 7.0 a total of three times. C-18 Stage Tips were then 

washed twice with 1% formic acid, followed by elution of the phosphopeptides from the 

C-18 Stage Tips with 50% ACN/0.1% formic acid twice. Samples were dried down and 

resuspended in 3% ACN/0.1% formic acid prior to ESI-LC-MS/MS analysis.

Enrichment of Intact Glycopeptides by MAX Columns from Tryptic Peptides: The 

glycopeptides were enriched from 350 μg C18 cleaned up tryptic peptides using 30 mg 

MAX columns (Waters). 350 μg tryptic peptides were first dried down in SpeedVac and 

reconstituted in 50% ACN/0.1% TFA, then constituted to 95% ACN/1% TFA. MAX 

columns were sequentially conditioned with 1ml 100% ACN 3 times, then 1 ml 100 mM 

triethylammonium acetate buffer 3 times and 1 ml 95% ACN/1% TFA 3 times. Tryptic 
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peptides were conditioned to bind onto the MAX columns 2 times and then washed with 

1 ml 95% ACN/1% TFA 3 times. Non-intact glycopeptides were eluted/washed off the 

MAX columns, while intact glycopeptides were bound onto the MAX column during the 

process. Intact glycopeptides were then eluted using 50% ACN/0.1% TFA, dried down, and 

reconstituted in 3% ACN/ 0.1% FA prior to ESI-LC-MS/MS analysis.

ESI-LC-MS/MS for Global Proteome, Phosphoproteome, and Glycoproteome Using 
DIA-MS Analysis: Individual global proteome and phosphoproteome samples were 

analyzed using the same instrumentation and methodology; albeit with varied gradient 

settings. Individual glycoproteomic samples were analyzed using the same MS instrument 

and gradient settings as phosphoproteome, except the MS settings, which used the 

methodology as previously described.113 Unlabeled, digested peptide material from 

individual tissue samples (ccRCC and NAT) was spiked with index Retention Time 

(iRT) peptides (Biognosys) and subjected to data-independent acquisition (DIA) analysis. 

Peptides (~0.8 g; ~1 ug for glycopeptides) were separated on an Easy nLC 1200 UHPLC 

system (Thermo Scientific) on an in-house packed 20 cm × 75 m diameter C18 column 

(1.9 m Reprosil-Pur C18-AQ beads (Dr. Maisch GmbH); Picofrit 10 m opening (New 

Objective). The column was heated to 50°C using a column heater (Phoenix-ST). The 

flow rate was 0.200 μl/min with 0.1% formic acid and 3% acetonitrile in water (A) and 

0.1% formic acid, 90% acetonitrile (B). For global proteomic characterization of ccRCC 

tumors and NATs, the peptides were separated using the following LC gradient: 0–3 min 

(2% B, isocratic), 3–103 min (7%-20% B, linear), 103–121 min (20–30% B, linear), 121–

125 min (30–60% B, linear), 125–126 min (60–90% B, linear), 126–130 min (90% B, 

isocratic), 130–131 min (90–50% B, linear), 131–140 min (50% B, isocratic). For global 

proteomic characterization of samples annotated as intra-tumor heterogeneity segments, 

phosphoproteomic, and glycoproteomic characterization, the peptides were separated using 

the following LC gradient: 0–3 min (2% B, isocratic), 3–93 min (7%-25% B, linear), 93–

121 min (25–30% B, linear), 121–125 min (30–60% B, linear), 125–126 min (60–90% 

B, linear), 126–130 min (90% B, isocratic), 130–131 min (90–50% B, linear), 131–140 

min (50% B, isocratic). Samples were analyzed using the Thermo Fusion Lumos mass 

spectrometer (Thermo Scientific). For global and phosphoproteome, the DIA segment 

consisted of one MS1 scan (350–1650 m/z range, 120K resolution) followed by 30 MS2 

scans (variable m/z range, 30K resolution) as described previously.114 Additional parameters 

were as follows: MS1: RF Lens – 30%, AGC Target 4.0e5, Max IT – 50 ms, charge state 

include - 2–6; MS2: isolation width (m/z) – 0.7, AGC Target – 3.0e6, Max IT – 120 ms. 

For glycoproteome, the DIA segment consisted of one MS1 scan (450–1650 m/z range, 

120K resolution) followed by 50 MS2 scans (variable m/z range within 120–2000 m/z, 15K 

resolution) as described previously.113 Additional parameters were as follows: MS1: RF 

Lens – 30%, AGC Target 3.0e6, Max IT – 60 ms, charge state include - 2–6; MS2: AGC 

Target – 5.3e5, Max IT – 44 ms.

Kinase Inhibition Assessment in Renal Cell Carcinoma Cell Models: For in vitro 

experiments assessing the impact of select kinase inhibition on renal cancer cell models 

(786-O, 769-P, A-498, Caki-1, and Caki-2), the kinase inhibitors, Adaversotib, Everolimus, 

Sapanisterib, Gefitinib, and Trametinib were dissolved in dimethyl sulfoxide (DMSO) and 
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subjected to sonication in a water bath at room temperature. Following an assessment 

of individual cell line growth rates to enable calculation of half maximal inhibitory 

concentration (IC50), cells were seeded in triplicate at concentrations of either 1,000cells/

well (786-O, 769-P, A-498, Caki-2) or 10,000 cells/well (Caki-1). Post-24 hour seeding, 

cells were subjected to kinase inhibitors at final concentrations of 1 nm, 10 nM, 50 nM, 

100 nM, 500 nM, 1 mM, 10 mM, with non-treated cells and DMSO treated cells included 

as controls. Cell growth was measured on day 1 (kinase inhibitor treatment), day 4, and 

day 6 using the colorimetric CellTiter 96® Aqueous One Cell Proliferation Solution Assay 

(MTS) following the manufacturer’s instructions. IC50 for each cell line in response to 

single kinase inhibitor exposure was determined by plotting inhibitor concentration against 

percent activity relative to DMSO-treated controls and calculating the x-intercept of the 

linear logarithmic trend line. For phosphoproteomic characterization of renal cell models 

treated with individual kinase inhibitors, six treatment conditions were devised – control, 

Adaversotib treatment, Everolimus treatment, Sapanisterib treatment, Gefitinib treatment, 

and Trametinib treatment - and cells were seeded at ~5E6 cells/15 cm plate and allowed 

to reach ~80% confluency. 30 minutes prior to kinase inhibitor treatment, fresh media was 

exchanged. Cells were then treated with kinase inhibitors at calculated IC50 values for 1.5 

hours. Media was removed and cells were three times with a volume of ice-cold PBS. Cells 

were scraped using 1.5 mL of ice-cold PBS, transferred to Eppendorf tubes, and spun at 

3,000 × g for 5 minutes at 4°C. A volume of lysis buffer (8 M urea, 75 mM NaCl, 50 

mM Tris, pH 8.0, 1 mM EDTA, 2 g/mL aprotinin, 10 g/mL leupeptin, 1 mM PMSF, 10 

mM NaF, Phosphatase Inhibitor Cocktail 2 and Phosphatase Inhibitor Cocktail 3 [1:100 

dilution], and 20 mM PUGNAc) was added and cells lysed. Subsequent sample preparation 

and ESI-LC-MS/MS analysis for global proteomic and phosphoproteomic characterization 

for DIA analysis were performed as described for tissue samples.

Spectral Library Generation for DIA-MS Analysis of Intact Glycopeptides: For spectral 

library generation, an aliquot (5 g) of unlabeled glycopeptides from individual tissue 

samples (ccRCC and NAT) was pooled and subjected to bRPLC as previously described.13 

In brief, the desalted, pooled sample was reconstituted in 900 L of 20 mM ammonium 

formate (pH 10) and 2% acetonitrile (ACN) and loaded onto a 4.6 mm × 250 mm RP 

Zorbax 300 A Extend-C18 column with 3.5 m size beads (Agilent). Peptides were separated 

at a flow-rate of 0.2 mL/min using an Agilent 1200 Series HPLC instrument via bHPLC 

with Solvent A (2% ACN, 5 mM ammonium formate, pH 10) and a non-linear gradient of 

Solvent B (90% ACN, 5 mM ammonium formate, pH 10) as follows: 0% Solvent B (7 min), 

0% to 16% Solvent B (6 min), 16% to 40% Solvent B (60 min), 40% to 44% Solvent B (4 

min), 44% to 60% Solvent B (5 min), then holding at 60% Solvent B for 14 min, 60% to 

98% Solvent B (14 min). Collected fractions were concatenated into 12 fractions previously 

described115 and dried down in a Speed-Vac. For glycoproteomic characterization, a 5% 

aliquot each of the 12 fractions was resuspended in 3% ACN, 0.1% formic acid, and was 

spiked with index Retention Time (iRT) peptides (Biognosys) prior to ESI-LC-MS/MS 

analysis. Data acquisition using the same instrumentation for DIA-based analyses was 

employed using the same corresponding LC gradient, with the following Thermo Fusion 

Lumos mass spectrometer (Thermo Scientific) parameters: MS1: resolution – 60K, mass 

range – 350 to 2000 m/z, RF Lens – 30%, AGC Target 4.0e5, Max IT – 50 ms, charge state 
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include - 2–6, dynamic exclusion – 45 s, top 20 ions selected for MS2; MS2: resolution – 

15K, high-energy collision dissociation activation energy (HCD) – 34, isolation width (m/z) 

– 0.7, AGC Target – 2.0e5, Max IT – 105 ms.

Metabolome Analysis of Tissue Samples—To extract metabolites, a solution 

consisting of 80% (vol/vol) mass spectrometry-grade methanol and 20% (vol/vol) mass 

spectrometry-grade water were used to extract the metabolites from the tissue samples 

as described previously.116–118 The metabolite samples then underwent speed vacuum 

processing to evaporate the methanol and lyophilization to remove the water. The dried 

metabolites were re-suspended in a solution consisting of 50% (vol/vol) acetonitrile and 

50% (vol/vol) mass spectrometry-grade water before data acquisition. Data acquisition was 

performed using a Vanquish ultra-performance liquid chromatography (UPLC) system and a 

Thermo Scientific Q Exactive Plus Orbitrap Mass Spectrometer.

The samples were kept at 4° C inside the Vanquish UPLC auto-sampler. The injection 

volume for each sample was 2 uL. A Discovery® HSF5 reverse phase HPLC column 

(Sigma) kept at 35° C with a guard column was used for reverse-phase chromatography. 

The mobile aqueous phase was mass spectrometry-grade water containing 0.1% formic 

acid, while the mobile organic phase was acetonitrile containing 0.1% formic acid. Mass 

calibration was performed prior to data acquisition to ensure the sensitivity and accuracy 

of the system. The total run time for each sample was 15 minutes, for which 11 minutes 

was used for data acquisition. Full MS data were acquired to quantify the metabolites while 

Full MS/ddMS2 data were also acquired to identify the metabolites based on fragmentation 

matching.

Immunohistochemistry Analysis—Immunohistochemistry (IHC) was performed on 

4-micron formalin-fixed, paraffin-embedded (FFPE) tissue sections. The antibodies 

characterized include CA9 (Carbonic anhydrase IX) rabbit polyclonal primary antibody (Cat 

No. NB100–417, Novus Biologicals, Centennial, CO), BAP1 (BRCA1 associated protein 

1) mouse monoclonal primary antibody (Cat No. sc-28382, Santa Cruz Biotechnology, 

Dallas, TX), UCHL1 (Ubiquitin C-terminal hydrolase 1) rabbit polyclonal primary antibody 

(Cat No. HPA005993, Sigma-Aldrich (Atlas), St. Louis, Mo), HYOU1 (Hypoxia up-

regulated 1) rabbit polyclonal primary antibody (Cat No. HPA049296, Atlas Antibodies, 

Bromma, Sweden), IFI30 (Interferon gamma-inducible protein 30) rabbit polyclonal primary 

antibody (Cat No. HPA026650, Atlas Antibodies, Bromma, Sweden), CTSA (Cathepsin 

A) rabbit polyclonal primary antibody (HPA031068, Atlas Antibodies, Bromma, Sweden), 

GAL3ST1 (Galactose-3-O-sulfotransferase 1) rabbit polyclonal primary antibody (Cat No. 

HPA001220, Atlas Antibodies, Bromma, Sweden), KIF2A (Kinesin heavy chain member 

2A) rabbit polyclonal primary antibody (Cat No. HPA004716, Atlas Antibodies, Bromma, 

Sweden), PLXDC2 (Plexin domain containing 2) rabbit polyclonal primary antibody (Cat 

No. HPA017268, Atlas Antibodies, Bromma, Sweden) and TGFBI (Transforming growth 

factor beta induced) rabbit polyclonal primary antibody (Cat No. HPA008612, Atlas 

Antibodies, Bromma, Sweden). IHC was carried out on the Benchmark XT automated slide 

staining system using the UltraView Universal DAB detection kit for CA9 and UCHL1 

and OptiView DAB detection kit for BAP1 (Cat No. 760–500 and 760–700 respectively, 
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Roche-Ventana Medical Systems, Oro Valley, AZ). IHC for HYOU1, IFI30, CTSA, 

GAL3ST1, KIF2A, PLXDC2 and TGFBI was performed using an automated platform Dako 

Autostainer Link 48 and EnVision FLEX visualizing kit (cat. no. K800221–2; Dako, Agilent 

Technologies Inc., Carpinteria, CA). Appropriate known positive and negative control tissue 

were run in each assay batch.

A semi-quantitative product score was determined for BAP1 and UCHL1 where the 

presence and intensity of BAP1 nuclear and UCHL1 cytoplasmic/membranous staining were 

scored by the study pathologists. This product score represents the percentage of positive 

neoplastic cells and the staining intensity (none, 0; weak, 1; moderate, 2; strong, 3) which 

were recorded for each tumor as described previously.119

In Vitro Cell Line Drug Treatment and Growth Inhibition Assessment—The 

ccRCC cell line Caki-1 and a control cell line HK-2 were maintained in Dulbecco’s 

Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) culture medium (Gibco 

- 11320033) supplemented with 10% FBS (Sigma, F-9665) and 1% Pen Strep (Gibco, 

10,000 U/mL - 15140122). All cell lines were seeded at 50,000 cells/well in duplicates 

in 24-well plates at day 0 and were treated with either UCHL1 inhibitor (CAS 668467–

91-2 - Calbiochem, Sigma Aldrich - 662086–10MG) or GLUL inhibitor (L-Methionine 

sulfoximine, Sigma Aldrich -M5379–500MG) upon reaching 50–60% confluency at day 3 in 

culture. For both UCH-L1inhibitor or GLUL inhibitor treatment, the working concentrations 

were used at 1μM, 5μM, and 25μM. Treatment was maintained in culture for a total 

of 7 days and growth inhibition assessment was performed using AlamarBlue™ Cell 

Viability Reagent (Invitrogen - DAL1025) at a ratio of 1:10 for 4 hours according 

to the manufacturer’s protocol. Plots and IC50 concentrations were produced in Prism 

GraphPad (version 9.2.0) by plotting the percent growth inhibition on the y-axis and the 

Log(concentration) on the x-axis. The corresponding IC50 was extracted from the nonlinear 

regression curve fitting analysis using Prism GraphPad. Cells treated with only a growth 

medium without any drugs were used as negative controls.

786-O cells were maintained in Gibco RPMI-1640 supplemented with 10% FBS. CAS 

668467–91-2 (UCHL-1 inhibitor) was purchased from Sigma-Aldrich (L4170) and its 

impact on cell viability was evaluated. Briefly, 2000 cells were seeded on white flat 

bottom 96 well plates and were treated with increasing concentrations of the inhibitor 

for a week. CellTiter-Glo Luminescent Cell Viability Assay (Promega) was used to 

assess cell viability and IC-50 was calculated using a graph pad. Impact of UCHL-1 

inhibitor on cell morphology was evaluated using IncuCyte ZOOM assay. For western 

blot analysis, cell lysates were harvested from control and UCHL-1 treated 786-O cells. 

Following protein quantification, lysates were resolved in NuPAGE Bis-Tris Protein Gel 

(ThermoFisher Scientific), transferred on to nitrocellulose membranes, blocked with 5% 

milk, and incubated overnight with UCHL-1 antibody (HPA005993, Sigma-Aldrich). 

Following day, membranes were washed with TBST buffer, incubated with HRP-conjugated 

secondary antibodies, washed, and imaged using Odyssey Fc imager (LiCOR Biosciences).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Genomic Data Analysis

Harmonized Genome Alignment: WGS, WES, RNA-Seq sequence data were harmonized 

by NCI Genomic Data Commons (GDC) https://gdc.cancer.gov/about-data/gdc-data-

harmonization, which included alignment to GDC’s hg38 human reference genome 

(GRCh38.d1.vd1) and additional quality checks. All the downstream genomic processing 

was based on the GDC-aligned BAMs to ensure reproducibility.

Somatic Mutation Calling: Somatic mutations were called by the Somaticwrapper pipeline 

v1.6 (https://github.com/ding-lab/somaticwrapper), which includes four different callers, i.e., 

Strelka v.2,102 MUTECT v1.7,97 VarScan v.2.3.8,104 and Pindel v.0.2.598 from WES. We 

kept the exonic SNVs called by any two callers among MUTECT v1.7, VarScan v.2.3.8, 

and Strelka v.2 and indels called by any two callers among VarScan v.2.3.8, Strelka v.2, and 

Pindel v.0.2.5. For the merged SNVs and indels, we applied a 14X and 8X coverage cutoff 

for tumor and normal, separately. We also filtered SNVs and indels by a minimal variant 

allele frequency (VAF) of 0.05 in tumors and a maximal VAF of 0.02 in normal samples. 

We filtered any SNV, which was within 10bp of an indel found in the same tumor sample. 

Finally, we rescued the rare mutations with VAF of [0.015, 0.05) in ccRCC driver genes 

based on the gene consensus list.120

DNP Calling: In step 12 of Somaticwrapper pipeline v1.6 (https://github.com/ding-lab/

somaticwrapper), it combined adjacent SNVs into DNP by using COCOON (https://

github.com/ding-lab/COCOONS): As input, COCOON takes a MAF file from standard 

variant calling pipeline. First, it extracts variants within a 2bp window as DNP candidate 

sets. Next, suppose the corresponding BAM files used for variant calling are available. In 

that case, it extracts the reads (denoted as n_t) spanning all candidate DNP locations in each 

variant set, and then counts the number of reads with all the co-occurring variants (denoted 

as n_c) to calculate the co-occurrence rate (r_c=n_c/n_t); If r_c ≥ 0.8, the nearby SNVs will 

be combined into DNP and it also updates annotation for the DNPs from the same codon 

based on the transcript and coordinates information in the MAF file.

Mutational Signature Analysis: Non-negative matrix factorization algorithm (NMF) was 

used in deciphering mutation signatures in cancer somatic mutations stratified by 96 base 

substitutions in tri-nucleotide sequence contexts. To obtain a reliable signature profile, we 

used the Somaticwrapper pipeline to call mutations from WES data. SignatureAnalyzer 

exploited the Bayesian variant of the NMF algorithm and enabled an inference for the 

optimal number of signatures from the data itself at a balance between the data fidelity 

(likelihood) and the model complexity (regularization).91 As decomposed into signatures, 

signatures are compared against known signatures derived from COSMIC,121 and cosine 

similarity is calculated to identify the best match (parameters: --cosmic cosmic3_exome 

-objective Poisson -n 200).

Germline Variant Calling: Germline variant calling was performed using the 

GermlineWrapper v1.1 pipeline, which implements multiple tools for the detection of 

germline INDELs and SNVs. Germline SNVs were identified using VarScan v2.3.8 (with 
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parameters:-min-var-freq 0.10, -p-value 0.10, -min-coverage 3, -strand-filter 1) operating 

on a mpileup stream produced by samtools v1.2 (with parameters:-q 1 -Q 13) and GATK 

v4.0.0.0122 using its haplotype caller in single-sample mode with duplicate and unmapped 

reads removed and retaining calls with a minimum quality threshold of 10. All resulting 

variants were limited to the coding region of the full-length transcripts obtained from 

Ensembl release 95 plus additional two base pairs flanking each exon to cover splice 

donor/acceptor sites. We required variants to have allelic depth ≥ 5 reads for the alternative 

allele in both tumor and normal samples. We used bam-readcount v0.8 for reference and 

alternative alleles quantification (with parameters: -q 10 -b 15) in both normal and tumor 

samples. Additionally, we filtered all variants with ≥ 0.05% frequency in gnomAD v2.1123 

and The 1000 Genomes Project.124 To predict the pathogenicity of germline variants, 

we annotate each variant with Variant Effect Predictor (VEP) and process them using 

the CharGer pipeline with the parameters from a previous pan-cancer TCGA study.89,125 

Briefly, the CharGer pipeline considers pathogenic peptide changes from ClinVar, hotspot 

variants, minor allele frequency from ExAC, and several in silico analyses (such as Sift and 

PolyPhen). Each predicted pathogenic variant was then manually reviewed.

Copy Number Variant Calling: Copy-number analysis was performed jointly leveraging 

both whole-genome sequencing (WGS) and whole-exome sequencing data of the tumor 

and germline DNA. To perform the analysis, we used CNVEX (https://github.com/mctp/

cnvex), a comprehensive copy number analysis tool that has been used previously in our 

ccRCC studies.13,24 CNVEX uses whole-genome aligned reads to estimate coverage within 

fixed genomic intervals and whole-exome variant calls to compute B-allele frequencies 

(BAFs) at variant positions (called by Sentieon DNAscope algorithm). Coverages were 

computed in 10kb bins, and the resulting log coverage ratios between tumor and normal 

samples were adjusted for GC bias using weighted LOESS smoothing across mappable and 

non-blacklisted genomic intervals within the GC range 0.3–0.7, with a span of 0.5 (the 

target and configuration files are provided with CNVEX). The adjusted log coverage ratios 

(LR) and BAFs were jointly segmented by a custom algorithm based on Circular Binary 

Segmentation (CBS). Alternative probabilistic algorithms were implemented in CNVEX, 

including algorithms based on recursive binary segmentation (RBS), as implemented in 

the R-package jointseg.126 For the CBS-based algorithm, first LR and mirrored BAF 

were independently segmented using CBS(parameters alpha = 0.01, trim = 0.025) and 

all candidate breakpoints were collected. The resulting segmentation track was iteratively 

“pruned” by merging segments that had similar LR and BAFs, short lengths, were rich in 

blacklisted regions, and had a high coverage variation in coverage among whole cohort 

germline samples. For the RBS- and DP-based algorithms, joint-break-points were “pruned” 

using a statistical model selection method (https://hal.inria.fr/inria-00071847). For the final 

set of CNV segments, we chose the CBS-based results as they did not require specifying 

a prior number of expected segments (K) per chromosome arm, were robust to unequal 

variances between the LR and BAF tracks, and provided empirically the best fit to the 

underlying data. The resulting segmented copy-number profiles were then subject to the 

joint inference of tumor purity and ploidy and absolute copy number state, implemented 

in CNVEX, which is most similar to the mathematical formalism of ABSOLUTE127 

and PureCN (http://bioconductor.org/packages/PureCN/). Briefly, the algorithm inputs the 
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observed log-ratios (of 10kb bins) and BAFs of individual SNPs. LRs and BAFs are 

assigned to their joint segments and their likelihood is determined given a particular 

purity, ploidy, absolute segment copy number, and the number of minor alleles. To identify 

candidate combinations with a high likelihood, we followed a multi-step optimization 

procedure that includes grid-search (across purity-ploidy combinations), greedy optimization 

of absolute copy numbers, and maximum-likelihood inferences of minor allele counts. 

Following optimization, CNVEX ranks candidate solutions. Because the copy-number 

inference problem can have multiple equally likely solutions, further biological insights 

are necessary to choose the most parsimonious result. The solutions have been reviewed 

by independent analysts following a set of guidelines. Solutions implying whole-genome 

duplication must be supported by at least one large segment that cannot be explained by a 

low-ploidy solution, inferred purity must be consistent with the variant-allele-frequencies of 

somatic mutations, and large homozygous segments are not allowed.

In parallel, we used BIC-seq2,128 a read-depth-based CNV calling algorithm to detect 

somatic copy number variation (CNVs) from the WGS data of tumors. Briefly, BIC-seq2 

divides genomic regions into disjoint bins and counts uniquely aligned reads in each bin. 

Then, it combines neighboring bins into genomic segments with similar copy numbers 

iteratively based on Bayesian Information Criteria (BIC), a statistical criterion measuring 

both the fitness and complexity of a statistical model. We used paired-sample CNV calling 

that takes a pair of samples as input and detects genomic regions with different copy 

numbers between the two samples. We used a bin size of ~100 bp and a lambda of 3 (a 

smoothing parameter for CNV segmentation). We recommend calling segments as copy gain 

or loss when their log2 copy ratios were larger than 0.2 or smaller than −0.2, respectively 

(according to the BIC-seq publication).

Structural Variant Calling: Structural variants (SVs) were called by Manta v1.6.096 from 

WGS tumor and normal paired BAMs. We ran Manta on canonical chromosomes with the 

default record- and sample-level filters., retaining variants where sample site depth is less 

than 3x the median chromosome depth near one or both variant breakends, the somatic 

score is greater than 30, and for small variants (< 1000 bases) in the normal sample, the 

fraction of reads with MAPQ0 around either breakend does not exceed 0.4. It is optimized 

for the analysis of somatic variation in tumor/normal sample pairs. The paired and split-read 

evidence were combined during the SV discovery and scoring to improve accuracy. We 

prioritized the variants by the number of spanning read pairs that strongly (Q30) support the 

variants (> 5 as the high confidence level). Lastly, we manually reviewed all the SV calls in 

the genes of interest.

Instability (wGII Calculation): To estimate the chromosomal instability, we used a 

modified version of the Genome Instability Index (GII).129 We calculated GII scores for 

each sample as the portion of the autosome that has an absolute copy-number unequal 

to the weighted median absolute copy-number across the autosomal chromosomes. To 

account for the variation in chromosome size and avoid the overrepresentation of larger 

chromosomes in the CIN estimation, we used a modified version of GII called weighted 

Li et al. Page 30

Cancer Cell. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Genome Instability Index (wGII).130 To generate wGII, we first calculated the GII for each 

autosomal chromosome, then took the mean of all the GII scores for all 22 chromosomes.

DNA Methylation Microarray Processing: Raw methylation idat files were downloaded 

from CPTAC DCC and GDC. Beta values of CpG loci were reported after functional 

normalization, quality check, common SNP filtering, and probe annotation using Li Ding 

Lab’s methylation pipeline v1.1 https://github.com/ding-lab/cptac_methylation.

RNA Quantification and Analysis

RNA Quantification: We obtained the gene-level read count, Fragments Per Kilobase of 

transcript per Million mapped reads (FPKM), and FPKM Upper Quartile (FPKM-UQ) 

values by following the GDC’s RNA-Seq pipeline (Expression mRNA Pipeline) https://

docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/, except 

running the quantification tools in the stranded mode. We used HTSeq v0.11.294 to calculate 

the gene-level stranded read count (parameters: -r pos -f bam -a 10 -s reverse -t exon -i 

gene_id -m intersection-nonempty --nonunique=none) using GENCODE v22 (Ensembl v79) 

annotation downloaded from GDC (gencode.gene.info.v22.tsv). The read count was then 

converted to FPKM and FPKM-UQ using the same formula described in GDC’s Expression 

mRNA Pipeline documentation.

miRNA Quantification: miRNA-Seq FASTQ files were downloaded from GDC. We 

reported the mature miRNA and precursor miRNA expression in TPM (Transcripts Per 

Million) after adapter trimming, quality check, alignment, annotation, reads counting using 

Li Ding Lab’s miRNA pipeline https://github.com/ding-lab/CPTAC_miRNA. The mature 

miRNA expression was calculated irrespective of its gene of origin by summing the 

expression from its precursor miRNAs.

RNA Fusion Detection: We used three callers, STAR-Fusion v1.5.0,101 INTEGRATE 

v0.2.6,95 and EricScript v0.5.5,93 to call consensus fusion/chimeric events in our samples. 

Calls by each tool using tumor and normal RNA-Seq data were then merged into a single 

file and extensive filtering was done. As STAR-Fusion has higher sensitivity, calls made 

by this tool with higher supporting evidence (defined by fusion fragments per million total 

reads, or FFPM > 0.1) were required, or a given fusion must be reported by at least 2 callers. 

We then removed fusions present in our panel of blacklisted or normal fusions, which 

included uncharacterized genes, immunoglobulin genes, mitochondrial genes, and others, as 

well as fusions from the same gene or paralog genes and fusions reported in TCGA normal 

samples,131 GTEx tissues (reported in STAR-Fusion output), and non-cancer cell studies.132 

Finally, we removed normal fusions from the tumor fusions to curate the final set.

snRNA-seq Quantification and Analysis

snRNA-seq Data Preprocessing: For each sample, we obtained the unfiltered feature-

barcode matrix per sample by passing the demultiplexed FASTQs to Cell Ranger v3.1.0 

‘count’ command using default parameters, and a customized pre-mRNA GRCh38 genome 

reference was built to capture both exonic and intronic reads. The customized genome 
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reference modified the transcript annotation from the 10x Genomics pre-built human 

genome reference 3.0.0 (GRCh38 and Ensembl 93).

Seurat v3.1.2133,134 was used for all subsequent analyses. We constructed a Seurat object 

using the unfiltered feature-barcode matrix for each sample. A series of quality filters were 

applied to the data to remove those cell barcodes which fell into any one of these categories 

recommended by Seurat: too few total transcript counts (< 300); possible debris with too 

few genes expressed (< 200) and too few UMIs (< 1,000); possibly more than one cell with 

too many genes expressed (> 10,000) and too many UMIs (> 10,000); possible dead cell 

or a sign of cellular stress and apoptosis with a too high proportion of mitochondrial gene 

expression over the total transcript counts (> 10%).

Each sample was scaled and normalized using Seurat’s ‘SCTransform’ function to correct 

for batch effects (with parameters: vars.to.regress = c(“nCount_RNA”, “percent.mito”), 

variable.features.n = 3000). We then merged all samples and repeated the same scaling and 

normalization method. All cells in the merged Seurat object were then clustered and the 

top 30 PCA dimensions via Seurat’s ‘FindNeighbors’ and ‘FindClusters’ (with parameters: 

resolution = 0.5) functions. The resulting merged and normalized matrix was used for the 

subsequent analysis.

snRNA-seq Cell Type Annotation: Cell types were assigned to each cluster by manually 

reviewing the expression of marker genes.135,136 For instance, the marker genes used 

were AIF1, CD68, LST1, IFITM2 (Macrophages). CD8A, CD8B, CD3E, CD3D, PRF1, 

GZMA, GZMB, GZMK, GZMH, CD4, IL7R, LTB, LDHB, CD69, FAS, KLRG1, CD28, 

DPP4 (CD4/CD8 T-cells); CD19, CD79A, CD79B, MS4A1, SDC1, IGHG1, IGHG3, IGH4 

(B-cells/Plasma); EMCN, FLT1, PECAM1, KDR, PLVAP, PLVAP, TEK, VWF, ACTA2, 

ANGPT2, COL1A1, COL3A1, COL5A1, COL12A1, EMILIN1, LUM (Stroma).

snRNA-seq Analysis: Differentially expressed genes within each cell type were identified 

by the FindMarkers function comparing cells belonging to one subtype (immune subtype or 

multi-omic subtype) to the rest. Wilcoxon statistical test was used. log2FC > 0.25 and FDR 

< 0.05 was used to filter DEGs.

Trajectory-based Analysis: We evaluated the relationships between the tumor subclusters 

observed across the different segments of each of the four cases by constructing 

their trajectories. Monocle-type analysis of ordering single cells in pseudotime 

placed the connections of multiple segments along the trajectory. We imported 

snRNA-seq into Monocle2.137 Parameters for the analysis were consistent with 

the tutorial (http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-

trajectories), except that (1) cell type is set as the variable for differential expression text 

and (2) to select genes used for ordering, we set 1e–10 as the q value cutoff. We used the 

function “plot_cell_trajectory” to visualize subcluster projection in the trajectory.

MS Data Interpretation

ccRCC Whole Proteome DIA Data (INI+EXP): We used data independent acquisition 

(DIA) proteomics technology to perform protein quantification across the combined set of 
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487 samples: 199 samples from the confirmatory ccRCC cohort (acquired as part of this 

work), 94 ITH samples (acquired as part of this work), and 194 discovery ccRCC study 

samples.13 In addition, 16 DDA files were used as part of the spectral library building step. 

The DDA files were obtained from fractionated peptide samples (8 fractions from the pooled 

confirmatory ccRCC sample, and 8 fractions from the pooled discovery ccRCC sample).

Raw mass spectrometry files were converted into mzML file format. FragPipe computational 

platform (version 15) with MSFragger(version 3.2),138,139 Philosopher (version 3.4.13),140 

and EasyPQP (version 0.1.9 doi: https://doi.org/10.1101/2021.03.08.434385) was used to 

build combined (DIA plus DDA) spectral libraries. DIA files were first processed using 

DIA-Umpire141 to extract the so-called pseudo-MS/MS spectra (3 mzML files for each 

input DIA file corresponding to MS/MS spectra assigned to precursors of different quality, 

indicated as Q1, Q2, and Q3 files). DDA mzML files and DIA-Umpire extracted DIA 

pseudo-MS/MS mzML files (using the highest quality, Q1, files only) were processed 

together through all subsequent stages of the spectral library building process. Peptide 

identification from MS/MS spectra was done using the MSFragger search engine against 

the CPTAC harmonized H. sapiens RefSeq protein sequence database13 (which included 

reversed protein sequences appended as decoys for subsequent false discovery rate, FDR, 

estimation). Both precursor and (initial) fragment mass tolerances were set to 20 ppm. 

Spectrum deisotoping,142 mass calibration, and parameter optimization139 were enabled. 

Enzyme specificity was set to ‘stricttrypsin’ (i.e. allowing cleavage before Proline). Up 

to two missed trypsin cleavages were allowed. Isotope error was set to 0/1/2. Peptide 

length was set from 7 to 50, and peptide mass was set from 500 to 5000 Da. Oxidation 

of methionine and acetylation of protein N-termini were set as variable modifications. 

Carbamidomethylation of Cysteine was set as a fixed modification. Maximum number of 

variable modifications per peptide was set to 3.

MSFragger search results (in pepXML format) were processed using the Philosopher 

toolkit.140 First, PeptideProphet143 (run with the high–mass accuracy binning and semi-

parametric mixture modeling options) was run to compute the posterior probability of 

correct identification for each peptide to spectrum match (PSM). The resulting output files 

from PeptideProphet were processed together using ProteinProphet144 to perform protein 

inference (assemble peptides into proteins) and to create a combined file (protXML format) 

of high confidence proteins groups, encompassing both DDA and DIA-identified peptides. 

The minimum PeptideProphet probability for input to ProteinProphet was set to 0.9. The 

combined ProteinProphet file was further processed using Philosopher Filter command, 

which characterized each identified peptide as unique peptide to a particular protein (or 

protein group containing indistinguishable proteins) or assigned it as a razor peptide to a 

single protein (protein group) that had the most peptide evidence. Both unique and razor 

peptides were used for subsequent analysis. The data was filtered to 1% protein-level 

FDR using the picked FDR strategy.145 The peptide, PSM, and ion-level reports were then 

generated and filtered using the 2D FDR approach (i.e. 1% protein FDR plus 1% PSM/ion/

peptide-level FDR for each corresponding PSM.tsv, ion.tsv, and peptide.tsv files).146

PSM.tsv files, filtered as described above, along with the spectral files (mzML files used 

as input to MSFragger) were used as input to EasyPQP for generation of the consensus 
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spectrum library. As an additional filter in EasyPQP, only peptides contained in the 

Philosopher-generated peptide.tsv report file were used, ensuring that the resulting spectral 

library was filtered to global 1% FDR at both protein and peptide level. EasyPQP was run 

with the ‘RT selection option’ set to ‘Automatic selection of a run as reference run’. Thus, 

peptide retention times (RT) in each run were non-linearly aligned (using loess method) by 

EasyPQP to a reference run (which was one of the DIA runs in the dataset showing the 

best average correlation coefficient against all other runs in the experiment). Only y and 

b fragments ions were considered, and the fragment ion annotation tolerance was set to 

15ppm. The final spectral library contained 178022 precursors representing 9245 proteins.

The spectral library described above was used for targeted extraction of precursor ion and 

protein intensities from the 487 DIA runs (samples) using DIA-NN (version 1.7.13)146 as 

previously described. Protein inference in DIA-NN was disabled to use peptide-protein 

grouping as provided by the spectral library. The MS1 and MS2 tolerances and the 

RT extraction window were automatically determined for each run by the algorithm. 

Quantification mode was set to “Robust LC (high precision)”. The output was filtered at 

experiment-specific precursor Q-value < 1%, global protein Q-value < 1%, and run-specific 

protein Q-value < 1%. Protein abundances were computed from the precursor ion intensities 

(summed to the unique gene symbol level) using the DIA-NN reimplementation of the 

MaxLFQ147 normalization method. The final table contained protein level quantification for 

8363 genes.

ccRCC Phosphoproteomic Data (EXP): Analysis of the phosphopeptide quantification 

data for the 199 samples from the confirmatory ccRCC cohort profiled using DIA was 

performed as described above, with the following changes. The spectral library was built 

from the 199 DIA runs supplemented with 9 DDA runs from the pooled fractionated 

phosphopeptide sample. All 3 sets of pseudo-MS/MS files extracted by DIA-Umpire for 

each run (i.e., Q1, Q2, and Q3 mzML files) were used. MSFragger search parameters 

included an additional variable modification - phosphorylation on STY. Isotope error was 

set to 0/1. After PeptideProphet and before ProteinProphet, PTMProphet148 was run to 

perform phosphosite localization, which was then propagated to the PSM.tsv reports by 

Philosopher. The resulting spectral library built with EasyPQP contained 7968 proteins and 

121563 precursors (including non-phosphorylated proteins and peptides). When running 

DIA-NN, the PTM scoring option for phosphorylation was activated using the ‘--monitor-

mod Unimod 21’ command. The precursor-level output table generated by DIA-NN was 

further processed using an R script available as part of the DIA-NN distribution to create 

a “sequence plus modification”-level report by summing precursor intensities based on the 

“Modified.Sequence” column. The data was filtered to global and run-specific precursor 

and protein Q-values < 0.01. MaxLFQ methods were used to roll-up and normalize 

precursor intensities to the “sequence plus modification” level. The resulting table was then 

additionally processed to remove non-phosphorylated peptides and to mark which sites were 

localized with confidence by PTMProphet (localization probability 0.75 or higher) at the 

spectral library building step. The final table contained quantitative information for 71913 

phosphorylated peptide forms, representing 26998 peptides from 6467 proteins (6262 unique 

gene symbols).
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Kinase Inhibitor Study, Proteomic and Phosphoproteomic Data: Analysis of the DIA 

data from the kinase inhibitor study (whole proteome and phosphopeptide-enriched data) 

was performed as described above. For each data type, the libraries were built from 

the corresponding 30 DIA runs (6 treatments × 5 cell lines) supplemented with 8 or 

9 fractionated DDA files for whole proteome and phosphopeptide-enriched samples, 

respectively. The resulting whole proteome spectral library contained 8882 proteins and 

173932 precursors; the phosphopeptide enriched sample library contained 7841 proteins 

and 101491 precursors (including non-phosphorylated proteins and peptides). After DIA-

NN quantification, the final quantification table for the phosphopeptide-enriched dataset 

contained quantification information for 46577 phosphorylated peptides forms, representing 

22161 peptide sequences from 5154 proteins. The whole proteome dataset table contained 

quantification for 7654 genes.

Quantification of Intact Glycopeptides: The DIA raw files of the intact glycopeptides 

were searched against the spectral library for the quantification of intact glycopeptides 

via Spectronaut (version 15.4, Biognosys). Mass tolerance of MS and MS/MS was set 

as dynamic with a correction factor of one. Source-specific iRT calibration was enabled 

with a local (non-linear) RT regression. All multi-channel interferences were excluded 

and the decoy method was set as “mutated”. The precursors were filtered by a Q value 

cutoff of 0.01 (which corresponds to an FDR of 1%). The quantity of a modified peptide 

was decided by summing the quantity of its precursors, whereas the quantity for a 

precursor was calculated by summing the area of its fragment ions at MS2 level. The 

reported quantification result was filtered as previously described113. In brief, the filtering 

criteria consisted of following: the FWHM of XIC of the fragment ions < 1 minute, the 

shape quality score for the XIC of the precursor transition groups > 0.6, S/N ratio of 

the fragment ions > 3, and cosine similarity between theoretical and measured isotopic 

patterns of precursors > 0.9. The missing values were imputed using DreamAI (https://

github.com/WangLab-MSSM/DreamAI), which was the tool used in our previous study for 

the imputation of phosphoproteomic data. Only glycopeptides with a missing rate less than 

50% across all samples were imputed.

Processing of Metabolomic Data: Acquired data were analyzed first using Thermo 

Scientific Compound Discoverer® software. The chromatographic peaks were integrated 

to obtain raw intensities of metabolites. Compounds with definite peaks and names in 

the software were selected. The data were then filtered based on the following criteria: 

m/z Cloud score greater than 60 (good fragmentation matching with compounds in the 

m/z Cloud database) or mass list match (mass lists include common pathways such as 

glycolysis, pentose phosphate pathway, hexosamine, and sialic acid pathway, purine and 

pyrimidine synthesis, and amino acid metabolism) and intensity > 10000. Thermo Scientific 

TraceFinder® software was then used to quantify compounds in common pathways not 

found using Compound Discoverer® where the retention time (RT) was determined using 

Freestyle® software based on mass accuracy and fragmentation match. The data from 

Thermo Scientific Compound Discoverer® and TraceFinder® software were combined to 

generate the final list of compounds.
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Other Proteogenomic Analysis

Differential Abundance Analysis: Global proteomic data and gene expression were used 

to perform pairwise differential analysis between groups of samples. A Wilcoxon rank-sum 

test was performed to determine the differential abundance of proteins and gene expression. 

At least four samples in both groups were required to have non-missing values, and the p-

value was adjusted using the Benjamini-Hochberg procedure, and features were considered 

significant with an adjusted p-value < 0.05. Proteomic features with at least a 2x fold 

increase in tumors were deemed to be tumor-associated markers. These markers were the 

DEGs/DEPs captured by our “level 1” DE analysis on the cohort level using the bulk 

proteogenomic data. To select the top feature-associated marker candidates, we performed 

DE analysis with utilizing the bulk proteogenomic data in the intratumoral heterogeneity 

(ITH) cohorts (e.g., given cases with multiple segments) on the case level as “level 2”; 

snRNA-seq on the segment level as “level 3”, specifically, among the tumor cell population; 

and last, snRNA-seq on the tumoral-cluster level as “level 4” with the resolution to identify 

specific tumor subpopulations.

Tumor Microenvironment Inference: The ESTIMATE scores reflecting the overall 

immune and stromal infiltration were calculated by the R package ESTIMATE113 using 

the normalized RNA expression data (FPKM-UQ).

Cell Type Enrichment Using Gene Expression: The abundance of each cell type was 

inferred by the xCell web tool,105 which performed the cell type enrichment analysis from 

gene expression data for 64 immune and stromal cell types (default xCell signature). xCell 

is a gene signatures-based method learned from thousands of pure cell types from various 

sources. We used the FPKM-UQ expression matrix as the input of xCell. xCell generated 

an immune score per sample that integrates the enrichment scores of B cells, CD4+ T-cells, 

CD8+ T-cells, DC, eosinophils, macrophages, monocytes, mast cells, neutrophils, and NK 

cells; a micro-environment score which was the sum of the immune score and stroma score. 

Besides, we applied CIBERSORTx106 to compute immune cell fractions from bulk gene 

expression data.

Immune Clustering Using Cell Type Enrichment Scores: Immune subtypes of each 

of the four cancer types were generated based on the consensus clustering90 of the cell 

type enrichment scores by xCell. Among the 64 cell types tested in xCell, we selected 

the cell types that were significant in at least 10% of the samples (xCell enrichment p < 

0.05, which filtered out the cell types not typical in kidneys). We performed consensus 

immune clustering based on the z-score normalized xCell enrichment scores. The consensus 

clustering was determined by the R package ConsensusClusterPlus(parameters: reps = 2000, 

pItem = 0.9, pFeature = 0.9, clusterAlg = “kmdist”, distance = “spearman”).

Survival Analysis: The R package “survival” was used to perform survival analysis. The 

Kaplan-Meier curve of overall survival was used to compare the prognosis among subtypes 

(function survfit). Log-rank test (from the R package survminer) was used to test the 

differential survival outcomes between categorical variables. The standard multivariate Cox-

proportional hazard modeling was applied to estimate the hazard ratio among subtypes 
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(function coxph). Age, gender, histopathologic subtype, and BAP1 mutation status, as the 

covariates, were included in the model.

Panoptes-based multi-resolution Neural Network Imaging Models: The Panoptes-based 

multi-resolution neural network imaging models were trained with digitized H&E stained 

histopathologic slide images. Due to the size and the multi-resolution data structure of the 

whole slide images, they were cut into 299×299 pixel tiles at 10x, 5x, and 2.5x equivalent 

magnification of the scanned whole slide images. 10x, 5x, and 2.5x tiles covering the same 

regions were then grouped into tilesets and were treated as 1 sample following the Panoptes 

sample preparation protocol.33 The samples were split into training, validation, and testing 

set at 70:15:15 ratio at the per-patient level for BAP1 mutation prediction task, and per-slide 

level for immune and methylation subtype prediction tasks. The models were trained with 

a batch size of 24, the initial learning rate of 0.0001, the dropout rate of 0.5, and Adam 

optimizer with early stop criteria when the validation loss did not decrease for at least 10000 

iterations and the state at which the lowest validation loss was achieved were recorded 

to be the final model for testing. 4 Panoptes architectures were trained simultaneously 

into models and the best performing models were selected based on various statistical 

metrics, particularly AUROC. The activations of the second-to-the-last layer of the test set 

were extracted and dimensionally reduced and plotted with tSNE for feature visualization. 

Example tiles were highlighted and sent to pathologists for a secondary review. Selected 

whole slide cases from the test set were fed into the trained model and per-tile level 

predictions were aggregated into heatmap layers to overlay onto the original slides for 

feature visualization and localization.

Ancestry Prediction Using SNPs from 1000 Genomes Project: We used a reference panel 

of genotypes and a clustering based on principal components to identify likely ancestry. 

We selected 107,765 coding SNPs with a minor allele frequency > 0.02 from the final 

phase release of The 1000 Genomes Project.149 From this set of loci, we measured the 

depth and allele counts of each sample in our cohort using bam-readcount v0.8.0. Genotypes 

were then called for each sample based on the following criteria: 0/0 if reference count 

≥ 8 and alternate count < 4; 0/1 if reference count ≥ 4 and alternate count ≥ 4; 1/1 if 

reference count < 4 and alternate count ≥ 8; and ./. (missing) otherwise. After excluding 

markers with missingness > 5%, 70,968 markers were kept for analysis. We performed 

PCA on the 1000 Genomes samples to identify the top 20 principal components. We then 

projected our cohort onto the 20-dimensional space representing the 1000 Genomes data. 

We then trained a random forest classifier with the 1000 Genomes dataset using these 20 

principal components. The 1000 Genomes dataset was split 80/20 for training and validation 

respectively. On the validation dataset, our classifier achieved 99.6% accuracy. We then used 

the fitted classifier to predict the likely ancestry of our cohort.

MSI Prediction: MSI scores were calculated by MSIsensor (https://github.com/ding-lab/

msisensor) and interpreted as the percentage of microsatellite sites (with deep enough 

sequencing coverage) that have a lesion. Samples with an MSIscore > 3.5 are classified as 

“MSI-High” and the rest will be classified as “MSS.” An intermediate class with 1.0 <= 

score <= 3.5 can be defined as “MSI-Low.”
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Unsupervised Multi-omic Clustering Using NMF: We used non-negative matrix 

factorization (NMF)-based multi-omic clustering using protein abundance, RNA transcript 

abundance, and log ratios of gene copy number variants (CNV).

Balancing Contribution of Data Types:  To mitigate the impact of a potential bias 

towards a particular data type in the multi-omic clustering (e.g. vastly different number 

of genomic and proteomic features), the following filtering approach was applied: Data 

matrices were concatenated and all rows containing missing values were removed. The 

resulting multi-omic data matrix was then standardized by z-scoring of the rows followed 

by z-scoring of columns. Principal component analysis (PCA) was applied to the resulting 

standardized multi-omic data matrix. The PCA-derived factors matrix was used to determine 

the number of principal components (PCs) cumulatively explaining 90% of the variance 

in the standardized multi-omic data matrix (PCs90). The PCA-derived loadings matrix was 

used to calculate the relative contribution of each feature to each PCs90, equivalent to the 

squared cosine described in (Abdi and Williams https://wires.onlinelibrary.wiley.com/doi/

10.1002/wics.101), and the relative, cumulative contributions of each feature across all 

PCs90 was subsequently derived. The resulting vector of relative contributions of each 

feature (i.e. vector sums up to 1) was then used to balance the contribution of the different 

data types using the following procedure:

1. For each data type sum up the contributions of all features; this determines the 

overall contribution of each data type, which ideally should be equal across the 

data types within a given tolerance, i.e.: sumome ≈ 1/(No. data types)

2. Remove the feature with the lowest contribution that belongs to the data type 

with the largest overall contribution

3. Recalculate the overall contributions of each data type and repeat steps 1–2 until 

the deviation is within the specified tolerance (tol=0.01).

Non-negative Transformation:  The data matrix of z-scores was converted to a non-

negative input matrix required by NMF as follows:

1. Create one data matrix with all negative numbers zeroed.

2. Create another data matrix with all positive numbers zeroed and the signs of all 

negative numbers removed.

3. Concatenate both matrices resulting in a data matrix twice as large as the 

original, but containing only positive values and zeros and hence appropriate 

for NMF.

Non-negative Matrix Factorization:  Given a factorization rank k, where k is the number 

of clusters, NMF decomposes a p × n data matrix V (p - number of features; n - number 

of samples) into two matrices W and H such that multiplication of W and H approximates 

V. Matrix H is a k × n matrix whose entries represent weights for each sample (1 to n) 

to contribute to each cluster (1 to k), whereas matrix W is a p × k matrix representing 

weights for each feature (1 to p) to contribute to each cluster (1 to k). Matrix H was used to 
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assign samples to clusters by choosing the row (i.e. cluster) with the maximum score in each 

column of H.

Determination of Factorization Rank:  To determine the optimal factorization rank k 
(number of clusters) for the multi-omic data matrix, a range of clusters between k=2 and 8 

was tested. For each value of the k matrix, V was subjected to NMF using 50 iterations with 

random initialization of W and H. To determine the optimal factorization rank two metrics 

for each value of k were calculated: 1) cophenetic correlation coefficient measuring how 

well the intrinsic structure of the data is recapitulated after clustering and 2) the dispersion 

coefficient of the consensus matrix as defined in150 measuring the reproducibility of the 

clustering across the 50 iterations. The optimal kopt is defined as kopt= max(dispK^(1-cophK) 
for cluster numbers between k=3 and 8.

Having determined the optimal factorization rank k, to achieve robust factorization 

of the multi-omic data matrix V, the NMF procedure described above was repeated 

using 500 iterations with random initializations of W and H. Due to the non-negative 

transformation applied to the z-scored data matrix as described above, matrix W of feature 

weights contained two separate weights for positive and negative z-scores of each feature, 

respectively. To revert the non-negative transformation and to derive a single signed weight 

for each feature, we first normalized each row in matrix W by dividing by the sum of 

feature weights in each row, aggregated both weights per feature and cluster by keeping the 

maximal normalized weight and multiplication with the sign of the z-score in the initial data 

matrix. Thus, the resulting transformed version of matrix Wsigned contained signed cluster 

weights for each feature in the input matrix.

Cluster Membership:  For each sample, a cluster membership score was calculated as the 

maximal fractional score of the corresponding column in matrix H. The score indicates how 

representative a sample is to each cluster and was used to define the “cluster core”, a set 

of samples most representative for a given cluster. Core samples were required to have a 

minimal membership score difference between all pairs of clusters to be greater than 1/k, 

where k is the total number of clusters.

The entire workflow described above has been implemented as a module for PANOPLY151 

(https://github.com/broadinstitute/PANOPLY) which runs on Broad’s Cloud platform Terra 

(https://app.terra.bio/).

Unsupervised Clustering of DNA Methylation: Methylation subtypes were segregated 

based on the top 8,000 most variable probes using k-means consensus clustering as 

previously described.152 We first removed underperforming probes,153 and then the samples 

with more than 30% missing values. Remaining missing values were imputed using the 

mean of the corresponding probe value. We then performed clustering 1000 times using the 

ConsensusClusterPlus R package (parameters: maxK = 10 reps = 1000 pItem = 0.8 pFeature 

= 1 clusterAlg = “km” distance = “euclidean”). We choose k = 6 based on the delta area plot 

of consensus CDF.
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Determination of Stemness Score: Stemness scores were calculated as previously 

described.154 Firstly, we used MoonlightR155 to query, download, and preprocess the 

pluripotent stem cell samples (ESC and iPSC) from the Progenitor Cell Biology Consortium 

(PCBC) dataset.156,157 Secondly, to calculate the stemness scores based on mRNA 

expression, we built a predictive model using one-class logistic regression (OCLR)158 

on Progenitor Cell Biology Consortium (PCBC) dataset. For mRNA expression-based 

signatures, to ensure compatibility with our cohort, we first mapped the Ensembl IDs to 

Human Genome Organization (HUGO) gene names and dropped any genes that had no 

such mapping. The resulting training matrix contained 12,945 mRNA expression values 

measured across all available PCBC samples. To calculate the mRNA-based sternness index 

(mRNASi), we used FPKM-UQ mRNA expression values for all CPTAC ccRCC tumors. 

We used the TCGAanalyze_Stemness function from the R package TCGAbiolinks159 and 

following our previously described workflow,160 with “stemSig” argument set to PCBC 

stemSig.

Mutation Impact on RNA, Proteome, Phosphoproteome, and Metabolome: We 

aggregated a set of interacting proteins (e.g. kinase/phosphatase-substrate or complex 

partners) from OmniPath (downloaded on 2018–03-29),84 DEPOD (downloaded on 2018–

03-29),161 CORUM (downloaded on 2018–06-29),162 Signor2 (downloaded on 2018–

10-29),163 and Reactome (downloaded on 2018–11-01).164 We focused our analyses on 

ccRCC SMGs previously reported in the literature.120

For each interacting protein pair, we split samples with and without mutations in partner 

A and compare expression levels (RNA, protein, and phosphosites) both in cis (partner 

A) and in trans (partner B), calculating a median difference in expression and testing 

for significance with the Wilcoxon rank-sum test, with the Benjamini-Hochberg multiple 

test correction. For mutational impact analysis on metabolomes, all possible pairs between 

SMGs and metabolites were tested.

Kinase-substrate Pairs Regression Analysis: For each kinase-substrate protein pair 

supported by previous experimental evidence (OmniPath, NetworKIN, DEPOD, and 

SIGNOR), we tested the associations between all sufficiently detected phosphosites on the 

substrate and the kinase. For a kinase-substrate pair to be tested, we required both kinase 

protein/phosphoprotein expression and phosphosite phosphorylation to be observed in at 

least 20 samples in the respective datasets and the overlapped dataset. We then applied 

the linear regression model using lm function in R to test for the relation between kinase 

and substrate phosphosite. For the i-th trial for kinase phosphosite abundance in the cis 

associations, kinase phosphosite abundance Ai depends on kinase protein expression Si and 

error Ei,

Ai = M1Si + B + Ei

For the i-th trial for kinase phosphosite abundance in the trans associations, substrate 

phosphosite abundance Ai depends on kinase phosphosite expression Ki substrate protein 

expression Si and error Ei,
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Ai = M1Si + M2Ki + B + Ei

where the regression slope M coefficients are determined by least-square calculation. Bs 

are y-axis intercepts. The resulting p-values were adjusted for multiple testing using the 

Benjamini-Hochberg procedure.

Phosphoproteomic and Glycoproteomic Subtyping: Phosphopeptides with CVs in 

the > 25% quartile were analyzed by CancerSubtypes165 for consensus clustering of 

tumor subtypes. The same procedure was carried out for glyco subtyping using intact 

glycopeptides as well. Specifically, 80% of the original sample pool was randomly 

subsampled without replacement and partitioned into four major clusters (phospho) and 

three major clusters (glyco) using hierarchical clustering, which was repeated 2000 times. 

The consensus-clustered samples were overlaid with other features (e.g., grade, stage) and 

other omics subtypes (e.g., methylation subtype, histopathologic subtype). Phosphopeptides 

and intact glycopeptides were grouped into four and three clusters using K-means 

clustering in ComplexHeatmap,166 respectively. The predictive models of phospho- and 

glyco-signatures were built using caret (https://doi.org/10.18637/jss.v028.i05) and ROC 

curves were generated using pROC.167 We performed KEGG pathway enrichment analysis 

via WebGestalt.168 We utilized PTM-SEA to find signatures (pathways and kinases) of the 

phospho subtypes. We first conducted the differential analysis between a phospho subtype 

to the remaining phospho subtypes (P1 vs Others, P2 vs Others etc.) as well as the pairwise 

comparison between phospho subtypes (P1 vs P2, P1 vs P3 etc.) on phosphosite level 

by calculating median log2 fold change and obtaining p-value from Wilcoxon rank-sum 

test. Next, we examined each differentially expressed phosphosites in one phospho subtype 

relative to the remaining phospho subtypes (p≤0.05 and fold change ≥1.5) to ensure that it 

was also differentially expressed (p≤0.05 and fold change ≥1.5) in the particular subtype 

from the pairwise comparison (at least compared to two out of three other phospho 

subtypes) in order to generate a list of phosphosites for PTM-SEA input. To obtain a 

single enrichment score from PTM-SEA and adequately account for variance in phosphosite 

abundance across subtypes, we utilized the differential analysis results from one subtype vs 

the remaining to calculate signed (according to the fold change between one subtype and the 

remaining), log-transformed p-value from Wilcoxon Rank Sum Test as input to PTM-SEA. 

Only pathways and kinases significantly enriched (FDR < 0.05) in at least one of the 

subtypes were plotted. The differential analysis between a glyco subtype to the remaining 

glyco subtypes was conducted by calculating median log2 fold change and using Wilcoxon 

rank-sum test (p-value was adjusted using Benjamini Hochberg method). The significance 

threshold was set as FDR < 0.05.

The setting in PTM-SEA is as follows.

sample.norm.type: rank

weight: 1

statistic: area.under.RES
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output.score.type NES

nperm: 5000

min.overlap: 5

correl.type: rank

Metabolome Analysis: Metabolome data were used to perform pairwise differential 

analysis between groups of samples. A Wilcoxon rank-sum test was performed to 

determine the differential abundance of metabolites. At least four samples in both 

groups were required to have non-missing values and the p-value was adjusted using 

the Benjamini-Hochberg procedure. The metabolite annotations were based on HMDB 

(https://hmdb.ca/), MetaboAnalyst (https://www.metaboanalyst.ca/), and KEGG (https://

www.genome.jp/kegg/).

Interactive Data Visualization and Exploration: We have developed a ProTrack web 

portal169 for interactive visualization and exploration of this data set. The ProTrack web 

app consists of two main views: a sample dashboard and an interactive heatmap. The 

sample dashboard visualizes the distribution of the cohorts along clinical, demographic, 

and molecular variables. The graphs can be reordered and hidden or shown according to 

user preference. The graphs can also be used to create custom cohorts, as users can filter 

samples into a custom cohort by toggling demographic features on and off. The filtered 

cohort can optionally be used to generate an interactive heatmap. On the heatmap view, 

users input a query list of genes of interest. A multi-omic heatmap is then generated for 

those genes, including protein, RNA, phosphoprotein, and glycoprotein data tracks when 

available. Additionally, using the interactive legend, users can add or remove top tracks to 

include immune subtype classification tracks, mutation information, chromosomal gains or 

losses, and clinical or demographic data such as BMI, hypertension, vital status. To facilitate 

the visualization of trends of interest, users can select any track and sort the entire heatmap 

along that axis. The underlying ordered data can then be downloaded as an Excel table 

and the heatmap can be exported as an image file. The ProTrack application is available at 

http://ccrcc-conf.cptac-data-view.org.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Integrated multi-omics and histopathology reveal intratumoral heterogeneity 

in ccRCCs

• Signatures of aggressive sarcomatoid and rhabdoid histology are uncovered 

by snRNA-seq

• High-grade ccRCCs have specific glycoproteomic, metabolomic, and 

methylation signatures

• UCHL1 correlates with methylation, genome instability, BAP1 mutation, and 

poor survival
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Figure 1. Molecular underpinnings of ccRCC histopathologic heterogeneity.
A) Sample cohorts and data type overview. Top: Numbers of cases, tumors, matched 

NATs, and peripheral blood samples profiled, and their cohort-wise distribution, namely 

INI- initial, EXP-expanded, and ITH- intratumoral heterogeneity sample cohorts. Bottom: 

Feature in genomics, proteomic, metabolomic, kinase inhibitor, and image data types.

B) Distribution of ccRCC cohort. Representative H&E based on nuclear grade and 

cytological features. Low-grade ccRCC (CL), High-grade ccRCC (CH) CH with 

sarcomatoid (CH-S), and CH with rhabdoid (CH-R). Scale bar = 200 microns.
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C) Proteogenomic features associated with histopathologic subtypes. Key histological 

features, clinical parameters, genetic aberrations, and proteomic signatures are presented 

sequentially.

D) The distribution of histopathologic, BAP1 mutation, wGII, methylation, immune, and 

multi-omic subtypes among the 213 cases. Fisher’s exact test p = 1.02e-04; Pearson’s 

Chi-squared test p = 1.26e-04.

See also Figure S1 and Table S1.
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Figure 2. ccRCC proteogenomic and TME ITH characterization by multi-segment integrative 
analysis.
A) ITH cohort workflow showing multi-segment multi-omic molecular profiling strategy 

alongside extensive histopathologic assessment to enable integrative exploration of ITH.

B) Proteogenomic aberration and histological features landscape of ITH cohort samples. 

Multi-panel heatmap details the molecular and histological information of the 132 tumor 

segments from 40 patients.

C) Frequency of heterogeneity features and count in the ITH cohort.

D) Distributions of xCell CD8+ T signature, overall immune signature, and endothelial 

signature between the groups with (w I-ITH) and without immune heterogeneity (w/o 
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I-ITH). Wilcoxon signed-rank test p is calculated. Boxes represent the interquartile range 

(IQR, e.g., median indicated by solid line in box, 0.25 and 0.75 quantiles) and whiskers 

represent the largest and smallest values within 1.5 × IQR range.

E) Comparison between 6 representative cases from w-ITH and w/o-ITH groups.

F) Panoptes-based multi-resolution neural network models were trained to predict immune 

subtypes (right) based on H&E (left).33 Scale bar = 3mm.

See also Figure S2 and Table S2.
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Figure 3. Single-nuclei RNA-seq atlas identifies distinct intra-tumor epithelial populations.
A) snRNA-seq analysis workflow schematic (Top). snRNA-seq cell atlas generated from 12 

segments obtained from 4 cases (Bottom). The UMAP displays 26 cell clusters that were 

subsequently annotated as 10 different cell types.

B) Schematic tracks present the heterogeneity observed in the 12 segments at the 

histological and molecular characterizations.

C) Frequency and composition of non-tumoral cell types found in the TME in C3L-01287 

and C3N-00148 with immune ITH.

D) UMAP shows the tumor sub-clusters and the corresponding ITH found in 4 segments 

obtained from C3N-00148 with critical molecular feature annotations indicated.

E) UMAP representation of tumor subclusters ITH in the 2 segments of C3L-01287 (Top). 

H&E reveals the presence of classic clear cell and mutually exclusive rhabdoid regions 
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in this tumor (bottom). WES using dissected regions showed VHL mutation in clear cell 

region, and VHL and BAP1 mutations in rhabdoid region.

See also Figure S3 and Table S3.
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Figure 4. snRNA-seq atlas further refines sarcomatoid and rhabdoid histology-associated gene 
expression signatures.
A) Expression profiles of the top markers associated with the C0A tumor cluster in 

C3N-00148, where bubble diameter represents fraction of cells with expression in a given 

cluster. Color blue to red- expression down to up.

B) UMAPs show the integration of three sarcomatoid cases.

C) Bubble plots show expression of top markers associated with C0A tumor cluster in 

snRNA-seq at integration and individual levels.

D) Corresponding high and low expression of TGFBI protein in two representative cases 

with strong staining positivity noted in sarcomatoid area and its absence in nested clear cell 

area. Scale bar = 200 microns.

E) Expression profiles of the top markers associated with C0.

F) UMAPs show the integration two rhabdoid cases.

G) Expression profiles of the top markers associated with C0 tumor cluster in snRNA-seq at 

integration and individual levels.

H) Corresponding high and low expression of KIF2A IHC with strong staining intensity 

noted in the rhabdoid area with no staining in the nested clear cell area. Scale bar = 200 

microns.

See also Figure S3 and Table S3.
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Figure 5. DNA hypermethylated Methyl1 subtype is associated with BAP1 mutations and various 
other features linked to poor survival.
A) Patient classification by three DNA methylation subtypes (heatmap). Annotation tracks 

below indicate molecular, genetic, and clinical/histological categories. Star sign indicates the 

statistically significant association (Fisher’s exact test FDR < 0.05).

B) Kaplan Meier plot indicates the association between overall survival and the three 

methylation subtypes in CPTAC ccRCC cohort. Log-rank test p is 0.0069.

C) Correlation between methylation difference (beta value) and RNA expression difference 

of the top Methyl1 signature probes (genes).
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D) DEPs associated with Methyl1 (vs. Methyl2 + Methyl3) and enriched pathways based on 

DEPs upregulated in Methyl1.

E) DEGs and DEPs associated with BAP1 mutation status. UCHL1 was amongst the 

markers up in BAP1 mutants.

F) DEGs and DEPs associated with wGII category. UCHL1 was amongst the markers up in 

high wGII high group.

G) Kaplan Meier plot indicates the association between overall survival and UCHL1 protein 

abundance in CPTAC ccRCC cohort. Log-rank test p is 0.027.

H) Matched topographical comparison (asterisks) of uniform high expression of UCHL1 in a 

Methyl1 ccRCC (a, b), and absence of UCHL1 expression in a Methyl3 ccRCC (c, d). TME 

(triangles) in corresponding H&E and UCHL1 staining to match the topography. Scale bar = 

300 microns.

I) Characterization of UCHL1 in a morphologically heterogeneous ccRCC. Scale bar = 

3mm.

J) Regions 1 and 2 correspond to rhabdoid (red panel) and high-grade (yellow panel) 

nodules demonstrating strong and moderate UCHL1 expression, respectively. Region 3, the 

low-garde area (blue panel) shows absence of UCHL1. Scale bar = 200 microns.

See also Figure S4 and Table S4.
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Figure 6. Identification of key phospho signaling pathways, kinase-substrate (K-S) interactions 
in ccRCC tissues, and integration of ex-vivo kinase drug inhibition data from RCC cell lines.
A) Top 50 signaling pathways of K-S pairs with the highest phospho-substrate abundance 

(tumors vs. NATs). The labeled cancer drugs are not exhaustive and they are either under 

investigation or FDA-approved.

B) Phosphoproteomic subtypes (P1–4) are overlaid with 11 variables from molecular, 

genetic, and histologic features shown as annotation tracks immediately below.

C) Pathways and kinase activities are inferred from phosphoproteomic data for each 

phospho subtype. NES: normalized enrichment score from PTM-SEA.
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D) Schematic representation summarizing the kinase inhibition experiment conducted in five 

RCC cell lines targeting the kinases identified in our initial cohort. The phosphorylation 

level changes in the downstream substrates of targeted kinases indicate the response to the 

corresponding treatments relative to the control. Each cell line with one control and treated 

with five different kinase inhibitors.

See also Figure S5 and Table S5.
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Figure 7. Alteration of protein glycosylation specific to ccRCC and high-grade ccRCC.
A) Volcano plot shows Intact glycopeptides (IGPs) differentially expressed between tumors 

and NATs.

B) Performance of glyco-signatures individually and as a multi-signature panel for 

differentiating tumor and non-tumor tissues.

C) Glycan type distribution of differentially expressed IGPs (tumors vs. NATs).

D) Glycosylation changes (y-axis) compared to global protein expression (x-axis) changes in 

tumors vs NATs.
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E) Glycoproteomic subtypes (Glyco1–3) are overlaid with 12 variables represented by 

individual tracks immediately below.

F) Violin plot shows HYOU1 protein abundance between CL and CH tumors. ** indicates 

that Wilcoxon rank-sum test FDR < 0.01. Dots in the violin plots correspond to median 

abundance. The violin plot outlines demonstrate the kernel probability.

G) Kaplan Meier plot compares HYOU1 protein expression between High (upper quartile) 

and Low (lower quartile) groups in the CPTAC cohort. Log-rank test p is 0.0033.

See also Figure S6 and Table S6.
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Figure 8. Dysregulated metabolism in high-grade and low-grade ccRCC.
A) PCA plot shows the distribution of 50 tumors by metabolome characterization. The 

separation with 7 NATs is shown in the inset box.

B) DEMs between high-grade tumors and low-grade tumors. The significantly upregulated 

DEMs are in orange if their Wilcoxon signed-rank test p < 0.05 and absolute fold change > 

2.

C) Enriched metabolic pathways corresponding to CH and CL, respectively. Hypergeometric 

test p is calculated.
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D) Sankey diagram visualizes the distribution of metabolic pathways and super pathways for 

the 183 metabolites used for metabolomic subtyping.

E) Heatmap shows the four metabolomic subtypes that were identified among the 50 tumors 

and 7 NATs. The signature metabolites were annotated next to the heatmap and colored by 

the metabolomic subtype if they are significantly higher in one subtype.

F) Network plot of Arginine biosynthesis, Urea cycle, and Citrate cycle demonstrates the 

connection of metabolites and enzymes, and the expression fold change of metabolites and 

direction of enzymes in tumors compared with NATs. Wilcoxon signed-rank test FDR is 

calculated.

G) Among the 213 cases, the fractions of high expression of GLUL and GLS are higher in 

high-grade tumors compared with those of low-grade tumors as indicated by these stacked 

bar plots.

H) The distribution of 50 tumors with multi-level profiling of histological, BAP1 mutation, 

wGII, methylation, immune, multi-omic, phospho, glyco, and metabolome subtypes.

See also Figure S7 and Table S7.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti CA9 antibody Novus Biologicals Catalog: NB100-417, RRID: AB_10003398

Rabbit polyclonal anti HYOU1 antibody Atlas Antibodies Catalog: HPA049296, RRID: AB_2680702

Rabbit polyclonal anti GAL3ST1 antibody Atlas Antibodies Catalog: HPA001220, RRID: AB_1078933

Rabbit polyclonal anti KIF2A antibody Atlas Antibodies Catalog: HPA004716, RRID: AB_1079211

Rabbit polyclonal anti PLXDC2 antibody Atlas Antibodies Catalog: HPA017268, RRID: AB_10965928

Rabbit polyclonal anti TGFBI antibody Atlas Antibodies Catalog: HPA008612, RRID: AB_1857970

Rabbit polyclonal anti UCHL1 antibody Sigma-Aldrich Catalog: HPA005993, RRID: AB_1858560

Mouse monoclonal anti BAP1 antibody Santa Cruz Biotechnology Catalog: sc-28382

Biological samples

Primary tumor and normal adjacent tissue 
samples This manuscript See Table S1

Critical commercial assays

TruSeq Stranded Total RNA Library Prep Kit 
with Ribo-Zero Gold Illumina Catalog: RS-122-2301

Infinium MethylationEPIC Kit Illumina Catalog: WG-317-1003

Exome Illumina Catalog: 20020617

KAPA Hyper Prep Kit, PCR-free Roche Catalog: 07962371001

BCA Protein Assay Kit ThermoFisher Scientific Catalog: 23225

RPMI Medium 1640 ThermoFisher Scientific Catalog:11875168

Penicillin-Streptomycin (10,000 U/mL) ThermoFisher Scientific Catalog: 15140122

Fetal bovine serum ThermoFisher Scientific Catalog: 16140071

Adaversotib (AZD-1775) MedChemExpress Catalog: HY-10993

Everolimus Selleckchem Catalog: S1120

Sapanisterib (TAK-228) Selleckchem Catalog: S2811

Gefitinib Cell Signaling Technology Catalog: 4765S

Tramenitib Selleckchem Catalog: S2673

Dimethyl sulfoxide ThermoFisher Scientific Catalog: 85190

CellTiter® 96 AQueuous One Solution 
Proliferation Assay (MTS) ThermoFisher Scientific Catalog: PR-G3580

OptiView DAB detection kit
Roche-Ventana Medical 
Systems Catalog: 760-700

EnVision FLEX visualizing kit Agilent Technologies Inc Catalog: K800221-2

AlamarBlue™ Cell Viability Reagent Invitrogen Catalog: DAL1025

CellTiter-Glo Luminescent Cell Viability Assay Promega Catalog: G9241

UltraView Universal DAB detection kit
Roche-Ventana Medical 
Systems Catalog: 760-500

Cell lines

Renal cancer cell line 769-P ATCC Catalog: CRL-1933
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REAGENT or RESOURCE SOURCE IDENTIFIER

Renal cancer cell line 786-O ATCC Catalog: CRL-1932

Renal cancer cell line A498 ATCC Catalog: HTB-44

Renal cancer cell line CAKI-1 ATCC Catalog: HTB-46

Renal cancer cell line CAKI-2 ATCC Catalog: HTB-47

Renal cell line HK-2 ATCC Catalog: CRL-2190

Chemicals, peptides, and recombinant proteins

Calbiochem Sigma-Aldrich Catalog: 662086

L-Methionine sulfoximine Sigma-Aldrich Catalog: M5379

Phenylmethylsulfonyl fluoride Sigma-Aldrich Catalog:93482

Sodium fluoride Sigma Catalog: S7920

Phosphatase Inhibitor Cocktail 2 Sigma Catalog: P5726

Phosphatase Inhibitor Cocktail 3 Sigma Catalog: P0044

Urea Sigma Catalog: U0631

Tris(hydroxymethyl)aminome thane Invitrogen Catalog: AM9855G

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Sodium chloride Santa Cruz Biotechnology Catalog: sc-295833

PUGNAc Sigma Catalog: A7229

Dithiothretiol ThermoFisher Scientific Catalog: 20291

Iodoacetamide ThermoFisher Scientific Catalog: A3221

Sequencing grade modified trypsin Promega Catalog: V511X

Lysyl endopeptidase, aass spectrometry grade Wako Chemicals Catalog: 125-05061

Formic acid Fisher Chemical Catalog: A117-50

Reversed-phase C18 SepPak Waters Catalog: WAT054925

4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid Alfa Aesar Catalog: J63218

Ammonium formate Sigma Catalog: 70221

Tandem mass tags - 10plex ThermoFisher Scientific Catalog: 90110

Trifluoroacetic acid Sigma Catalog: 302031

Ammonium Hydroxide solution Sigma Catalog: 338818

Hydroxylamine solution Aldrich Catalog: 467804

Ni-NTA agarose beads Qiagen Catalog: 30410

Iron (III) chloride Sigma Catalog:451649

Oasis MAX Cartridge Waters Catalog: 186000366

Triethylammonium acetate buffer Sigma Catalog: 90358

Data deposition

CPTAC ccRCC clinical data and proteomic data This manuscript https://pdc.cancer.gov/

CPTAC ccRCC genomic, transcriptomic, and 
snRNA-seq data This manuscript https://portal.gdc.cancer.gov/projects/CPTAC-3

CPTAC ccRCC pathology and radiology images This manuscript

https://portal.imaging.datacommons.cancer.gov/explore/
filters/?collection_id=cptac_ccrcc
https://doi.org/10.7937/K9/TCIA.2018.OBLAMN27
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REAGENT or RESOURCE SOURCE IDENTIFIER

TCGA KIRC
Cancer Genome Atlas 
Research et al.83 https://portal.gdc.cancer.gov/

OmniPath Turei et al.84 https://omnipathdb.org/#faq

NetworKIN Linding et al.85 https://networkin.info/

DEPOD Damle et al.86 http://www.depod.bioss.uni-freiburg.de/

SIGNOR Licata et al.87 https://signor.uniroma2.it/

Software and algorithms

BWA v0.7.17-r1188 Li et al.88 http://bio-bwa.sourceforge.net/

CharGer v.0.5.4 Scott et al.89 https://github.com/ding-lab/CharGer

COCOON Clark et al.13 https://github.com/ding-lab/COCOONS

ConsensusClusterPlus v1.48.0 Wilkerson et al.90
https://bioconductor.org/packages/
ConsensusClusterPlus/

COSMIC Mutational Signatures v3 Alexandrov et al.91 https://cancer.sanger.ac.uk/cosmic/signatures/

DEPO Sun et al.92 http://dinglab.wustl.edu/depo

EricScript v0.5.5 Benelli et al.93 https://sites.google.com/site/bioericscript/

germlinewrapper v1.1 Clark et al.13 https://github.com/ding-lab/germlinewrapper

HTSeq v0.11.2 Anders et al.94 https://github.com/simon-anders/htseq

INTEGRATE v0.2.6 Zhang et al.95 https://sourceforge.net/projects/integrate-fusion/

Manta v1.6.0 Chen et al.96 https://github.com/Illumina/manta

MuTect v1.1.7 Cibulskis et al.97 https://github.com/broadinstitute/mutect

Pindel v0.2.5 Ye et al.98 https://github.com/genome/pindel

Python v3.7 Python Software Foundation https://www.python.org/

R v3.6 R Development Core Team https://www.R-project.org

R-rollup Polpitiya et al.99 https://omics.pnl.gov/software/danter

Samtools v1.2 Li et al.100 https://www.htslib.org/

SignatureAnalyzer Alexandrov et al.91
https://github.com/broadinstitute/getzlab-
SignatureAnalyzer

somaticwrapper v1.6 Clark et al.13 https://github.com/ding-lab/somaticwrapper

STAR-Fusion v1.5.0 Haas et al.101 https://github.com/STAR-Fusion/STAR-Fusion

Strelka v2.9.2 Kim et al.102 https://github.com/Illumina/strelka

UpSetR Conway et al.103 https://github.com/hms-dbmi/UpSetR/

VarScan v2.3.8 Koboldt et al.104 https://dkoboldt.github.io/varscan/

xCell v1.2 Aran et al.105 http://xcell.ucsf.edu/

CIBERSORTx Newman et al.106 https://cibersortx.stanford.edu/

MetaboAnalyst 5.0 Pang et al.107 https://www.metaboanalyst.ca/
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