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The identification of metabolites 
from gut microbiota in NAFLD 
via network pharmacology
Ki‑Kwang Oh , Haripriya Gupta , Byeong Hyun Min , Raja Ganesan , Satya Priya Sharma , 
Sung Min Won , Jin Ju Jeong , Su Been Lee , Min Gi Cha , Goo Hyun Kwon , Min Kyo Jeong , 
Ji Ye Hyun , Jung A Eom , Hee Jin Park , Sang Jun Yoon , Mi Ran Choi , Dong Joon Kim  & 
Ki Tae Suk *

The metabolites of gut microbiota show favorable therapeutic effects on nonalcoholic fatty liver 
disease (NAFLD), but the active metabolites and mechanisms against NAFLD have not been 
documented. The aim of the study was to investigate the active metabolites and mechanisms of gut 
microbiota against NAFLD by network pharmacology. We obtained a total of 208 metabolites from 
the gutMgene database and retrieved 1256 targets from similarity ensemble approach (SEA) and 947 
targets from the SwissTargetPrediction (STP) database. In the SEA and STP databases, we identified 
668 overlapping targets and obtained 237 targets for NAFLD. Thirty‑eight targets were identified out 
of those 237 and 223 targets retrieved from the gutMgene database, and were considered the final 
NAFLD targets of metabolites from the microbiome. The results of molecular docking tests suggest 
that, of the 38 targets, mitogen‑activated protein kinase 8‑compound K and glycogen synthase 
kinase‑3 beta‑myricetin complexes might inhibit the Wnt signaling pathway. The microbiota‑signaling 
pathways‑targets‑metabolites network analysis reveals that Firmicutes, Fusobacteria, the Toll‑like 
receptor signaling pathway, mitogen‑activated protein kinase 1, and phenylacetylglutamine are 
notable components of NAFLD and therefore to understanding its processes and possible therapeutic 
approaches. The key components and potential mechanisms of metabolites from gut microbiota 
against NAFLD were explored utilizing network pharmacology analyses. This study provides scientific 
evidence to support the therapeutic efficacy of metabolites for NAFLD and suggests holistic insights 
on which to base further research.
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The community of microorganisms inhabiting the human gut (gastrointestinal tract) is defined as the microbiota, 
which is estimated to be 100 trillion, including bacteria, viruses, fungi, and  protozoa1. The gut microbiota is a 
significant element in human health and disease and variations in its diversity are associated with an unhealthy 
diet, medicines, and pathogenic infections as well as chronic kidney  disease2,3. Notably, genetically engineered 
gut bacteria are significant therapeutic resources capable of producing beneficial metabolites for the treatment of 
chronic diseases such as cancer, autoimmune disorders, metabolic diseases, and beyond  NAFLD4. An imbalance 
in gut microbiota can lead to the progression of some diseases, such as cancer, atherosclerosis, type 1 diabetes, 
and even nonalcoholic fatty liver disease (NAFLD)5,6. It has been suggested to have relatively stable and diverse 
distributions with a communal crucial microbiota, including the Firmicutes and Bacteroidetes phyla, as the key 
 dominants7. The microbiota products are related to the occurrence and development of liver complications via 
diverse mechanisms, such as differential intestinal permeability, persistent inflammatory responses, and secre-
tion of some short-chain fatty  acids8. The microbiota products are related to the occurrence and development of 
liver complications via diverse mechanisms, such as differential intestinal permeability, persistent inflammatory 
responses, and secretion of some short-chain fatty  acids9.

In particular, the gut-related microbiota converts exogenous and endogenous compounds into metabolites 
via the microbiota and nervous  system10. These benefits of the cross-talk between microbiota and the gut can 
be exerted locally as well as in distant organs due to the systemic circulation of metabolites produced in the 
 intestine11. Furthermore, the gut-liver axis is critical for understanding the mechanism of diverse liver diseases, 
such as NAFLD, nonalcoholic steatohepatitis (NASH), and the development and occurrence of  cirrhosis12. For 
instance, the progression of NAFLD is related to lipopolysaccharide (LPS) produced by gram-negative bacteria 
inhabiting the  gut13. Likewise, the gut microbiota converts choline into trimethylamine oxide, which exacerbates 
liver inflammation and  damage14,15. This implies that the gut microbiota is critically related to liver diseases 
caused by inflammation. Over the past few years, the gut microbiota has been an increasingly significant thera-
peutic strategy for relieving NAFLD due to its great efficacy and low adverse  effects16. The metabolites produced 
by gut microbiota are effective agents for the treatment of  NAFLD17. Some microbiota-associated metabolites 
have been examined to determine either positive or negative effects on the development of NAFLD, even though 
the number of metabolites of gut microbiota is not completely  clear18. Furthermore, the active metabolites of gut 
microbiota and their pharmacological mechanisms against NAFLD have not yet been reported. Hence, studies 
on active metabolites transformed by substrates and their mechanism of action should be better defined prior 
to clinical trials of proposed NAFLD treatments.

We suggest that the systematic methodology of network pharmacology can be used to unravel interac-
tions of multiple components, for gut microbiota analysis, such as microbiota, signaling pathways, targets, and 
metabolites. Most recently, a report demonstrated that the gut microbiota have anti-fatigue effects by analyzing 
multiple targets via network  pharmacology19. The development and occurrence of NAFLD are dependent on 
multiple factors that involve inherited characteristics as well as inconsistent microbiota  distribution20. Therefore, 
network pharmacology would seem to be a very effective technology to explore the function of microbiota-related 
metabolites against diseases.

In this study, network pharmacology was utilized to investigate the analysis of a multi-factorial and very com-
plex process, including key microbiota, signaling pathways, targets, and metabolites, in NAFLD. In parallel, we 
determined the key signaling pathways, targets, and metabolites to alleviate NAFLD. First, metabolites produced 
by the gut microbiome were identified utilizing a microbiome database, and metabolite-related targets were 
identified using cheminformatics. Then, NAFLD-related targets were retrieved via a bioinformatics database, and 
we identified the final targets among the metabolite-related targets and NAFLD targets. Second, we conducted a 
protein–protein interaction (PPI) network analysis, Kyoto encyclopedia of genes and genomes (KEGG) enrich-
ment analysis, and gene ontology (GO) analysis. In key signaling pathways, we performed molecular docking 
test (MDT) to verify the most stable metabolites, which were identified by drug-likeness and toxicity in the in 
silico platform. Finally, we analyzed the microbiota-signaling pathways-targets-metabolites (MSTM) networks 
to identify the most significant components, microbiota, signaling pathways, targets, and metabolites from a 
holistic perspective. The workflow is represented in Fig. 1.

Methods
Selection of gut microbiota metabolites and targets. The metabolites and targets of gut microbiota 
were retrieved by gutMGene v1.0 (http:// bio- annot ation. cn/ gutmg ene/) (Accessed on 2 April 2022). The Sim-
plified Molecular Input Line Entry System (SMILES) formats of each metabolite were identified by PubChem 
(https:// pubch em. ncbi. nlm. nih. gov/) (accessed on 3 April 2022).

Identification of core targets against non‑alcoholic fatty liver disease. The targets related to 
metabolites were identified through both similarity ensemble approach (SEA) (http:// sea. bkslab. org/) (accessed 
on 4 April 2022)21 and SwissTargetPrediction (STP) (http:// www. swiss targe tpred iction. ch/) (accessed on 4 April 
2022)22 with the “Homo sapiens” setting. The overlapping targets between the SEA and STP databases were con-
sidered to be important targets for further analysis. In addition, NAFLD targets were obtained by DisGeNET 
(https:// www. disge net. org/) (accessed on 4 April 2022)23 and OMIM (accessed on 5 April 2022)24. Significant 
targets were identified among the metabolite-related targets and NAFLD targets. Then, the core targets were 
recognized between the significant targets and the gutMGene database.

Construction of the protein–protein interaction network. The PPI network was constructed using 
R package and was based on final targets in STRING analysis (https:// string- db. org/) (accessed on 6 April 2022). 

http://bio-annotation.cn/gutmgene/
https://pubchem.ncbi.nlm.nih.gov/
http://sea.bkslab.org/
http://www.swisstargetprediction.ch/
https://www.disgenet.org/
https://string-db.org/
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A target with the highest degree value in the PPI networks was considered a hub target to control the PPI net-
work against NAFLD.

Analysis of gene ontology and Kyoto encyclopedia of genes and genomes pathways of gut 
microbiota metabolites. GO analysis was performed to describe the functions of the targets, and con-
sisted of molecular function (MF), biological function (BF), and cellular component (CC) analyses. The KEGG 
pathway enrichment analysis was used to understand the potential signaling pathways related to the final targets 
against NAFLD. The bubble plots are based on a rich factor defined as the gene ratio expressed differentially to 
the total target number in a signaling  pathway25.

The preparation of metabolites and targets for molecular docking testing. The metabolites 
associated with the key target were converted from the .sdf format from PubChem to.pdb format using PyMOL, 
and we obtained the .pdbqt format via AutoDock. The key target was identified in STRING through RCSB 
(https:// www. rcsb. org/) (accessed on 6 April 2022). The.pdb format obtained by RCSB was converted into .pdbqt 
format by using AutoDock (http:// autod ock. scrip ps. edu/) (accessed on 6 April 2022).

Molecular docking test of metabolites for the key target. The metabolites were docked with the 
key target utilizing AutoDock 4 by setting up 4 energy ranges and 8 exhaustiveness values as the defaults to 
acquire 10 different poses of the  metabolites26. The center of the key target was x =  − 0.861, y = 2.109, z = 1.303. 
The active site grid box size was set to x = 40 Å, y = 40 Å, and z = 40 Å. Detailed information on 2D binding was 
generated by LigPlot + 2.2 (https:// www. ebi. ac. uk/ thorn ton- srv/ softw are/ LigPl us/ downl oad. html) (accessed on 
7th April 2022)27. The threshold value of MDT was – 6.0 kcal/mol28 and a core metabolite with the lowest Gibbs 
free energy was selected on the metabolite-target complex in PyMOL.

Evaluation of drug‑likeness properties. The drug-likeness properties of the three metabolites were 
evaluated using  SwissAMDE29 and the literature. Commonly, metabolites have hydrophilic properties and have 
low bioavailability; therefore, we identified their physicochemical properties through an in silico strategy.

Toxicological evaluation by ADMETlab. One of key reason for failure of drug development is the 
lack of safety caused by some adverse effects: hERG blockers obstruct potassium  channels30 and cause human 
 hepatotoxicity31, Ames  mutagenicity32, Skin  sensitization33, Lethal Dose 50 (LD50) of acute  toxicity34, and Drug 
Induced Liver Injury (DILI)35. Thus, we confirmed the six parameters by using ADMETlab  platform36.

Microbiota‑signaling pathways‑targets‑metabolites network analysis. The MSTM networks 
were constructed as a size plot based on the degree value of each node. In the network plot, yellow circles (nodes) 
describe the gut microbiota; pink circles (nodes) display the signaling pathways; orange circles (nodes) represent 
the targets; and violet circles (nodes) represent the metabolites. The size of the yellow circles represents the total 
number of relationships with signaling pathways, metabolites, and targets; the size of pink circles represents the 
number of correlations with gut microbiota; the size of orange circles depicts the number of interactions with 

Figure 1.  The workflow of this study.

https://www.rcsb.org/
http://autodock.scripps.edu/
https://www.ebi.ac.uk/thornton-srv/software/LigPlus/download.html
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signaling pathways; and the size of violet circles describes the number of relationships with targets. The merged 
network was built using R Package.

Results
Acquisition of potential targets and metabolites of gut microbiota. We obtained 208 metabolites 
from the gutMgene microbiome database. The obtained targets and metabolites were considered significant 
components to analyze the therapeutic effects of the gut microbiota.

Identification of 38 core targets from gut microbiota metabolites. A total of 208 metabolites were 
analyzed to search for their targets in silico in the SEA and STP databases. We identified 1256 targets from SEA 
and 947 targets from STP (Fig. 2A), and 668 targets were identified as overlapping targets between the two data-
bases (Fig. 2B). A total of 237 targets among the 668 targets and 1836 NAFLD targets were identified; therefore, 
38 core targets were obtained by analysis of the 223 targets (Fig. 2C).

Protein–protein interaction network analysis. The PPI network consists of 36 nodes and 237 edges 
(Fig. 2D) in the 38 core targets, the size of which is based on the degree of value (Table 1). Two targets (ADRA2B 
and ST6GAL1) were not linked to one another in the 38 core targets. Based on the network map, a key target, 
AKT1, was defined as the uppermost target, followed by IL6, PPARG, JUN, and EGFR, further verifying the 
significant role of the target against NAFLD.

Identification of the 41 Kyoto encyclopedia of genes and genomes pathway enrichments and 
gene ontology enrichment analysis of the 3 components. To further evaluate the pharmacological 
mechanism of gut metabolites in the therapeutic strategy of NAFLD, the 38 core targets were investigated by 
KEGG pathway and GO enrichment analyses. The KEGG pathway enrichment analysis was based on signal-
ing pathways (Table 2), the bubble size of which indicates the number of targets related to the pathway. The 41 
signaling pathways of the KEGG pathway enrichment are represented in Fig. 3A, suggesting that the Wnt signal-
ing pathway (Fig. 3B) might function as a potent inhibitive pathway of NAFLD. The GO enrichment analysis 
consisted of three components: molecular function (MF), biological process (BP), and cellular component (CC).

Figure 2.  (A) The number of overlapping 668 targets between SEA and STP database. (B) The number of 
overlapping 237 targets between the 668 targets and NAFLD-related targets. (C) The number of the final 
overlapping 38 targets between the 237 targets and gut human targets. (D) The PPI networks (36 nodes and 237 
targets).
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Kyoto encyclopedia of genes and genomes pathway analysis. The Wnt signaling pathway out of 
the 41 KEGG pathways was the most significant mechanism and indicates the critical targets on the KEGG 
pathway enrichment  diagram37.

Molecular docking test. A total of 53 metabolites and three targets (JUN, MAPK8, and GSK3B) linked 
to the Wnt signaling pathway were identified via KEGG pathway enrichment analysis. MDT was performed to 
verify the binding affinity of each complex at the molecular level. AutoDockTools-1.5.6 software was used for 
MDT analysis; the docking scores are displayed in Supplementary Tables 1 and 2. The higher the negative dock-
ing score is, the more stable the complex is between the ligand and protein.

The cutoff of AutoDockTools-1.5.6 software is (< -6.0 kcal/mol), which can exert its efficacy on the  target28. 
Between the 53 metabolites and 3 targets, the most stable complexes were JUN-platycodin D (− 9.0 kcal/mol), 
MAPK8-Compound K (− 8.5 kcal/mol), and GSK3B-myricetin (− 10.6 kcal/mol) (Fig. 4).

Identification of drug‑likeness properties in silico. The three metabolites (platycodin D, Com-
pound K, and myricetin) were identified by the ADME parameters in silico. Platycodin D violated the drug-
likeness properties characterized by Lipinski’s rule, including the topological polar surface area (TPSA) (cutoff 
value: < 140 Å2). The other two metabolites (Compound K and myricetin) had acceptable drug-likeness proper-
ties (Supplementary Table 3). Thus, we suggest that the two compounds can be metabolized by the gut micro-
biota and could be administered directly as new agents against NAFLD.

Toxicological properties of the two metabolites. The possible toxicological properties of Compound 
K and myricetin were evaluated by the ADMElab online tool. Both were free of such attributes, which can be a 
hurdle for drug development (Supplementary Table 4).

Identification of key components in the microbiota‑signaling pathways‑targets‑metabolites 
network analysis. The MSTM network analysis was performed using the R package with the STRING 
database, comprising 232 nodes (41 microbiota, 41 signaling pathways, 23 targets, and 127 metabolites) and 
1047 edges of the network. The green circles represent the gut microbiota, the pink circles represent the signal-
ing pathways, the orange circles depict the targets, and the violet circles describe the metabolites (Fig. 5). The 
connectivity between nodes indicates the direct relationships of the nodes. The greater the number of linked 
nodes is, the more significant the function of the microbiota, signaling pathways, targets, or metabolites. Then, 
we analyzed the degree of value using R package.

Table 1.  The degree of value of PPI networks. HDAC5, histone deacetylase 5; ADRA2B, alpha-2B adrenergic 
receptor; HCAR2, hydroxycarboxylic acid receptor 2; ADRB2, adrenoceptor beta 2; HDAC3, histone 
deacetylase 3; HDAC2, histone deacetylase 2; HDAC1, histone deacetylase 1; CTSD, cathepsin D; IL2, 
interleukin 2; TLR4, toll-like receptor 4; TLR9, toll-like receptor 9; AKT1, AKT serine/threonine kinase 1; 
EGFR, epidermal growth factor receptor; CXCL8, C-X-C motif chemokine ligand 8; PTGS2, prostaglandin-
endoperoxide synthase 2; MAPK8, mitogen-activated protein kinase 8; IL6, interleukin-6; JUN, jun proto-
oncogene, AP-1 transcription factor subunit; GSK3B, glycogen synthase kinase-3 beta; RELA, RELA proto-
oncogene, NF-KB subunit; MAPK14, mitogen-activated protein kinase 14; CASP3, caspase 3; MAPK1, 
mitogen-activated protein kinase 1.

No. Target Degree of value No. Target Degree of value

1 AKT1 28 19 VDR 12

2 IL6 26 20 CYP1A1 11

3 PPARG 26 21 CYP3A4 11

4 JUN 25 22 GSK3B 11

5 EGFR 22 23 HDAC3 10

6 CASP3 20 24 TLR9 10

7 PTGS2 20 25 NR1H4 9

8 RELA 20 26 G6PD 7

9 TLR4 20 27 NOX1 7

10 CXCL8 19 28 HDAC5 6

11 NFE2L2 19 29 ADRB2 5

12 HDAC1 18 30 GPBAR1 5

13 AHR 17 31 CYP1A2 4

14 IL2 17 32 CYP2D6 4

15 MAPK14 15 33 HDAC9 4

16 MAPK8 15 34 CTSD 3

17 HDAC2 12 35 HCAR2 3

18 MAPK1 12 36 RORA 1
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Table 2.  The targets of 41 signaling pathways related to NAFLD. HDAC5, histone deacetylase 5; ADRA2B, 
alpha-2B adrenergic receptor; HCAR2, hydroxycarboxylic acid receptor 2; ADRB2, adrenoceptor beta 
2; HDAC3, histone deacetylase 3; HDAC2, histone deacetylase 2; HDAC1, histone deacetylase 1; CTSD, 
cathepsin D; IL2, interleukin 2; TLR4, toll-like receptor 4; TLR9, toll-like receptor 9; AKT1, AKT serine/
threonine kinase 1; EGFR, epidermal growth factor receptor; CXCL8, C-X-C motif chemokine ligand 
8; PTGS2, prostaglandin-endoperoxide synthase 2; MAPK8, mitogen-activated protein kinase 8; IL6, 
interleukin-6; JUN, jun proto-oncogene, AP-1 transcription factor subunit; GSK3B, glycogen synthase kinase-3 
beta; RELA, RELA proto-oncogene, NF-KB subunit; MAPK14, mitogen-activated protein kinase 14; CASP3, 
caspase 3; MAPK1, mitogen-activated protein kinase 1.

KEGG ID and description Target genes False discovery rate

hsa04620: Toll-like receptor signaling pathway MAPK1, AKT1, RELA, JUN, MAPK8, IL6, CXCL8, 
TLR4, TLR9, MAPK14 5.19E−10

hsa04657: IL-17 signaling pathway MAPK1, RELA, GSK3B, JUN, MAPK8, IL6, PTGS2, 
CXCL8, MAPK14, CASP3 3.26E−13

hsa04933: AGE-RAGE signaling pathway in diabetic 
complications

MAPK1, AKT1, CASP3, RELA, JUN, MAPK8, IL6, 
CXCL8, MAPK14, NOX1 4.70E−13

hsa04668: TNF signaling pathway MAPK1, AKT1, RELA, JUN, MAPK8, IL6, PTGS2, 
MAPK14, CASP3 3.02E−11

hsa04917: Prolactin signaling pathway AKT1, RELA, GSK3B, MAPK8, MAPK14, MAPK1 6.52E−08

hsa04660: T cell receptor signaling pathway MAPK1, AKT1, RELA, JUN, GSK3B, MAPK1, MAPK14, 
MAPK8 5.3E−10

hsa04625: C-type lectin receptor signaling pathway MAPK1, AKT1, RELA, JUN, IL6, PTGS2, MAPK8, IL2, 
MAPK14 1.58E−11

hsa04012: ErbB signaling pathway MAPK1, AKT1, JUN, GSK3B, EGFR, MAPK8 0.000000156

hsa04664: Fc epsilon RI signaling pathway MAPK1, AKT1, MAPK14, MAPK8 0.0000462

hsa04066: HIF-1 signaling pathway MAPK1, AKT1, RELA, EGFR, IL6, TLR4 0.000000552

hsa05120: Epithelial cell signaling in Helicobacter pylori 
infection RELA, JUN, MAPK8, CXCL8, EFGR, MAPK14, CASP3 1.5E−09

hsa04722: Neurotrophin signaling pathway MAPK1, AKT1, RELA, JUN, MAPK8, MAPK14 3.34E−08

hsa04662: B cell receptor signaling pathway MAPK1, AKT1, RELA, JUN, GSK3B 0.00000319

hsa04370: VEGF signaling pathway MAPK1, AKT1, PTGS2, MAPK14 0.0000278

hsa04071: Sphingolipid signaling pathway MAPK1, AKT1, MAPK1, MAPK8, MAPK14, CTSD 0.000000861

hsa04068: FoxO signaling pathway MAPK1, AKT1, IL6, MAPK8, EGFR, MAPK14 0.00000132

hsa04919: Thyroid hormone signaling pathway MAPK1, AKT1, HDAC1, HDAC2, HDAC3, GSK3B 0.000000974

hsa04064: NF-kappa B signaling pathway RELA, PTGS2, CXCL8, TLR4 0.0002

hsa04920: Adipocytokine signaling pathway AKT1, RELA, MAPK8 0.0011

hsa04062: Chemokine signaling pathway MAPK1, AKT1, RELA, GSK3B, CXCL8 0.00013

hsa04630: JAK-STAT signaling pathway AKT1, IL2, IL6, EGFR 0.00092

hsa04926: Relaxin signaling pathway MAPK1, AKT1, RELA, JUN, MAPK8, MAPK14, EGFR 6.55E−08

hsa04622: RIG-I-like receptor signaling pathway RELA, MAPK8, MAPK14, CXCL8 0.0000547

hsa04621: NOD-like receptor signaling pathway RELA, JUN, MAPK8, IL6, CXCL8, TLR4, MAPK14, 
MAPK1 2.15E−08

hsa04915: Estrogen signaling pathway MAPK1, AKT1, JUN, EGFR, CTSD 0.0000312

hsa04024: cAMP signaling pathway MAPK1, AKT1, RELA, JUN, MAPK8, HCAR2, ADRB2 0.00000112

hsa04910: Insulin signaling pathway MAPK1, AKT1, GSK3B, MAPK8 0.000052

hsa04072: Phospholipase D signaling pathway MAPK1, AKT1, EGFR, CXCL8 0.00071

hsa04150: mTOR signaling pathway MAPK1, AKT1, GSK3B 0.0083

hsa04912: GnRH signaling pathway MAPK1, JUN, MAPK8, EGFR, MAPK14 0.00000565

hsa04151: PI3K-Akt signaling pathway MAPK1, AKT1, RELA, GSK3B, IL2, EGFR, IL6, TLR4 0.00000224

hsa04010: MAPK signaling pathway MAPK1, AKT1, RELA, JUN, MAPK8, EGFR, MAPK14, 
CASP3 0.000000606

hsa04921: Oxytocin signaling pathway MAPK1, JUN, EGFR, PTGS2 0.00073

hsa04371: Apelin signaling pathway MAPK1, AKT1, HDAC5 0.0059

hsa04014: Ras signaling pathway MAPK1, AKT1, RELA, MAPK8, EGFR 0.00031

hsa04022: cGMP-PKG signaling pathway MAPK1, AKT1, ADRB2, ADRA2B 0.00094

hsa04261: Adrenergic signaling in cardiomyocytes MAPK1, AKT1, MAPK14, ADRB2 0.00071

hsa04015: Rap1 signaling pathway AKT1, MAPK14, EGFR 0.0019

hsa04550: Signaling pathways regulating pluripotency of 
stem cells MAPK1, AKT1, MAPK14, GSK3B 0.00062

hsa04330: Notch signaling pathway HDAC1, HDAC2 0.012

hsa04310: Wnt signaling pathway JUN, MAPK8, GSK3B 0.0087
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Figure 3.  (A) KEGG enrichment analysis. (B) GO analysis.

Figure 4.  The molecular docking test on key targets of Wnt signaling pathway. (A) compound K-MAPK8 (PDB 
ID: 4YRB). (B) myricetin-GSK3B (PDB ID: 1J1B).
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Figure 5.  The MSTM networks (229 nodes and 1,044 edges). Yellow circle: gut microbiota; pink circle: 
signaling pathway; orange circle: target; violet circle: metabolite. (A) Microbiota. Firmicutes: FM; Fusobacteria: 
FB; Escherichia coli; E.coli; Lactobacillus acidophilus ATCC 4357: LA; Lactobacillus rhamnosus GG: LRGG; 
Lactobacillus: LB; Dictyostelium discoideum: DD; Enterococcus durans M4-5: ED; Lactobacillus paracasei 
JS1: LPJS1; Faecalibacterium prausnitzii A2-165: FPA; Eubacterium limosum: EL; Enterococcus durans EP1: 
EDEP1; Enterococcus durans EP2: EDEP2; Enterococcus durans EP3: EDEP3; Lachnospiraceae: LS; Streptococcus 
salivarius JIM8772: SSJ; Faecalibacterium prausnitzii L2-6: FPL; Faecalibacterium prausnitzii M 21/2: FPM; 
Faecalibacterium prausnitzii CNCM I-4541: FPI4541; Faecalibacterium prausnitzii CNCM I-4543: FPI4543, 
Faecalibacterium prausnitzii CNCM I-4546: FPI4546; Faecalibacterium prausnitzii CNCM I-4573: FPI4573; 
Faecalibacterium prausnitzii CNCM I-4644: FPI4644; Faecalibacterium prausnitzii CNCM I-4575: FPI4575; 
Bifidobacterium adolescentis: BA; Bacteroides vulgatus: BV; Bacteroides distasonis: BD; Streptococcus salivarius: 
SS; Faecalibacterium prausnitzii: FP; Lactobacillus plantarum L9: LPL9; Bacteroides fragilis ATCC 23,745: BF; 
Streptococcus salivarius CIP102503: SSC; Akkermansia muciniphila ATCC BAA-835: AMBA; Faecalibacterium 
prausnitzii A2 < U + 2013 > 165: FPA2; Akkermansia muciniphila: AM; Eubacterium: EB; Enterococcus: EC; 
Bifidobacterium: BFB; Bacteroides: BI; Salmonella enterica: SE; Clostridium butyricum ATCC 19,398: CB. 
(B) Signaling pathways. hsa04620: Toll-like receptor signaling pathway; hsa04657: IL-17 signaling pathway; 
hsa04933: AGE-RAGE signaling pathway in diabetic complications; hsa04668: TNF signaling pathway; 
hsa04917: Prolactin signaling pathway; hsa04660: T cell receptor signa;ing pathway; hsa05120: Epithelial 
cell signaling in Helicobacter pylori infection; hsa04722: Neurotrophin signaling pathway; hsa04662: B cell 
receptor signaling pathway; hsa04370: VEGF signaling pathway; hsa04071: Sphingolipid signaling pathway; 
hsa04068: FoxO signaling pathway; hsa04919: Thyroid hormone signaling pathway; hsa04064: NF-kappa B 
signaling pathway; hsa04920: Adipocytokine signaling pathway; hsa04062: Chemokine signaling pathway; 
hsa04630: JAK-STAT signaling pathway; hsa04926: Relaxin signaling pathway; hsa04622: RIG-I-like receptor 
signaling pathway; hsa04621: NOD-like receptor signaling pathway; hsa04915: Estrogen signaling pathway; 
hsa04024: cAMP signaling pathway; hsa04910: Insulin signaling pathway; hsa04072: Phospholipase D 
signaling pathway; hsa04150: mTOR signaling pathway; hsa04912: GnRH signaling pathway; hsa04151: 
PI3K-Akt signaling pathway; hsa04010: MAPK signaling pathway; hsa04921: Oxytocin signaling pathway; 
hsa04371: Apelin signaling pathway; hsa04014: Ras signaling pathway; hsa04022: cGMP-PKG signaling 
pathway; hsa04261: Adrenergic signaling in cardiomyocytes; hsa04015: Rap1 signaling pathway; hsa04310: 
Wnt signaling pathway; hsa04550: Signaling pathways regulating pluripotency of stem cells; hsa04330: Notch 
signaling pathway. (C) Targets. HDAC5: Histone deacetylase 5; ADRA2B: Alpha-2B adrenergic receptor; 
HCAR2: Hydroxycarboxylic acid receptor 2; ADRB2: Adrenoceptor Beta 2; HDAC3: Histone Deacetylase 3; 
HDAC2: Histone Deacetylase 2; HDAC1: Histone Deacetylase 1; CTSD: Cathepsin D; IL2: Interleukin 2; TLR4: 
Toll-like receptor 4; TLR9: Toll-like receptor 9; AKT1: AKT Serine/Threonine Kinase 1; EGFR: Epidermal 
Growth Factor Receptor; CXCL8: C-X-C Motif Chemokine Ligand 8; PTGS2: Prostaglandin-Endoperoxide 
Synthase 2; MAPK8: Mitogen-Activated Protein Kinase 8; IL6: Interleukin-6; JUN: Jun Proto-Oncogene, 
AP-1 Transcription Factor Subunit; GSK3B: Glycogen synthase kinase-3 beta; RELA: RELA Proto-Oncogene, 
NF-KB Subunit; MAPK14: Mitogen-Activated Protein Kinase 14; CASP3: Caspase 3; MAPK1: Mitogen-
Activated Protein Kinase 1. (D) Metabolites. Phenylacetylglutamine: PAG; Naringenin chalcone: NC; Caffeic 
acid: CA; Phenylacetic acid: PA; Equol: EQ; Dihydroisoferulic acid: DA; 1,3-Diphenylpropan-2-ol: 1,3-D-2; 
Enterodiol: ETD; 3-Phenylpropionic acid: 3-PA; Pioglitazone: PGZ; Lunularin: LL; 3-Indolepropionic acid: 3-IA; 
Tretinoin: TN; Phloretin: PR; Icaritin: IR; Secoisolariciresinol: SLS; Apigenin: AG; Luteolin: LTL; Diosmetin: 
DS; Kaempferol: KP; Genistein: GS; Demethyltexasin: DMT; Quercimeritrin: QCM; Phenylalanine: PLA; 
Indole-3-lactic acid: I-3-LA; 11-Methoxycurvularin: 11-M; Dihydroresveratrol: DHR; Ethyl phenyllactate, (-)-: 
EP; Stilbene-3,4-diol: S-3,4-D; (S,R)-1-O-caffeoylglycerol: 1-O-C; Daidzein: DZ; Quercetin: QR; Acacetin: 
AC; Chrysin: CS; Urolithin A: UA; Indole-3-carboxylic acid: I-3-C; 3,4-Dihydroxyphenylacetic acid: 3,4-
DA; Isoquercitrin: IQ; 10-Keto-12Z-octadecenoic acid: 10-K-12-O; Compound K: CK; 3-Methyloxindole: 
3M; Oxindole: OI; (20S)-Protopanaxadiol: 20SP; Protopanaxadiol: PPD; Diosgenin: DG; Baohuoside I: BAI; 
Myricetin: MC; Baicalein: BAC; CHEBI:137478: C13; Levodopa: LD; Butyrate: BT; 10-Oxo-11-octadecenoic 
acid: 10-O-11-O; Baicalin: BC; Phloretic acid: PHA; HPLA: HP; Glycitein: GC; Dopamine: DP; Iuro-a: IA; 
Indole-3-acrylic acid: I-3-A; Dihydroglycitein: DHG; Leucocianidol: LCA; Ponciretin: PC; Danshensuan A: 
DANA; Hesperetin dihydrochalcone: HD; Platycodin D: PD; Didemethylmatairesinol: DMM; D-Mannose: DM; 
Acetic: AT; Genipin: GN; (+)-p-Hydroxyhydratropic acid: (+)-p–H; 5-HIAA: 5-HI; 4-Hydroxyphenylacetic 
acid: 4-HA; Hydroxyquercitrin: HQ; Quercitrin: QC; Acifran: AF; PhlP: PH; Dihydrocaffeic acid: DHDA; 
AI3-32,395: AI3; luro-a: IA; Serotonin: ST; Glycocholic acid: GCA; Lacto-N-tetraose: LNT; Nicotinic acid: 
NA; Colibactin: CBC; Palmitic acid: PAA; 8-Prenylnaringenin: 8P; 5-OH-Equol: 5OE; Dihydrogenistein: 
DHG; Dihydrodaidzein: DHDD; Arctigenin: ATG; Naringenin: NRG; DIF-3: D3; Q51617483: Q5; 3-Hydroxy-
4-methoxybenzenepropanoic acid: 3H4A; 5-(Hydroxy-3-indolyl)lactic acid: 5HL; p-Cresol sulfate: p-Cs; 
Norathyriol: NTR; Phloroglucinol: PRG; Hydroumbellic acid: HDQ; CHEBI:10980: C10; Hydroquinone: HDQ; 
5-hydroxyindole-3-lactic acid: 5H3L; 6′-OH-O-Dma: 6OOD; O-Desmethylangolensin: OD; 10-oxo-12Z-
octadecenoic acid: 12O; Lithocholic acid: LIA; Ursodeoxycholic acid: URA; Deoxycholic acid: DEA; p-Cresol 
glucuronide: PCG; Ginsenoside-Rd: GRD; Ginsenoside Rh2: GRH; 20(R)-Ginsenoside Rh2: 20GR; LNnT: 
LN; Folic acid: FA; 5-(3,4-Dihydroxyphenyl)-valerolactone: 5V; Acetoin: ATI; (R)-3-Hydroxybutyrate: R3H; 
(S)-3-Hydroxybutyric acid: S3HA; Isovaleric acid: ISVA; Isobutyric acid: ISBA; Succinate: SC; Valerate: VL; 
4-Hydroxybenzoic acid: 4HBA; 3-Hydroxybenzoic acid: 3HBA; 2-Acetoxypropanoic acid: 2APA; D-Glucuronic 
Acid: DGA.
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We discovered that Firmicutes and Fusobacteria are the most significant microbiota, with 586 degrees of value 
each, the Toll-like receptor signaling pathway is the most significant effector mechanism, with 33 degrees of value, 
MAPK1 is the uppermost target, with 34 degrees of value, and phenylacetylglutamine is the highest metabolite, 
with 10 degrees of value. The 4 components exhibited more relationships, suggesting that these components 
might be the most significant hallmarks in NAFLD.

Discussion
We investigated the interaction between metabolites and gut microbiota via data-driven analysis. Previous 
research has suggested the use of gut microbiota in NAFLD treatment, but the details of the relevant metabolites 
and their targets remain unclear. Recently, network-based systems pharmacology has been used for diagnosis of 
various diseases and identification of target  substances38. This study demonstrated that the relevant microbiome-
derived metabolites might be detected by using network-based systems pharmacology, and the results of our 
study support the power of this approach.

In the PPI networks, AKT1, IL6, PPARG, JUN, and EGFR were defined as important targets. AKT inactiva-
tion attenuated NAFLD progression and liver tumorigenesis in mouse  experiments39. The IL6 level was markedly 
increased in NAFLD patients, which can exacerbate its  severity40. This implies that inactivation of IL6 might be 
a therapeutic strategy to alleviate NAFLD. Additionally, a study demonstrated that upregulation of PPARG can 
accelerate the progression of adipogenic hepatic  steatosis41. In the NAFLD cellular sample, the expression of 
JUN was considerably elevated, suggesting that miR-139-5p overexpression is an indirect approach to dampen 
the JUN expression  level42. An animal test suggested that epidermal growth factor receptor (EGFR) activation 
exacerbates the severity of NAFLD due to dysfunction of lipid  metabolism43. Therefore, the five targets may be 
promising key targets for the treatment of NAFLD via gut microbiota metabolites.

The GO enrichment analysis results suggest that NAFLD targets of metabolites from gut microbiota are 
mainly related to bile acid receptor activity, vitamin D 24-hydroxylase activity, the Sin3 complex, nucleosome 
remodeling and the deacetylase (NuRD) complex, the neutrophil apoptotic process, alkaloid catabolic process, 
dibenzo-p-dioxin metabolic process, and fungiform papilla formation to relieve NAFLD. This analysis sheds 
light on the functions of metabolites in the treatment of NAFLD.

The results of the KEGG enrichment analysis indicate enrichment in inflammatory-related pathways, such 
as the IL-17 signaling pathway, AGE-RAGE signaling pathway, C-type lectin receptor signaling pathway, TNF 
signaling pathway, Toll-like receptor signaling pathway, T-cell receptor signaling pathway, epithelial cell signaling 
in Helicobacter pylori infection, the NOD-like receptor signaling pathway, neurotrophin signaling pathway, and 
prolactin signaling pathway. The targets of the key metabolites of gut microbiota associated with NAFLD are also 
related to inflammation. The relationships of the 10 significant pathways according to the FDR (false discovery 
rate < 0.05) are briefly discussed. IL-17 signaling pathway: IL-17 signaling aggravated the severity of NAFLD 
in mouse experiments due to the causal contribution of gut microbiota driving IL-17 production in damaged 
 hepatocytes44. Advanced glycation end-products–receptor advanced glycation end-products (AGE-RAGE) sign-
aling pathway: The upregulation of advanced glycation end-products (AGEs) accelerates the detrimental effects 
(liver injury, inflammation, and hepatic fibrosis) of NAFLD; therefore, a restrictive regime of AGEs might be a 
therapeutic strategy to relieve  NAFLD45. C-type lectin receptor signaling pathway: C-type lectin is a hallmark 
to identify the stage of chronic liver disease, which is commonly upregulated in nonalcoholic steatohepatitis 
(NASH)46. It has been postulated that the overexpression of C-type lectin might induce excessive inflammation 
in hepatocytes. Tumor necrosis factor (TNF) signaling pathway: the expression level of TNF-α was increased in 
serum samples of NAFLD patients; in contrast, mice with deleted TNF receptors showed attenuated inflamma-
tion, steatosis, and  fibrosis47. Toll-like receptor 7 (TLR7) dampened the development of NAFLD, and might be 
a potential  treatment48. T-cell receptor signaling pathway: The dysregulation of T cells leads to the development 
of NAFLD, which results in cirrhosis and hepatocellular  carcinoma49. Epithelial cell signaling in Helicobacter 
pylori infection: Helicobacter pylori infection might lead to NAFLD due to excessive inflammatory responses 
and insulin  resistance50. NOD-like receptor signaling pathway: NLR induces the innate immune response to 
defend against foreign bodies, such as microbes or toxic chemicals, and the silencing of NLR can protect against 
 cytokines51. Neurotrophin signaling pathway: The synthesis of brain-derived neurotrophic factor in the central 
nervous system indirectly enhances NAFLD via  adiponectin52. Prolactin signaling pathway: Prolactin decreases 
lipid accumulation in hepatocytes, which ameliorates inflammation in the  liver53. The rich factor (gene-ratio) 
results in our analysis showed the Wnt signaling pathway to have the lowest rich factor, indicating that the path-
way might function as an inhibitive mechanism against NAFLD. Consistent with this result, Wnt antagonists 
have been shown to be a significant target for inhibiting the progression of  NAFLD54.

Our study shows that Compound K and myricetin are promising antagonists that bind stably to MAPK8 and 
GSK3B in the Wnt signaling pathway, respectively. Compound K is a major metabolite of ginsenoside Rb1, which 
is converted by the gut  microbiota55. Myricetin is a metabolite of myricitrin, which is transformed by Escherichia 
sp. 12, Escherichia sp. 33, and Enterococcus sp.4556. Furthermore, these metabolites have stable physicochemical 
properties in common in the systemic circulation and have low toxicity."57.

According to the MSTM networks, the results suggest that 41 microbiota constituents, 41 signaling path-
ways, 23 targets, and 125 metabolites might exert therapeutic efficacy against NAFLD. The Firmicutes phyla play 
significant roles in repressing the growth of pathogenic microbes, maintaining a constant immune  system58. A 
group who consumed red wine combined with polyphenols had increased levels of Fusobacteria and Firmicutes, 
suggesting that the gut microbes might be significant players against  cirrhosis59. Moreover, polyphenols play 
important roles in inhibiting hepatic fat accumulation, which has been confirmed by several in vitro experiments, 
in vivo tests, and clinical  trials60. A finding which has been confirmed that both Firmicutes and Fusobacteria 
might exert desirable effects on NAFLD. MAPK inhibition attenuates obesity, insulin resistance, and steatosis 
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in  NAFLD61. With the highest degree of value of the metabolites of the gut microbiota, phenylacetylglutamine 
might be a biomarker to sign hepatic  dysfunction62.

Our results in this study show that a holistic-based analysis, as integrated science, is a powerful tool for 
unraveling complex diseases and targets, as concluded by  others63. Moreover, the associations and interactions 
between microbiota and complex chronic diseases can be better understood/elucidated utilizing network phar-
macology  concepts64.

Conclusion
In summary, this study investigated the key metabolites of gut microbiota in treating NAFLD via a network 
pharmacology-based study. We revealed that Compound K and myricetin can function as antagonists of the Wnt 
signaling pathway by docking stably to MAPK8 (also known as JNK) and GSK3B. Our study provides crucial 
evidence that Compound K converted from ginsenoside Rb1 and myricetin converted from myricitrin can be 
administered orally as a therapeutic strategy against NAFLD. From a holistic viewpoint, Firmicutes and Fuso-
bacteria, the Toll-like receptor signaling pathway, MAPK1, and phenylacetylglutamine might be important key 
components and distinctive features of NAFLD in MSTM networks. Thus, we suggest that a systemic approach 
to the analysis of metabolites of gut microbiota can be an effective methodology to screen therapeutic agents.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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