Skip to main content
. 2022 Dec 1;10(2):2204502. doi: 10.1002/advs.202204502

Table 4.

Electroactive biomaterials that can potentially be utilized for promoting bone healing and regeneration under various disease conditions

Electroactive biomaterials Category/Type Advantages Disadvantages Key references
Piezoelectric biomaterials Synthetic piezopolymers High flexibility and low stiffness Low biodegradability

Ribeiro et al.[ 155 ]

Kalimuldina et al.[ 156 ]

Rufato et al.[ 157 ]

Capuana et al.[ 158 ]

Williams[ 159 ]

Goonoo et al.[ 160 ]

Synthetic piezoceramics Similar mechanical properties to natural bone tissue, such as high hardness and friction coefficients Very brittle

Li et al.[ 163 ]

Chen et al.[ 164 ]

El‐Rashidy et al.[ 165 ]

Felice et al.[ 166 ]

Ziglari et al.[ 167 ]

Naturally‐occurring piezoelectric materials in polymeric or ceramic form Good biodegradability, excellent biocompatibility, and negligible cytotoxicity Higher inter‐batch variability than synthetic biomaterials

Shin et al.[ 168 ]

Rico‐Llanos et al.[ 169 ]

Arcos & Vallet‐Regí[ 170 ]

Baldini et al.[ 171 ]

Osorio et al.[ 172 ]

Jayakumar et al.[ 173 ]

Aguilar et al.[ 174 ]

Electroconductive biomaterial Carbon‐based biomaterials

Good mechanical properties

High electrical conductivity

Large specific surface area for loading of bioactive factors

Low biodegradability

Some degree of cytotoxicity

Shadjou et al.[ 179 ]

Tanaka et al.[ 180 ]

Aoki et al.[ 181 ]

Peng et al.[ 182 ]

Liu et al.[ 183 ]

Metal/metal oxides

Good mechanical properties

High electrical conductivity

Low biodegradability

Some degree of cytotoxicity

Wang et al.[ 185 ]

Li et al.[ 186 ]

Wang et al.[ 187 ]

Conductive polymers High electrical conductivity

Rigid and brittle

Low biodegradability

Liang and Goh.[ 188 ]

Rajzer et al.[ 189 ]

Guex et al.[ 190 ]

Electrostimulation

scaffolds/devices with implantable energy harvestors (IEH)

Piezoelectric nanogenerators (PENGs) Generate electrical stimuli without an external power source by harvesting energy from the human body Most of these technologies not yet mature, and face various challenges such as poor biodegradability, cytotoxicity and insufficient miniaturization Kao et al.[ 194 ]
Triboelectric nanogenerators (TENGs) Li et al.[ 195 ]
Mass imbalance oscillation generators (MIOG) Zurbuchen et al.[ 196 ]
Enzymatic biofuel cells (EBFCs) Haque et al.[ 197 ]
Endocochlear potential (EP) collectors Mercier et al.[ 198 ]
Photovoltaic cells (PVC) Long et al.[ 199 ]
Pyroelectric nanogenerators (PYENGs) Ryu & Kim[ 200 ]
Electroresponsive biomaterials Drug‐delivery Enable precisely‐timed drug release via electrical stimuli Requires direct electrical stimulation, which maybe difficult to apply to implants embedded deep within the human body

Sirivisoot et al.[ 201 ]

Kiaee et al.[ 202 ]

Modulation of cell function – adhesion, proliferation and differentiation Enable precise control of cellular function via electrical stimuli

Lashkor et al.[ 203 ]

Zhang et al.[ 204 ]

Tang et al.[ 205 ]

Mechanostimulation Enable precisely‐timed mechanostimulation via electrical stimuli

Shang et al.[ 206 ]

Rahimi et al.[ 207 ]