Table 4.
Electroactive biomaterials | Category/Type | Advantages | Disadvantages | Key references |
---|---|---|---|---|
Piezoelectric biomaterials | Synthetic piezopolymers | High flexibility and low stiffness | Low biodegradability |
Ribeiro et al.[ 155 ] Kalimuldina et al.[ 156 ] Rufato et al.[ 157 ] Capuana et al.[ 158 ] Williams[ 159 ] Goonoo et al.[ 160 ] |
Synthetic piezoceramics | Similar mechanical properties to natural bone tissue, such as high hardness and friction coefficients | Very brittle |
Li et al.[ 163 ] Chen et al.[ 164 ] El‐Rashidy et al.[ 165 ] Felice et al.[ 166 ] Ziglari et al.[ 167 ] |
|
Naturally‐occurring piezoelectric materials in polymeric or ceramic form | Good biodegradability, excellent biocompatibility, and negligible cytotoxicity | Higher inter‐batch variability than synthetic biomaterials |
Shin et al.[ 168 ] Rico‐Llanos et al.[ 169 ] Arcos & Vallet‐Regí[ 170 ] Baldini et al.[ 171 ] Osorio et al.[ 172 ] Jayakumar et al.[ 173 ] Aguilar et al.[ 174 ] |
|
Electroconductive biomaterial | Carbon‐based biomaterials |
Good mechanical properties High electrical conductivity Large specific surface area for loading of bioactive factors |
Low biodegradability Some degree of cytotoxicity |
Shadjou et al.[ 179 ] Tanaka et al.[ 180 ] Aoki et al.[ 181 ] Peng et al.[ 182 ] Liu et al.[ 183 ] |
Metal/metal oxides |
Good mechanical properties High electrical conductivity |
Low biodegradability Some degree of cytotoxicity |
Wang et al.[ 185 ] Li et al.[ 186 ] Wang et al.[ 187 ] |
|
Conductive polymers | High electrical conductivity |
Rigid and brittle Low biodegradability |
Liang and Goh.[ 188 ] Rajzer et al.[ 189 ] Guex et al.[ 190 ] |
|
Electrostimulation scaffolds/devices with implantable energy harvestors (IEH) |
Piezoelectric nanogenerators (PENGs) | Generate electrical stimuli without an external power source by harvesting energy from the human body | Most of these technologies not yet mature, and face various challenges such as poor biodegradability, cytotoxicity and insufficient miniaturization | Kao et al.[ 194 ] |
Triboelectric nanogenerators (TENGs) | Li et al.[ 195 ] | |||
Mass imbalance oscillation generators (MIOG) | Zurbuchen et al.[ 196 ] | |||
Enzymatic biofuel cells (EBFCs) | Haque et al.[ 197 ] | |||
Endocochlear potential (EP) collectors | Mercier et al.[ 198 ] | |||
Photovoltaic cells (PVC) | Long et al.[ 199 ] | |||
Pyroelectric nanogenerators (PYENGs) | Ryu & Kim[ 200 ] | |||
Electroresponsive biomaterials | Drug‐delivery | Enable precisely‐timed drug release via electrical stimuli | Requires direct electrical stimulation, which maybe difficult to apply to implants embedded deep within the human body |
Sirivisoot et al.[ 201 ] Kiaee et al.[ 202 ] |
Modulation of cell function – adhesion, proliferation and differentiation | Enable precise control of cellular function via electrical stimuli |
Lashkor et al.[ 203 ] Zhang et al.[ 204 ] Tang et al.[ 205 ] |
||
Mechanostimulation | Enable precisely‐timed mechanostimulation via electrical stimuli |
Shang et al.[ 206 ] Rahimi et al.[ 207 ] |