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Toxicogenomics Data for Chemical Safety Assessment and
Development of New Approach Methodologies: An Adverse
Outcome Pathway-Based Approach

Laura Aliisa Saarimäki, Jack Morikka, Alisa Pavel, Seela Korpilähde, Giusy del Giudice,
Antonio Federico, Michele Fratello, Angela Serra, and Dario Greco*

Mechanistic toxicology provides a powerful approach to inform on the safety
of chemicals and the development of safe-by-design compounds. Although
toxicogenomics supports mechanistic evaluation of chemical exposures, its
implementation into the regulatory framework is hindered by uncertainties in
the analysis and interpretation of such data. The use of mechanistic evidence
through the adverse outcome pathway (AOP) concept is promoted for the
development of new approach methodologies (NAMs) that can reduce animal
experimentation. However, to unleash the full potential of AOPs and build
confidence into toxicogenomics, robust associations between AOPs and
patterns of molecular alteration need to be established. Systematic curation of
molecular events to AOPs will create the much-needed link between
toxicogenomics and systemic mechanisms depicted by the AOPs. This, in
turn, will introduce novel ways of benefitting from the AOPs, including
predictive models and targeted assays, while also reducing the need for
multiple testing strategies. Hence, a multi-step strategy to annotate AOPs is
developed, and the resulting associations are applied to successfully highlight
relevant adverse outcomes for chemical exposures with strong in vitro and in
vivo convergence, supporting chemical grouping and other data-driven
approaches. Finally, a panel of AOP-derived in vitro biomarkers for pulmonary
fibrosis (PF) is identified and experimentally validated.
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1. Introduction

Mechanistic aspects of chemical exposures
have been long exploited in the context of
academic research, resulting in the emer-
gence of toxicogenomics and systems toxi-
cology as independent fields.[1,2] Although
the mechanistic insight gained through the
technologies employed in academia has
been valued as supporting evidence in the
regulatory setting, its incorporation into
the regulatory framework is to date hin-
dered by concerns related to the robust-
ness and reproducibility of such data and its
analysis.[3] At the same time, the growing
need for faster, cheaper, and more ethical
approaches for chemical safety assessment
have made mechanistic toxicology central
for clarifying aspects important to regula-
tory decision making. Furthermore, uncov-
ering exposure related mechanistic prop-
erties is emerging as a fundamental ap-
proach for the design of new drugs and
chemicals.[4,5] Hence, multiple high-end re-
search initiatives are underway to drive
the shift from traditional animal-based
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assessment of apical toxicity endpoints toward in vitro and in sil-
ico approaches supported by mechanistic evidence.[6–8]

Adverse outcome pathways (AOP) emerged as models to or-
ganize biological mechanisms into causally linked sequences of
multi-scale events to support chemical risk assessment.[9] AOPs
have since expanded beyond the limits of toxicology, showing
their applicability in organizing mechanisms of disease progres-
sion and adverse health outcomes,[10,11] and could even be ap-
plied to assess beneficial effects of therapies. The mechanisms
depicted by AOPs comprise a sequence of events that progress
from the molecular initiating event (MIE) toward an adverse out-
come (AO) through intermediate steps, key events (KEs), with bi-
ological complexity increasing as the AOP progresses. Individual
KEs are connected by key event relationships (KER) that verbally
explain the causal link between the events and provide context
for the pathway.

The AOP concept quickly attracted attention due to its poten-
tial in tackling one of the major challenges in the shift away from
traditional toxicology: deciphering systemic and long-term out-
comes of chemical exposures without the use of animal exper-
iments. While significant efforts still need to be made toward
this goal, AOPs encompass the means to systematically guide the
integration of in vitro-based evidence into the risk assessment
framework.[12] AOPs provide the grounds for various predictive
approaches, read-across, and the development of targeted assays
and new approach methodologies (NAMs), as also suggested by
regulatory agencies and international organizations, such as the
OECD.[8] Furthermore, the construction of AOPs can help iden-
tify gaps in knowledge and guide resources toward mechanisms
in need of further investigation, or alternatively, reveal connec-
tions that have not been previously characterized.[13]

Concurrently with the development of the AOP framework,
the role of omics data in elucidating biomarkers and mecha-
nisms of action (MOA) of chemical exposures and diseases has
become more prominent.[14–18] Omics data have been used to
support the development of AOPs, especially through the iden-
tification of molecular targets and mechanisms.[19–23] However,
full exploitation of omics-based evidence in the context of AOPs
is hindered by the complication of linking molecular data to com-
plex biological events, affecting both the development and the ap-
plication of AOPs. Furthermore, while the value of omics data
in answering questions of regulatory importance is recognized,
the complexity of its interpretation and the lack of standardiza-
tion in analysis and reporting have hampered widespread reg-
ulatory acceptance of omics-based evidence.[24] Bypassing these
challenges could broaden the application of AOPs, support the
interpretation of complex omics data, and further aid in the de-
velopment of the concept toward quantitative models and as-
says. While molecular assays based on arbitrarily selected re-
porter genes have been proposed (e.g., ToxCast assays), there is
an urgent need to develop new data-driven unbiased molecular
assays for reliable and efficient mechanistic safety assessment of
chemicals.

Here we hypothesized that rigorous curation of molecular
events associated with AOPs could facilitate the implementation
of omics-based evidence to 1) guide the interpretation of omics
data readout, 2) support the development of new AOPs, 3) iden-
tify and fill gaps in knowledge, and 4) transfer AOP-based knowl-
edge into robust assays to support chemical safety assessment.

Well-curated gene ontologies, pathways, and biological pro-
cesses are used to interpret omics results and their translation
into biologically relevant information. While some KEs can be
easily crosslinked with such terms and their associated genes, the
annotation of complex KEs taking place at a higher level of biolog-
ical organization (e.g., at the tissue- or organism-level) is a more
demanding task. This requires knowledge regarding ontologies
and the biological events themselves. For instance, generic anno-
tations are helpful for categorizing KEs, but without the intention
of modeling KEs using the associated gene sets, they will likely
not reach the level of granularity required for such a task. This
is currently reflected in the annotations provided in the AOP-
Wiki repository (aopwiki.org). The annotation of KEs to selected
ontologies is included as an option in AOP-Wiki. However, the
coverage of the annotations is currently low and has not been in-
tended for modeling the KEs using the gene sets associated with
their annotations.

Previous efforts to curate external annotation have shown the
potential of the approach.[25,26] However, these have either re-
mained at the level of abstract associations or focused on indi-
vidual examples.[27,28] Hence, systematic, fit-for-purpose, and up-
to-date annotation linking KEs to curated gene sets has not yet
been established. To this end, we applied an integrated strategy
for defining gene-KE-AOP associations through systematic cu-
ration. We show the applicability of our strategy for evaluating
potential AOs of chemical exposures, and for the identification
of AOP-driven biomarkers that can inform the development of
target assays and novel approaches to chemical hazard character-
ization.

2. Results and Discussion

We developed an integrated approach to systematically associate
curated gene sets to the KEs and AOPs. Our approach combines
natural language processing (NLP) techniques with manual cu-
ration to link relevant biological processes and pathways, as well
as their associated genes, to KEs of AOPs relevant for human
health risk assessment. The resulting gene-KE-AOP connections
enable the modeling of KEs and AOPs through gene-level data,
which further introduces novel ways to benefit from the AOP
concept. We applied this approach to generate an AOP finger-
print for a known profibrotic exposure in vivo and in vitro and
finally combined the annotation to a framework for prioritizing
KE- and AOP-associated genes to guide the discovery of biomark-
ers and reporter genes. The complete approach described in the
following sections is summarized in Figure 1.

2.1. The Majority of KEs can be Successfully Annotated to
Curated Gene Sets

At the time of retrieving the data from the AOP-Wiki repository
(November 2020), a total of 289 AOPs and 1131 distinct KEs were
identified. However, after eliminating the AOPs for which tax-
onomic applicability was either not available nor in the scope
of our investigation, 176 AOPs and 856 unique KEs remained,
forming a total of 1245 unique AOP-KE pairs (specific KEs). Al-
though the AOP-Wiki houses selected annotations for some of
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Figure 1. Overall scheme of the study. Established gene sets were annotated to KEs of the AOPs relevant for human health risk assessment. The
resulting gene sets were then used to model the KEs. The validity of the annotation was evaluated using gene signatures of exposures with known
adverse outcomes. Finally, we combined the approach with a gene prioritization framework resulting in the identification of AOP-driven biomarkers for
pulmonary fibrosis.

Figure 2. Descriptive analysis of the KE annotation. A) Bar plot describing the number of annotated terms per KEs. B) Pie chart expressing the proportions
of different annotation types. C) Density distribution of the number of KEs each gene is annotated to.

the KEs, majority of them were considered not to be specific
enough for our purpose (i.e., KEs describing the dysregulation of
a specific gene annotated to terms such as “gene expression”). Ad-
ditionally, as the existing annotations only cover a part of the KEs,
we decided to consistently curate the annotation of all KEs. As a
result, 799 unique KEs mapped to 175 AOPs received a curated
annotation. The KEs were treated as individual instances, hence
the same KE mapped to multiple AOPs was always annotated to

the same term(s). A summary of the number of terms annotated
to the KEs is presented in Figure 2A along with the proportions of
the different term sources (Figure 2B). GO biological processes
(GO_BP) represent most of the mapped annotations, followed by
GO molecular functions (GO_MF) and human phenotype ontol-
ogy (HPO). Since up to five annotations were provided for the
KEs, the final gene sets used from herein comprise the union
of the genes mapped to each annotated term. This structure
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Figure 3. Bar plot representing the proportion of chemicals with relevant
AOPs among the top five enriched AOPs based on the chemical classifi-
cation. Number in brackets after the category name refers to the number
chemicals in each category while the percentage on the bars reflects the
proportion of chemicals in each category highlighting relevant AOPs. SHR
stands for sex hormone receptor agonist.

allowed improved specificity, while also providing the possibility
to further refine the gene sets using the hierarchical order imple-
mented where applicable. The size of the gene sets associated to
each KE range from one to 5990 genes, with a median value of 81
genes. Consequently, when AOPs are modeled by combining the
gene sets associated to their KEs, the gene set sizes range from
15 to 5992 with the median size being 752 genes.

In total, the annotations comprise 15 825 genes. While the ma-
jority of genes are annotated to less than 5 KEs (9044 genes), 1434
genes have more than 20 KEs associated to them, and 50 genes
have more than 80 associated KEs (Figure 2C). Although these
numbers can be affected by annotation bias, for example, certain
genes are better researched and annotated than others, they can
also guide the selection of AOP-driven biomarkers when speci-
ficity is of importance.

2.2. AOP Enrichment Highlights Relevant Adverse Outcomes
Associated to Chemicals

We tested the ability of our novel annotations to highlight rele-
vant AOPs by analyzing a set of curated reference chemicals as
defined by EU Reference Laboratory for alternatives to animal
testing (ECVAM) and National Toxicology Program Interagency
Center for the Evaluation of Alternative Toxicological Methods
(NICEATM). We focused on four categories of chemicals defined
by their toxicity properties to include hepatotoxic and carcino-
genic agents as well as thyroid disruptors and sex hormone re-
ceptor (estrogen receptor—ER, and androgen receptor—AR) ag-
onists. For each of the selected chemicals, we retrieved a list of as-
sociated genes from the Comparative Toxicogenomics Database
(CTD),[29] resulting in a final set of 75 chemicals (File S1, Sup-
porting Information).

First, we identified AOPs related to each of the selected cat-
egories (i.e., AOPs related to carcinogenesis, hepatotoxicity, sex
hormones, and thyroid disruption) among all the AOPs. We then
evaluated the prevalence of these relevant AOPs among the five
most significantly enriched AOPs for each chemical. The results
suggest that the enrichment approach successfully highlights
AOPs of relevance for each group of chemicals (Figure 3). All sex
hormone receptor agonists had at least one relevant AOP among
the top five enriched, while the proportions varied from 43% (thy-

roid disrupters) to 93% (carcinogens) in the other categories (Fig-
ure 3).

In the group of carcinogenic chemicals, 93% of the com-
pounds evaluated had cancer-related adverse outcomes among
the top enriched AOPs. In fact, the group of carcinogens had the
highest proportion of relevant AOPs at the top as compared to the
others (median four out of five compared to the median of two
out of five in the other groups). However, it should be noted that
AOPs related to cancer are among the most represented group of
AOPs, and cancer-related genes are generally highly researched
and annotated, which may introduce a level of annotation bias
that should be recognized.

The remaining four carcinogenic chemicals (7%) that showed
no cancer AOPs among the top enriched AOPs were N-
nitrosodiethanolamine, N-nitrosomorpholine, phenacetin,
and tetrachloroethylene. N-nitrosomorpholine and N-
nitrosodiethanolamine are both nitrosamines whose sus-
pected AOs besides carcinogenesis include non-alcoholic
steatohepatitis.[30] Indeed, both compounds contained hepatic
steatosis related AOPs among the top five enriched AOPs
(File S1, Supporting Information). Tetrachloroethylene (per-
chloroethylene, PCE) is a chlorocarbon solvent used in dry-
cleaning and other degreasing applications.[31] AOPs with the
most significant enrichment for PCE were also related to hepatic
adverse outcomes. Although neurotoxicity is one of the most
frequent AOs associated with PCE exposure, hepatotoxicity has
also been reported.[31] Our results documenting liver steatosis
are supported by biopsy-based evidence of liver disease, both
in human and animal models, in settings of high occupational
exposures.[32] Last, phenacetin is a drug that was widely used
as pain medication until it was withdrawn from the market
across the globe due to increasing evidence of carcinogenicity
and renal toxicity.[33] The most enriched AOPs for phenacetin
included immune related AOPs “Immune mediated hepatitis”
(Aop:362) and Aop:277 titled “Inhibition of IL-1 binding to
IL-1 receptor leading to increases susceptibility to infection”.
Although there is no described association between phenacetin
and IL-1 or immuno-toxicity, it is known that they both play a
role in paracetamol-associated liver toxicity, which is the main
metabolite of phenacetin.[33,34]

In the case of the known liver toxicants, hexaconazole was the
only compound not highlighting AOPs associated with liver tox-
icity among the top enriched AOPs. Hexaconazole is a widely
used triazole fungicide. It acts by blocking sterol biosynthe-
sis via inhibition of cytochrome P450.[35] Hexaconazole was
considered as a Group C-Possible Human Carcinogen by the
US EPA due to increased incidence of benign Leydig cell
tumors in rats (https://www3.epa.gov/pesticides/chem_search/
hhbp/R000356.pdf ). Moreover, it was found to affect the repro-
duction of female rats.[35] The top enriched AOPs correctly iden-
tify this signature. Furthermore, the top two pathways “HMG-
CoA reductase inhibition leading to decreased fertility” and
“Modulation of adult Leydig cell function subsequent to de-
creased cholesterol synthesis or transport in the adult Leydig
cell” both suggest a decrease in cholesterol levels by inhibition
of the HMG-CoA reductase. Drugs inhibiting this enzyme, such
as statins, are known to possibly cause liver damage.[36]

Known thyroid toxicants performed poorest in our analysis.
Bifenthrin, malathion, permethrin, and simazine did not capture
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thyroid related AOPs among the top five enriched. All these com-
pounds have been widely used in agriculture as herbicides or pes-
ticides. Agrochemicals represent a significant class of endocrine
disrupting chemicals, albeit through varying mechanisms. It is
now accepted that many of these molecules may mimic the inter-
action of endogenous hormones with nuclear receptors, such as
estrogen, androgen, and thyroid hormone receptors.[37] Indeed,
bifenthrin has already been reported as an endocrine-disrupting
compound by blocking the binding of endogenous hormones.[38]

In our framework, its anti-estrogenic activity emerges as the most
enriched AOP (File S1, Supporting Information). Malathion is
an organophosphate pesticide that is known for its low acute tox-
icity and rapid degradation.[39] In this light, it is not listed as a
primary thyroid disrupting chemical, and its toxicity has been
associated with the inhibition of acetylcholinesterase activity on
nerve impulse.[39] Recent studies, however, demonstrated that
malathion acts as an endocrine disruptor, both in vitro and in
vivo.[40,41] Our results support these findings, highlighting the
Aop:165: “Anti-estrogen activity leading to ovarian adenomas and
granular cell tumors in the mouse” as well as Aop:112: “In-
creased dopaminergic activity leading to endometrial adenocarci-
nomas.” Furthermore, Moore et al. demonstrated that malathion
exposure at higher concentrations induces cytotoxic and geno-
toxic effects in HepG2 through oxidative stress, which can fi-
nally lead to liver cancer.[39] Similarly, our framework highlights
both the “PPARalpha-dependent liver cancer” and “Cyp2E1 acti-
vation leading to liver cancer” AOPs. Simazine is a triazine herbi-
cide whose use has been banned in most European countries for
nearly two decades.[42] Simazine has now been recognized, simi-
larly to the other compounds, as an endocrine disrupter.[42] Inter-
estingly, the enrichment analysis for simazine highlighted AOPs
related to the development of adenomas and carcinomas through
endocrine disrupting activities (e.g., Aop:107 titled “Constitutive
androstane receptor activation leading to hepatocellular adeno-
mas and carcinomas in the mouse and the rat”) as well as direct
disruption of the GnRH pulse (File S1, Supporting Information).
Although multiple in vivo and in silico evidence also indicate per-
methrin as possible endocrine disruptor,[43,44] no endocrine re-
lated pathways are present in the top enriched AOPs. However,
this framework was able to highlight the modulating effect of
permethrin on the lipid metabolism. It has been demonstrated
that in HepG2 cells, permethrin increases lipogenesis and de-
creases beta oxidation, possibly contributing to the development
of NAFLD.[45] Indeed, the “Inhibition of fatty acid beta oxidation
leading to nonalcoholic steatohepatitis (NASH)” AOP is statisti-
cally enriched in our results.

Together, these results highlight relevant AOPs modeled by
our curated gene sets to be enriched by the genes associated to
the compounds, suggesting that our framework is able to support
robust mechanistic and data-driven chemical grouping as well as
the identification of potential AOs using chemical-gene associa-
tions.

2.3. Our Annotation Enables Grouping of KEs Resulting in
Improved Modeling of the AOP Network

In order to fully unleash the potential of mechanistic toxicology,
more informative testing strategies need to be developed that

can monitor specific phases of the exposure-bio interactions and
mechanisms. To this end, we defined accurate sets of genes ca-
pable of modeling specific KEs and AOPs. However, one of the
challenges observed in the AOP-Wiki is the redundant semantics
in the naming of KEs. While creating a new KE can be meaning-
ful in many cases (e.g., the same biological process taking place in
a distinct organ or a tissue), unnecessary redundancy can lead to
challenges in the application of the AOP-based knowledge. This
is especially true when modeling AOPs as a network and using
such representation to identify hidden connections and to per-
form read-across analysis.[10,46–51]

Hence, we hypothesized that KEs could be grouped based on
the degree of similarity of their associated gene lists. We calcu-
lated the similarity of the KEs based on their annotated gene sets
and grouped together those mapped to identical sets of genes
(Jaccard Index (JI) = 1). This resulted in the identification of 637
groups of varying sizes. These groups were characterized by four
main concepts: 1) truly duplicated KEs due to distinct semantics;
2) same biological event in multiple biological systems; 3) sub-
sequent KEs mapped to the same terms due to inadequate speci-
ficity; and 4) opposite regulation of the same biological event (i.e.,
increased vs decreased signaling).

Here, the grouping based on identical gene sets was selected
due to the nature of the downstream application and statistical
considerations (i.e., to avoid multiple testing against the same
gene set in enrichment analysis). However, a parallel approach
with varying cut-off values for similarity could be implemented
to cluster KEs more roughly and to define specific categories
of events. Similarly, further refinement of the KE clusters could
help to enhance the AOP network by removing redundant nodes
which, in turn, could reveal hidden links.

The potential of the KE grouping was showcased using a sub-
graph formed by considering the AOPs related to pulmonary
fibrosis (PF). PF is a chronic lung disease characterized by
tissue damage and scarring that impairs lung function.[52] A
range of environmental exposures, including certain chemicals,
drugs, radiation, and nanomaterials (most notably carbon nan-
otubes), as well as infectious diseases have been identified as
causative agents for PF.[52–54] Moreover, the COVID-19 pandemic
has raised concerns about increasing rates of PF.[55–57] Under-
standing the disease mechanisms can help in the development
of strategies to treat and prevent the disease, and to control and
modulate the exposures that contribute to its pathogenesis and
progression. Furthermore, it can serve as the foundation for de-
veloping targeted assays for evaluating profibrotic potential of
chemical exposures.

Six AOPs related to PF were available in the AOP-Wiki at the
time of data retrieval (Figure 4A). These distinct AOPs character-
ize multiple pathways leading to the same AO. Together, these
AOPs comprise 30 KEs, which form a connected graph when
modeled as a network (Figure 4C). However, several redundan-
cies were observed among the KEs. For instance, the AO was
expressed either as lung fibrosis (Event:1276) or pulmonary fibro-
sis (Event:1458). Hence, the application of the similarity-based
grouping resulted in 23 distinct KEs (Figure 4B) that were then
used as the basis for merging the KE nodes in the PF network
(Figure 4D).

The PF AOPs formed a connected network, indicating that
each of the individual AOPs shared at least one KE with one or
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Figure 4. A) Table presentation of pulmonary fibrosis (PF) AOPs identified in the current study. B) Heatmap representing the Jaccard index-based
similarity of the PF KEs as per their associated gene sets. Values close to zero (light gray) correspond to a low similarity between distinct KEs, while the
increasing similarity is expressed with the color changing through green to blue. C) Graph presentation of the PF AOPs using their original KEs. Distinct
colors denote the KEs of individual AOPs, gray nodes are KEs shared by multiple AOPs, and orange nodes correspond to the shared AOs. D) Graph
presentation of the PF AOPs after KE grouping. The number of shared (gray) nodes has now increased, and the duplicated AO has been grouped into
one distinct AO (orange).
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Figure 5. AOP fingerprint of Mitsui-7 exposure in vitro and in vivo. Size of the bubble reflects the proportion of significantly enriched KEs in an AOP,
while to color denotes the FDR-adjusted p-value in a negative logarithmic scale (i.e., the higher the number, the smaller the p-value). The AOPs are
organized by the enrichment p-value from the in vivo data.

more of the other AOPs. However, as the duplicated KEs were
merged, the similarities between the AOPs became more evident.
This is evidenced by the increasing number of shared KEs in the
graph after merging (the gray nodes in Figure 4D) as compared
to the original graph (Figure 4C). Furthermore, the merging re-
vealed Aop:206 to be fully contained within the other AOPs.

The refinement of the AOP network through KE grouping sim-
plifies the network while also enhancing the robustness of the
KE relationships, depicted by the connections between the nodes.
This process, in fact, removes redundant nodes, which supports
the application of AOP networks in AOP research and risk assess-
ment. Furthermore, as duplicated events are removed, the true
influence of each node can be assessed more robustly through
network analytics.

This example demonstrates the effect of KE redundancy and
the potential of data-driven grouping of the KEs. While man-
ual assessment and grouping would be achievable for a limited
number of AOPs at a time, doing it AOP-Wiki wide would be
a massive undertaking. Here, we show how our curated gene-
KE-AOP connections can help guide the grouping and hence en-
hance network-based approaches in AOP research. Furthermore,
our results suggest that it is often possible to identify genes that
can successfully represent multiple similar key events.

2.4. The AOP Fingerprint of Multi-Walled Carbon Nanotubes
Converges In Vitro and In Vivo

Toxicogenomics has supported the development of mechanistic
toxicology and further enhanced the possibility to obtain relevant

information from in vitro studies, which could reduce the need
for animal experimentation.[58–60] Here, we tested the hypothesis
that toxicogenomic data generated in two independent in vitro
and in vivo exposure models would converge on a robust set of
relevant AOPs. We focused on Mitsui-7, a known hazardous long
and rigid multi-walled carbon nanotube (MWCNT). The airways
provide the most prominent route of exposure to this nanomate-
rial, and it is best characterized for its lung-related AOs, includ-
ing PF.[61–64] Hence, we selected data derived from a lung expo-
sure to the MWCNT in mice,[65] and an in vitro dataset with expo-
sures on four cell lines representative of the human airways.[59,66]

These cell lines include differentiated THP-1 cells as a model of
macrophages, A549 representing alveolar basal epithelial cells,
BEAS-2B as bronchial epithelial cells, and MRC9 as a model of
lung fibroblasts. Differentially expressed genes (DEGs) from all
experimental conditions in vivo and each cell line in vitro were
obtained from Saarimäki et al.[67] and merged into a single MOA
in vivo and in vitro, respectively.

We then performed enrichment analysis against both the
AOPs and the KEs separately in order to evaluate the coverage
of distinct KEs. We used the proportion of significantly enriched
KEs to further filter the significant AOPs. This led us to identify
33 significant AOPs from the in vivo data, while 12 resulted sig-
nificant from the in vitro exposure. These results were defined as
the specific AOP fingerprint for the exposures, and it is presented
in Figure 5.

Despite the distinct sizes of the AOP fingerprints, ten of the
12 AOPs enriched in vitro were also included in the in vivo
fingerprint. Moreover, the top enriched AOPs were shared and
ranked similarly between in vivo and in vitro when ranked by the
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smallest adjusted p-value. The AOP enriched with the most sig-
nificant p-value in both instances was Aop:173 titled “Substance
interaction with the lung resident cell membrane components
leading to lung fibrosis” (Figure 5). The in vivo data set was able
to capture seven of the eight KEs of the AOP as significantly en-
riched, while three out of the eight KEs were enriched in vitro.
Interestingly, Aop:173 has been specifically developed with ro-
bust evidence from MWCNT exposures, and multiple types of
carbon nanotubes are listed as known stressors for the AOP
(https://aopwiki.org/aops/173). The second AOP (Aop:171), on
the other hand, describes the induction of pleural/peritoneal
mesotheliomas by chronic cytotoxicity in rats. Like most AOPs
used in this study, Aop:171 is still under development and lacks
information on potential stressors. However, mesothelioma is a
well-known AO of asbestos exposure, a fibrous silicate mineral
whose adverse effects have often been used as a warning exam-
ple for MWCNTs.[68] Indeed, similarities in their MOA have been
extensively investigated.[61,69,70]

The in vitro AOP fingerprint captures effects such as frustrated
phagocytosis, oxidative stress, cytotoxicity, and immune activa-
tion, which have all been reported as consequences of this type
of exposure and contribute to the pathogenic nature of Mitsui-
7.[61,62,64,71] Similarly, the profibrotic effects are highlighted with
the multiple PF AOPs enriched. These effects are also observed
in the in vivo AOP fingerprint. However, the in vivo fingerprint
further highlights various AOPs outside the respiratory system,
which is less apparent in vitro. While AOs beyond the immediate
exposure site are feasible, many of these could likely be accounted
for by the different effects of similar transcriptomic signatures in
different biological systems (e.g., multiple AOPs related to gastric
ulcer formation could reflect similar mechanisms of surfactant
disturbance in two distinct exposure sites). On the other hand,
the AOPs unique to the in vitro fingerprint, Aop:277 and Aop:263
(Figure 5), reflect the specific effects of the Mitsui-7 exposure on
the immune system. Such specific signals can be easily masked
in the in vivo system, where a large array of cell types is affected
by the exposure.

It is worth noting that the exposures selected for the analysis
had diverse set ups and a notable difference in the size of the com-
bined MOA (863 DEGs in vitro versus 3540 in vivo). While data
from multiple cell lines were selected to capture effects besides
immune cell activation in vitro, we were not able to match the
dose and time course set up present in the in vivo dataset. How-
ever, we wanted to include this long-term exposure to evaluate
whether it would result in broader coverage over the KEs of AOPs.
Furthermore, histopathological evaluation from the same in vivo
exposure set up has shown fibrosis in the lung from the day 7
onward,[72] suggesting that a whole PF AOP could be covered
with this data. Indeed, all but the MIE (Event:1495) of Aop:173
were enriched in vivo. The high proportion of enriched KEs in
the in vivo data supports the modeling of KEs with relevant gene
sets and the use of toxicogenomic evidence for the development
of AOPs, as well as the evaluation of potential AOs of chemi-
cal exposures. Likewise, we show that the analysis of toxicoge-
nomic data against robustly annotated AOP framework supports
a high degree of in vitro to in vivo extrapolation and further sup-
ports the inclusion of toxicogenomics-based evidence for regu-
latory purposes. The concept of the AOP fingerprint can be eas-
ily adapted to evaluate other chemical exposures and AOs. With

nearly 16 000 genes mapped to the KEs in our curation, they are
expected to cover most of the human genome. Hence, the AOP
fingerprint provides a robust framework for meaningful inter-
pretations also for chemicals and phenotypes that may be less
characterized.

2.5. KE-Associated Gene Sets Guide the Selection of Biomarkers

We showed that our KE-linked gene sets provide a robust way of
evaluating potential outcomes of chemical exposures from tran-
scriptomics data. This observation alone can help to guide chemi-
cal testing and grouping. However, to support the development of
target assays and integrated approaches, specific reporter genes
and markers need to be identified.

Selection of transcriptional biomarkers and reporter genes
only based on differential expression from experimental data
gives little context or reference to the AO of interest. Even if a
certain exposure is known to induce a specific endpoint, there
is no indication whether the measured deregulation could be as-
sociated with the phenotype of interest. On the other hand, pri-
oritizing the features in the context of the KEs or whole AOPs
could shed light on the importance and specificity of the feature
regarding the phenotype. This, in turn, can guide the selection of
potential biomarkers even in the absence of experimental data.
Hence, we implemented a universal and customizable frame-
work for the prioritization of the KE-associated genes to drive
the identification of AOP-informed biomarkers and used it to
identify AOP-driven biomarkers for PF. The shortlisted marker
genes were then screened by RT-qPCR in an in vitro model of
human macrophages exposed to bleomycin, a well-known profi-
brotic chemical.[73]

First, we defined characteristics for optimal biomarkers based
on the Bradford Hill criteria, originally defined to evaluate causal-
ity in epidemiological research,[74] but later adopted to other re-
search fields as well.[75] Our newly defined characteristics, their
Bradford Hill counterparts, and short descriptions of the consid-
eration of each step in the selection process are summarized in
Table 1.

The prioritization and selection of the candidate biomarkers
considered three main aspects: 1) the social life of genes, that is,
some genes (gene products) are more influential than others; 2)
specificity regarding the endpoint of interest; and 3) experimen-
tal evidence suggesting the genes respond to a relevant exposure.
The ranking of the genes was based on the first two consider-
ations, while the experimental evidence was included to guide
the selection of candidate genes for RT-qPCR validation from the
ranked list. This enabled a flexible selection process that would
be applicable even in the absence of experimental data. At this
stage, we also considered the biological feasibility of the target
genes given the selected macrophage model as well as a broad
coverage over the PF KEs.

As a result, we obtained a list of 25 candidates out of the orig-
inal 2075 genes related to PF (Table 2). Although we focused on
the genes in the top 10%, we further included genes ranking
lower to obtain a broader coverage over the PF KEs. Genes that
are specific to individual KEs might rank low when the individ-
ual lists are combined. Hence, we considered the expression pat-
terns from the experimental data as well as the specificity scores
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Table 1. We defined characteristics for optimal biomarkers based on the Bradford Hill criteria. The characteristics were then implemented into the
prioritization and selection protocol, and further to the evaluation of the prioritized genes.

Bradford Hill Our characteristic Method/Assessment

Consistency (reproducibility) Reproducibility Selection considers evidence from previous profibrotic exposures

Strength (effect size) Amplitude Significant alteration of the expression as compared to control

Experiment Measurable Transcriptional biomarkers measurable by qPCR; selected genes need to
be expressed in the model

Biological gradient (dose-response
relationship)

Dose-responsive Benchmark dose modeling to evaluate dose-response

Coherence In vitro to in vivo extrapolation Experimental evidence from in vitro and in vivoa)

Analogy Predictive (of the outcome of
interest)

Selection based on the KEs preceding the AO of interest

Specificity Specificity Gene ranking based on the specificity score

Plausibility (Biological) plausibility The AOP framework provides a plausible context; supporting evidence;
selection of the organism

Temporality Temporality Transcriptional alteration follows the exposure; selection of the model
organismb)

– GLP-method RT-qPCR

– Influence Centrality measures from human protein-protein interaction and gene
regulatory networks

a)
The biomarkers selected here are targeted for the development of non-animal assays for toxicological assessment. Hence the coherence to in vivo set ups is not evaluated

experimentally. However, in vivo data was used for the selection of the markers to provide context of the systemic response
b)

Temporality in the Bradford Hill criteria refers
to a clear distinction of the exposure happening prior to the outcome. Here, we considered temporality by observing transcriptional changes post exposure as well as in the
selection of the model organism. Macrophages have a crucial role in the initiation of the profibrotic response preceding the outcome, fibrosis.

and ranks in the individual KEs. This also allowed us to evaluate
whether genes ranked higher would perform better than others.

We could detect the expression of 22 of the candidate genes
at one or more of the evaluated time points, and six of the de-
tected genes showed significant alteration as compared to the
unexposed control samples (Table 2). Finally, five of these genes
were altered in a dose-dependent manner: CXCL2 and CCL7 at
24 h, IL8 (CXCL8) at 24 and 72 h, and MMP19 and TGFBI at
72 h. All but TGFBI of these genes were among the top 10% in
the global PF rank (Table 2). Although we were not able to fit a
dose-dependent model on the highest ranked gene, SMAD7, a
suggestive trend could be appreciated in its expression pattern
(Figure S4, Supporting Information, panel 18/6H). The expres-
sion of each of these genes was upregulated as compared to the
controls (Figure S4, Supporting Information).

The central role of TGF-beta signaling is well-established in
PF,[76] but neither of the TGFB genes tested (TGFB1 and TGFB3)
showed significant change in expression in our setup. Indeed,
TGF-beta is activated through a complex cascade of events, where
the inactive form of the protein is activated by other effectors
post-translationally,[77] making members of the TGF-beta family
a more attractive target for protein-based biomarker assessment
over gene expression. At the same time, we did observe upregu-
lation of SMAD7 and TGFBI which are both activated by TGF-
beta,[78,79] suggesting the induction of TGF-beta signaling. The
protein encoded by TGFBI is involved in the extracellular ma-
trix (ECM), and it has been shown to bind type I collagen, re-
sulting in thicker fibers and further affecting macrophage po-
larization toward the M2 type.[80] Indeed, bleomycin has been
suggested to polarize macrophages toward M2 (often referred to
as the anti-inflammatory type), which have been shown to drive

the development of PF through their ability to promote myofi-
broblast differentiation.[81,82] Many of our suggested biomark-
ers are chemokines that mediate immune responses. IL8 and
CXCL2 are best characterized as neutrophil attractants, while
CCL7 targets a wide variety of leukocytes.[83–85] Indeed, prolonged
inflammation, combined with persistent M2 macrophage activa-
tion, supports pathogenesis of fibrosis,[86] and a mixed status of
M1/M2 macrophage activation has been previously associated
with carbon nanotube-induced PF in vivo.[87] Similarly, multi-
walled carbon nanotubes have been shown to induce the po-
larization of macrophages toward such mixed status of M1/M2
polarization.[88,89] MMP19 is a member of the matrix metallopro-
teinase family involved in ECM remodeling.[90] MMPs have been
extensively characterized in the context of PF,[91,92] and MMP19
specifically has been suggested as a key regulator of PF in mice
and humans.[93]

Although macrophages alone cannot capture all the KEs of PF,
our model is able to highlight the key steps of macrophage in-
volvement in PF. The temporality of the expression of our sug-
gested biomarkers is supportive of the events leading to the de-
velopment of fibrosis, where the initial inflammation is followed
by type M2 macrophage activation that together contribute to the
development of a profibrotic microenvironment and responses
in other cells in the tissue.[86]

NAMs are urgently needed to reduce animal testing while pro-
viding robust evidence to support chemical safety assessment.
Although alternative methods have been successfully developed
to capture acute effects, modeling long-term outcomes of the
exposures, such as fibrosis, in vitro is still a challenge. Here,
we propose a panel of five genes CXCL2, CCL7, IL8, MMP19,
and TGFBI as AOP-derived robust biomarkers of PF to be
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Table 2. Genes selected for qPCR validation. Green = yes, white = no.

Gene (rank) Time
point

Detected (Amplification) Deregulated (ANOVA) Dose-dependent

SMAD7 (1)

6 h

24 h

72 h

CXCL2 (3)

6 h

24 h

72 h

SPP1 (18)

6 h

24 h

72 h

CCL2 (19)

6 h

24 h

72 h

TGFB1 (23)

6 h

24 h

72 h

IL8 (33)

6 h

24 h

72 h

LOX (48)

6 h

24 h

72 h

PLOD2 (74)

6 h

24 h

72 h

MMP7 (80)

6 h

24 h

72 h

CXCL10 (91)

6 h

24 h

72 h

CCL7 (93)

6 h

24 h

72 h

MMP9 (105)

6 h

24 h

72 h

LTBP4 (112)

6 h

24 h

72 h

FN1 (116)

6 h

24 h

72 h

GDF15 (153)

6 h

24 h

72 h

MMP19 (179)

6 h

24 h

72 h

(Continued)
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Table 2. (Continued).

Gene (rank) Time
point

Detected (Amplification) Deregulated (ANOVA) Dose-dependent

PTX3 (220)

6 h

24 h

72 h

TGFB3 (297)

6 h

24 h

72 h

LTBP3 (335)

6 h

24 h

72 h

TWIST1 (609)

6 h

24 h

72 h

TGFBI (727)

6 h

24 h

72 h

CTSK (759)

6 h

24 h

72 h

RCN3 (1592)

6 h

24 h

72 h

RSAD2 (1596)

6 h

24 h

72 h

PLK3 (2027)

6 h

24 h

72 h

successfully measured in a model of human macrophages in
vitro after short exposure time.

3. Conclusion

Mechanistic toxicology encompasses the means for faster,
cheaper, and more ethical chemical safety assessment. However,
to unleash the full potential of mechanistic evidence also in the
regulatory framework, robust approaches to build confidence to-
ward toxicogenomics are urgently needed. Here, we presented an
integrated approach that links toxicogenomics with the concept
of AOPs and proved its applicability to chemical grouping and
development of data-driven NAMs. We introduced the AOP fin-
gerprint, a concept for evaluating potential systemic outcomes of
chemical exposures through unbiased interpretation of toxicoge-
nomics data. Our analysis points to a consistent AOP fingerprint
of MWCNTs extrapolated from both in vitro and in vivo experi-
ments. Finally, we identified and experimentally validated a panel
of robust AOP-derived in vitro biomarkers for PF.

Our results suggest that combining the regulatory-supported
AOP framework with toxicogenomics through a rigorous map-
ping of the MOA of chemicals into KEs/AOPs can facilitate the

inclusion of omics derived evidence in regulatory evaluations.
The outcome of our analysis in the form of the AOP fingerprint
provides a clear and easily understandable way to summarize
complex omics data while providing robust statistical evaluation
that can support regulatory decisions. Moreover, the possibility
to use the framework suggested in this manuscript as the foun-
dation for developing data-driven molecular assays further opens
new possibilities for faster regulatory acceptance of novel alterna-
tive methods and NAMs.

4. Experimental Section
Definition of Knowledge Graph-Based Data Structure: A knowledge

graph-based data structure was established by expanding the previ-
ously introduced framework, the Unified Knowledge Space (UKS) by the
authors.[94,95] A detailed description and a full list of integrated data
sources are provided in the Supporting Information. The so formed data
structure was utilized throughout the study as described in the following
sections.

Annotation of Key Events: A multi-step strategy comprising NLP and
manual curation was applied to annotate KEs to established gene sets
through pathways, phenotypes, and gene ontologies. The annotation strat-
egy is summarized in Figure S2, Supporting Information.
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Computational prioritization of KE annotations: To match the descrip-
tions of key events and gene sets an NLP pipeline (Figure S2, Supporting
Information) was developed. The pipeline performed several operations to
extract the informative terms from both the descriptions of a key event and
a gene set that were scored to assess the degree of matching between the
two entities. In detail, first, the raw text was converted to lower case and all
punctuation symbols were removed. Second, concepts that span multiple
words in the text description were replaced by a single word expressing the
same concept to strengthen the matching quality (e.g., the concept “pos-
itive regulation” was replaced with the single word “upregulated”). Third,
the text was split into tokens which were further processed one by one.
Fourth, each token corresponding to a stop word in the English language
was dropped. Stop words refer to the most common words in a language
that do not bring additional meaning (e.g., for the English language com-
mon stop words include “in”, “the”, “of”, “from”). Fifth, different declina-
tions of the same concept were mapped to their root term (e.g., plurals
were converted to singulars, the terms “increased” and “increasing” were
both mapped to “increase”). This same procedure was also used to stan-
dardize several styles to write the same symbol (e.g., “ppar𝛼” and “ppar-
alpha” map both to “ppar-alpha”). After these preprocessing steps, each
gene set and key event was represented by a set of token words, for exam-
ple, {upregulate, ppar-alpha}. However, the frequency of each token word
across the descriptions of genes and key events was not the same, and
hence, the informative value of rare terms was higher than the informative
value of more common tokens. This was taken into account by weighting
each token by its inverse document frequency (IDF), that is, the weight
was inversely proportional to the number of gene sets and key events that
contain that token. Finally, a weighted version of the Jaccard Index (JIW)
was employed to match gene sets and the key events, using the IDF as
weights (i.e., each token that was shared between a gene and a key event
did not account for 1 as in the standard JI, but it contributed its IDF weight
to the matching score) and the matching gene sets for each key event was
sorted in descending order.

Manual curation and refinement of annotations: Next, the results of the
computational prioritization were manually evaluated for correct context
and accuracy. Manual curation was used for gap filling and refinement of
the annotations. In detail, the top five matches retained from the NLP-
based approach were evaluated, and inaccurate or spurious matches were
discarded. In case no matches from the computational prioritization were
deemed suitable, a manual search related to the name of the KE was
performed on relevant databases (WikiPathways,[96] HPO,[97] KEGG,[98]

Reactome,[99] and GO [100]). For molecular level KEs, where the alteration
of an individual gene was described, either the main functions of the gene
were selected, or the gene was directly annotated to the ensemble iden-
tifier of the said gene. More generic annotations (i.e., annotation of a KE
describing the alteration of a gene to a functional term tightly related to
that gene) were prioritized to increase the size of the relevant gene sets.

The matches for KEs expressing the increase/activation or de-
crease/repression of a biological progress were further organized based
on the hierarchy of the terms by prioritizing the most generic but suitable
term followed by increasing specificity when multiple annotations of var-
ious specificities were available. For instance, Ke:1457 called “induction,
epithelial mesenchymal transition” was annotated to the following terms:
1) epithelial to mesenchymal transition (GO:0 001837); 2) regulation of
epithelial to mesenchymal transition (GO:00 10717); and 3) positive regu-
lation of epithelial to mesenchymal transition (GO:00 10718). The curated
KE-gene set links were added to the UKS so that for each key event en-
tity its top five matches were added, while the matching level was stored
as an edge attribute. This allowed to either combine multiple mappings
for a key event or to filter for specific mapping levels. Since the KE-gene
set mappings were always the same for the same KE, these relationships
were added to the Key Event entities and not to the Specific Key Event enti-
ties, which reduced complexity of the knowledge graph as well as reduced
needed storage space. The information, however, could still be retrieved
from the UKS via its connecting paths.

Gene set retrieval: The genes corresponding to the matched terms were
retrieved by matching the term names to their exact identifiers and query-
ing the UKS for human genes associated with the terms. For pheno-

types (HPO and KEGG disease), only genes with a link in the original
database were included by filtering by the source for the connection. In
cases where no human genes were linked to the annotated GO term, the
mouse and rat genes associated and converted them to human orthologs
using Ensembl,[101] which were then used as the corresponding gene sets.
When no genes of human, mouse, or rat were associated with the origi-
nal term, the annotation match was discarded and considered unsuccess-
ful. Once gene sets to all original terms were defined, the gene sets were
merged to obtain the final set of genes corresponding to each KE in this
study.

Enrichment Analysis of Reference Chemical-Associated Gene Sets: To
evaluate the ability of this framework to highlight relevant adverse out-
comes from chemical associated gene signatures, lists of reference chem-
icals were retrieved from the ECVAM reference chemical library[102] and
the NICEATM website (https://ntp.niehs.nih.gov/whatwestudy/niceatm/
resources-for-test-method-developers/refchem/index.html). From the re-
sources provided by ECVAM, a hepatotoxic chemical list that had
clear distinctions between positive and negative compounds was se-
lected. This list was based on the work from EPA’s Virtual Liver
project (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId
=166616&Lab=NCCT), and was provided as a downloadable Excel-file
(./CHELIST/CheLIST__EPA_VLIVER.xlsx) by ECVAM. From NICEATM, the
list of chemicals with characterized thyroid activity (specified as “ACTIVE”
in the listing produced based on a previous publication by Wegner et al.)
was selected.[103] AR and ER agonists were selected from the lists of in
vitro reference chemicals provided on the website. These listings had been
previously published in Kleinstreuer et al.[104] and Browne et al.,[105] re-
spectively. Finally, carcinogenic compounds were identified from the list
containing chemicals that were either known carcinogens or reasonably
anticipated to be human carcinogens (RAHC) based on the 14th report on
Carcinogens (RoC classifications) provided by NICEATM. The chemicals
from each of the reference lists were then matched to the list of chemi-
cals obtained from the CTD[29] through name-based matching or by the
provided CAS identifiers, resulting in the final lists of reference chemicals
for each endpoint used in this study. Chemical-gene links originating from
the CTD were retrieved from the UKS and only chemicals with 50–1000
associated genes were included in the enrichment analysis. This filter was
applied to minimize the false discovery rate and spurious matches in the
enrichment analysis.

Enrichment analysis was performed using the Fisher’s exact test as
implemented in the function enrich from R package bc3net[106] for each
chemical associated gene set against the list of AOP-related genes (i.e., the
union of all the genes associated to all the KEs of the AOP). Enrichment p-
values were adjusted using the false discovery rate (FDR) correction. AOP
was considered significantly enriched with FDR-corrected p-value < 0.01.

KE Clustering and Construction of the Pulmonary Fibrosis Network: Sim-
ilarities between the gene sets associated to each KE were evaluated by
calculating the JI between all pairs of KEs (size of the intersection divided
by the size of the union of the gene sets). The resulting similarity ma-
trix was then transformed into a distance matrix and used to group the
KEs using hierarchical clustering as implemented in the function hclust
in R package stats, specifying the agglomeration method as “complete.”
The number of clusters was defined so that only KEs with the same gene
sets associated to them (JI = 1) were assigned to the same group. The
grouping obtained in this manner was used to perform the enrichment
against KEs to avoid multiple testing against the same gene set as well
as to enhance the network presentation of the PF AOP network. The un-
weighted PF AOP network was generated using gephi[107] by importing a
graphml file generated with the function graph_from_edgelist from R pack-
age igraph.[108] KE groups from the clustering were added as attributes
to the nodes and used to merge redundant nodes in gephi. Similarly,
AOPs each KE is associated to were added as attributes and used to color
the nodes.

Characterization of the AOP Fingerprints: Transcriptomics data: In vivo
and in vitro transcriptomics data from MWCNT (Mitsui-7) exposures were
selected from a previously published collection by Saarimäki et al.[67] The
original data sets are available under GEO accession number GSE29042
(in vivo) and ArrayExpress entry EMTAB6396 (in vitro), while the
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preprocessed data is available on Zenodo (https://doi.org/10.5281/
zenodo.6425445). The in vivo data set comprised multiple doses and time
points, while the in vitro data contained a single dose and time point ex-
posure on four distinct cell lines representative different cell types of the
lung. In each case, DEGs (filtered by an absolute fold change > 1.5 and
Benjamini and Hochberg adjusted p-value < 0.05) obtained from Zenodo
(https://doi.org/10.5281/zenodo.6425445) for each distinct comparison
(i.e., combination of each dose and time point versus control in vivo and
separate cell lines in vitro) were pooled together to obtain a distinct MOA
of the exposure in vivo and in vitro, respectively.

AOP fingerprints: To produce the AOP fingerprint for the MWCNT expo-
sures, enrichment analysis was performed using the Fisher’s exact test as
implemented in the function enrich from R package bc3net[106] separately
against the AOP-associated gene lists and the KE-associated gene lists
(KEs linked to the same set of genes were grouped to avoid multiple tests
against the same set). An AOP was considered significantly enriched when
the AOP itself and at least 33% (or minimum of 2 KEs when the length of
the AOP was less than six) of its KEs were enriched with an FDR-corrected
p-value < 0.05.

Selection and Testing of AOP-Driven Biomarkers: Gene prioritization: All
human protein-protein interaction (PPI) edges were extracted from the
UKS and used to create a robust gene–gene network. PPI/gene (product)
interaction information could vary across data sources as well as the cov-
ered genes may differ. In addition, there was an innate bias in the data,
where more data sources were available for “more investigated” genes and
gene products. Because of this, it was decided not to apply a global thresh-
old on how many sources need to support an edge,[109] but instead, a lo-
cal threshold was applied. This ensured that also less investigated genes
and gene products will be retained in the final robust gene–gene network,
but their edges were less penalized by the number of supporting edges,
than highly covered gene (product) nodes. For each node, the mean num-
ber of sources supporting all its connecting edges was estimated and only
edges with at least the “mean number of sources” for a node were retained,
which needed to be true for at least one of the nodes making up an edge.
This was only done for GENE nodes, which were flagged as protein cod-
ing in Ensembl. The final robust human gene–gene network, consisted of
20 260 nodes, 806 250 edges, a network density of 0.0039. Due to the sig-
nificant lower number of available sources for transcription factor—gene
(product) data, all available sources were kept and scored equally. These
edges were used to create a directed gene–gene network, consisting of
18 754 nodes, 363 649 edges and a network density of 0.001. On the so cre-
ated gene–gene networks, for each node its degree, betweenness, eigen-
vector, and closeness centrality were estimated with NetworkX.[110] These
measures were then used to rank the genes linked to the KEs in the context
of individual KEs. The gene list for each KE was ranked based on each of
the centrality measures (degree, betweenness, closeness, and eigenvector
centrality) individually from most central to the least. The ranked lists were
combined using the Borda method as implemented in the function Borda
in R package TopKLists.[111]

Biomarker selection: The gene centrality-based ranking was then sup-
plemented by a specificity ranking for the KEs of AOPs related to PF. A
specificity score for the genes in the context of the KEs by dividing the oc-
currence of the gene in the KEs of PF AOPs by their occurrence in the KEs
of other AOPs were calculated. A similar score was calculated at the level
of AOPs (occurrence in PF AOPs/occurrence in other AOPs), as universal
PF biomarkers were the target of the identification (i.e., prioritizing those
that would be present in as many of the six PF AOPs as possible) while
also being as specific as possible to PF. These ranks were again combined
by the function Borda from R package TopKLists,[111] and a final round of
the Borda method was applied to combine the lists of genes from each KE
into one PF rank. The final rank was complemented with experimental ev-
idence. It was assessed whether the genes were differentially expressed in
the Mitsui-7 exposures in vivo and in vitro. It was also evaluated whether
they were dose-dependently altered in the in vivo data as well as in an addi-
tional in vitro data set on Mitsui-7 exposure of a THP-1 macrophage model
(originally published in Saarimäki et al.[58] and the preprocessed data
available as GSE146708 in the previously published collection[67] available
in https://doi.org/10.5281/zenodo.6425445). The dose-response model-

ing of the in vivo (GSE29042) and in vitro (GSE146708) datasets was per-
formed by following the strategy implemented in the BMDx tool.[112] Par-
ticularly, for each gene present in the dataset, multiple models were fit-
ted including linear, second order polynomial, hill, power, and exponen-
tial model. For each gene, the optimal model was selected as the one
with the lowest Akaike Information Criterion (AIC). Genes with an opti-
mal model with lack-of-fit p-values lower than 0.1 were removed from the
analysis. The effective doses (BMD, BMDL, and BMDU) were estimated
under the assumption of constant variance and by using a BMRF factor
of 1.349 (corresponding to a minimum of 10% of difference with respect
to the controls). Genes were further filtered based on the predicted doses.
Genes with BMD or BMDU values extrapolated higher than the highest
exposure dose were filtered. Moreover, genes whose ratio between the
predicted doses was higher than the suggested values (BMD/BMDL> 20,
BMDU/BMD> 20, and BMDU/BMDL> 40) were removed from the anal-
ysis. Genes passing the filters were considered to be dose-dependently
altered. At this stage, the measurability and feasibility of the gene in the
selected macrophage model was also considered. For instance, numerous
collagen-encoding genes were ranked high, but would not be a meaning-
ful target in a macrophage model. Moreover, a high coverage of PF KEs
and the selection of genes with high specificity scores were emphasized.
With these considerations, a subset of the genes with the following prior-
ity was selected: 1) genes that were deregulated both in vivo and in vitro,
with most emphasis on dose-dependency; 2) genes that were deregulated
in vitro, with most emphasis on dose-dependency; and 3) genes that were
not significantly differentially expressed but were dose-dependent. Finally,
after this initial selection driven by the rank and experimental evidence,
additional candidate biomarkers that had a lower rank but were specific
to KEs that would otherwise not have been covered by the selected candi-
dates were included.

Cell culture: THP-1 cells (DSMZ no.: ACC 16) were grown in RPMI
1640 (Gibco, #21 875) + 10% inactivated FBS (Gibco, #10 270). Cells
were cultivated in 75 cm2 culture flasks at 37 °C with a humidified at-
mosphere of 5% CO2. For all experiments, cells were seeded at a density
of 1 × 105 cells mL−1 in 96 well plates and differentiated for 48 h with
25 nM PMA (phorbol-12-myristate-13-acetate, Sigma-Aldrich, #P1585).
Cells were then left to rest for 24 h in fresh media containing no PMA
prior to bleomycin exposures.

Cell viability assay: THP-1 cells were exposed to 0–10 μg mL−1

of bleomycin ready-made solution (Sigma-Aldrich, #B7216) and 0–
100 mg mL−1 of Triclosan (Sigma-Aldrich, #72 779), for 6, 24 and 72 h.
A WST-1 assay was then used to measure cell viability. Briefly, 10 μL of cell
proliferation reagent WST-1 (Roche, #11 644 807 001) was added to each
well. Cells were left to incubate with WST-1 for 3 h in a 37 °C, 5% CO2 incu-
bator. Absorbance at 450 nm was then measured with a Spark microplate
reader (Tecan). Results of the cell viability assay are available in File S2 and
Figure S3, Supporting Information.

RT-qPCR: For each time point of 6, 24 and 72 h, THP-1 cells were
exposed to 0, 2.5, 5, 10 and 100 μg mL−1 of bleomycin ready-made
solution (Sigma-Aldrich, #B7216). Media was removed and cells were
washed briefly with 50 μL of PBS. 100 μL of lysis buffer from the QI-
AGEN RNeasy mini kit (Qiagen, #74 104) was added to each well to
lyse the cells. Three wells (300 μL) were pooled to create one sample,
and there were five samples for each concentration at each time point.
Total RNA was then extracted from these samples using the QIAGEN
RNeasy mini kit (Qiagen, #74 104). DNase treatment was performed
using TURBO DNA-free Kit (ThermoFisher, #AM1907) according to
the manufacturer’s protocol. cDNA was synthesized from 100 ng of
RNA, using the high-capacity cDNA reverse transcription kit (Thermo
Fisher Scientific, #4 368 813), according to manufacturer’s instructions.
Expression levels of target genes were determined by qRT-PCR using
CFX96 Touch Real-Time PCR Detection System (BioRad) with 10 μL of
iQ Multiplex Powermix (Bio-Rad, #1 725 849), 5 μL of cDNA diluted
fivefold, 2.5 μL of nuclease-free (NF) water (not DEPC-Treated, Ther-
moFisher, #AM9930) in a 20 μL reaction, together with 2.5 μL of single
(1 μL assay + 1.5 μL NF water) or multiplexed (0.5 μL of each assay)
PrimePCR Probe Assays (Bio-Rad) as followed with single or multiplex
reactions grouped in parentheses and formatted as Gene/UniqueAssayID:
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(ACTB/qHsaCEP0036280), (SMAD7/qHsaCEP0050142, MMP9/qHsaCI-
P0028098, GDF15/qHsaCEP0051579, CTSK/qHsaCIP0030907, PLOD2/
qHsaCEP0052848), (CXCL2/qHsaCEP0058163, LTBP4/qHsaCEP00249-
31, TGFB3/qHsaCEP0058244, RCN3/qHsaCEP0057804, MMP7/qHsa-
CEP0052037), (SPP1/qHsaCEP0058179, FN1/qHsaCEP0050873, LTBP3/
qHsaCEP0053782, RSAD2/qHsaCIP0031596, CCL7/qHsaCEP0058033),
(IL8/qHsaCEP0053894, MMP19/qHsaCEP0051244, TWIST1/qHsaCEP-
0051221, PLK3/qHsaCIP0027687, CXCL10/qHsaCEP0053880), (LOX/
qHsaCEP0050731, PTX3/qHsaCEP0033071, TGFBI/qHsaCEP0058394,
CCL2/qHsaCIP0028103, TGFB1/qHsaCIP0030973).

Fold change (FC) values from RT-qPCR data were calculated using
the comparative CT(2−(ddCt)) method.[113] The FC values were log2 trans-
formed (log2(FC)). For each gene and for each concentration, an outlier
detection was performed by removing all the samples with log2(FC) values
above or below the 75th and 25th percentiles of the distribution. Ct values,
dCt values, FC values and log2(FC) values are available in File S2, Support-
ing Information, along with ANOVA tables and tukey HSD posthoc test
results. The log2FC expression of the genes as compared to the untreated
controls are plotted in Figure S4, Supporting Information.

Dose-dependent modeling: A dose-response analysis of the log2(FC) val-
ues derived from the PCR experiments was performed. For each gene,
multiple models were fitted, including linear, hill, power, polynomial, expo-
nential, log-logistic, Weibull, and Michaelis–Mentel models. The optimal
model was selected as the one with the lowest AIC. The BMD estimation
was performed under the assumption of constant variance. The BMR was
identified by means of the standard deviation approach with a BMRF of
1.349. Only genes with lack-of-fit p-value >0.10 and with estimated BMD,
BMDL and BMDU values were considered relevant.
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the author.

Acknowledgements
This work received funding from the EU Horizon 2020 project Nano-
SolveIT (grant agreement no. 814572), the Academy of Finland (grant
agreement no. 322761), and the European Research Council (ERC)
programme, Consolidator project ARCHIMEDES (grant agreement no.
101043848). L.A.S. was supported by the Emil Aaltonen Foundation and
A.S. by the Tampere Institute for Advanced Study.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the sup-
plementary material of this article.

Keywords
adverse outcome pathways, biomarkers, new approach methodologies,
toxicogenomics

Received: July 11, 2022
Revised: November 9, 2022

Published online: December 7, 2022

[1] M. D. Waters, J. M. Fostel, Nat. Rev. Genet. 2004, 5, 936.
[2] Z. Liu, R. Huang, R. Roberts, W. Tong, Trends Pharmacol. Sci. 2019,

40, 92.
[3] P. Marx-Stoelting, A. Braeuning, T. Buhrke, A. Lampen, L. Niemann,

M. Oelgeschlaeger, S. Rieke, F. Schmidt, T. Heise, R. Pfeil, R. Solecki,
Arch. Toxicol. 2015, 89, 2177.

[4] J. Paananen, V. Fortino, Brief Bioinf. 2020, 21, 1937.
[5] A. Mech, S. Gottardo, V. Amenta, A. Amodio, S. Belz, S. Bøwadt,

J. Drbohlavová, L. Farcal, P. Jantunen, A. Małyska, K. Rasmussen,
J. Riego Sintes, H. Rauscher, Regul. Toxicol. Pharmacol. 2022, 128,
105093.

[6] A. M. Richard, R. Huang, S. Waidyanatha, P. Shinn, B. J. Collins, I.
Thillainadarajah, C. M. Grulke, A. J. Williams, R. R. Lougee, R. S.
Judson, K. A. Houck, M. Shobair, C. Yang, J. F. Rathman, A. Yasgar,
S. C. Fitzpatrick, A. Simeonov, R. S. Thomas, K. M. Crofton, R. S.
Paules, J. R. Bucher, C. P. Austin, R. J. Kavlock, R. R. Tice, Chem. Res.
Toxicol. 2021, 34, 189.

[7] D. Krewski, D. Acosta, M. Andersen, H. Anderson, J. C. Bailar, K.
Boekelheide, R. Brent, G. Charnley, V. G. Cheung, S. Green, K. T.
Kelsey, N. I. Kerkvliet, A. A. Li, L. Mccray, O. Meyer, R. D. Patter-
son, W. Pennie, R. A. Scala, G. M. Solomon, M. Stephens, J. Yager,
L. Zeise, Staff Of Committee On Toxicity Test, J. Toxicol. Environ.
Health, Part B 2010, 13, 51.

[8] OECD, Guidance Document for the Use of Adverse Outcome Pathways
in Developing Integrated Approaches to Testing and Assessment (IATA),
OECD Series on Testing and Assessment, Vol. 260, OECD Publish-
ing, Paris 2017.

[9] G. T. Ankley, R. S. Bennett, R. J. Erickson, D. J. Hoff, M. W. Hor-
nung, R. D. Johnson, D. R. Mount, J. W. Nichols, C. L. Russom, P.
K. Schmieder, J. A. Serrrano, J. E. Tietge, D. L. Villeneuve, Environ.
Toxicol. Chem. 2010, 29, 730.

[10] L.-A. Clerbaux, N. Amigó, M. J. Amorim, A. Bal-Price, S. Batista Leite,
A. Beronius, G. F. G. Bezemer, A.-C. Bostroem, A. Carusi, S. Co-
ecke, R. Concha, E. P. Daskalopoulos, F. De Bernardi, E. Edrosa,
S. W. Edwards, J. Filipovska, N. Garcia-Reyero, F. N. E. Gavins,
S. Halappanavar, A. J. Hargreaves, H. T. Hogberg, M. T. Huynh,
D. Jacobson, J. Josephs-Spaulding, Y. J. Kim, H. J. Kong, C. E.
Krebs, A. Lam, B. Landesmann, A. Layton, et al., ALTEX 2022, 39,
322.

[11] P. Nymark, M. Sachana, S. B. Leite, J. Sund, C. E. Krebs, K. Sullivan,
S. Edwards, L. Viviani, C. Willett, B. Landesmann, C. Wittwehr, Front.
Public Health 2021, 9, 638605.

[12] K. E. Tollefsen, S. Scholz, M. T. Cronin, S. W. Edwards, J. De Knecht,
K. Crofton, N. Garcia-Reyero, T. Hartung, A. Worth, G. Patlewicz,
Regul. Toxicol. Pharmacol. 2014, 70, 629.

[13] S. Halappanavar, S. Van Den Brule, P. Nymark, L. Gaté, C. Seidel,
S. Valentino, V. Zhernovkov, P. HÃ¸Gh Danielsen, A. De Vizcaya, H.
Wolff, T. Stöger, A. Boyadziev, S. S. S. Poulsen, J. B. Sørli, U. Vogel,
Part. Fibre Toxicol. 2020, 17, 16.

[14] V. Fortino, P. A. S. Kinaret, M. Fratello, A. Serra, L. A. Saarimã¤Ki,
A. Gallud, G. Gupta, G. Vales, M. Correia, O. Rasool, J. Ytterberg,
M. Monopoli, T. Skoog, P. Ritchie, S. Moya, S. VÃ¡Zquez-Campos,
R. Handy, R. Grafström, L. Tran, R. Zubarev, R. Lahesmaa, K. Daw-
son, K. Loeschner, E. H. Larsen, F. Krombach, H. Norppa, J. Kere,
K. Savolainen, H. Alenius, B. Fadeel, et al., Nat. Commun. 2022, 13,
3798.

[15] J. Montaner, L. Ramiro, A. Simats, S. Tiedt, K. Makris, G. C. Jickling,
S. Debette, J.-C. Sanchez, A. Bustamante, Nat. Rev. Neurol. 2020, 16,
247.

[16] A. Federico, A. Serra, M.y K. Ha, P. Kohonen, J.-S. Choi, I. Liampa,
P. Nymark, N. Sanabria, L. Cattelani, M. Fratello, P. A. S. Kinaret,
K. Jagiello, T. Puzyn, G. Melagraki, M. Gulumian, A. Afantitis,
H. Sarimveis, T.-H. Yoon, R. Grafström, D. Greco, Nanomaterials
(Basel) 2020, 10, 903.

Adv. Sci. 2023, 10, 2203984 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203984 (14 of 16)



www.advancedsciencenews.com www.advancedscience.com

[17] P. A. S. Kinaret, A. Serra, A. Federico, P. Kohonen, P. Nymark, I.
Liampa, M.y K. Ha, J.-S. Choi, K. Jagiello, N. Sanabria, G. Melagraki,
L. Cattelani, M. Fratello, H. Sarimveis, A. Afantitis, T.-H. Yoon, M.
Gulumian, R. Grafström, T. Puzyn, D. Greco, Nanomaterials 2020,
10, 750.

[18] A. Serra, M. Fratello, L. Cattelani, I. Liampa, G. Melagraki, P. Ko-
honen, P. Nymark, A. Federico, P. A. S. Kinaret, K. Jagiello, M.y K.
Ha, J.-S. Choi, N. Sanabria, M. Gulumian, T. Puzyn, T.-H. Yoon, H.
Sarimveis, R. Grafström, A. Afantitis, D. Greco, Nanomaterials 2020,
10, 708.

[19] E. K. Brockmeier, G. Hodges, T. H. Hutchinson, E. Butler, M. Hecker,
K. E. Tollefsen, N. Garcia-Reyero, P. Kille, D. Becker, K. Chipman, J.
Colbourne, T. W. Collette, A. Cossins, M. Cronin, P. Graystock, S.
Gutsell, D. Knapen, I. Katsiadaki, A. Lange, S. Marshall, S. F. Owen,
E. J. Perkins, S. Plaistow, A. Schroeder, D. Taylor, M. Viant, G. Ankley,
F. Falciani, Toxicol. Sci. 2017, 158, 252.

[20] E. J. Perkins, E. A. Woolard, N. L. Garcia-Reyero, Front. Toxicol. 2022,
4, 786057.

[21] S. Labib, A. Williams, C. L. Yauk, J. K. Nikota, H. Wallin, U. Vogel, S.
Halappanavar, Part. Fibre Toxicol. 2016, 13, 15.

[22] Y. Jin, G. Qi, Y. Shou, D. Li, Y. Liu, H. Guan, Q. Zhang, S. Chen, J.
Luo, L. Xu, C. Li, W. Ma, N. Chen, Y. Zheng, D. Yu, J. Hazard. Mater.
2022, 425, 128041.

[23] R. Guan, N. Li, W. Wang, W. Liu, X. Li, C. Zhao, Ecotoxicol. Environ.
Saf. 2022, 234, 113387.

[24] L. A. Saarimäki, G. Melagraki, A. Afantitis, I. Lynch, D. Greco, Nat.
Nanotechnol. 2022, 17, 17.

[25] M. Martens, T. Verbruggen, P. Nymark, R. Grafström, L. D. Burgoon,
H. Aladjov, F. T. Andón, C. T. Evelo, E. L. Willighagen, Front. Genet.
2018, 9, 661.

[26] M. Martens, C. T. Evelo, E. L. Willighagen, Appl. In Vitro Toxicol. 2022,
8, 2.

[27] P. Nymark, L. Rieswijk, F. Ehrhart, N. Jeliazkova, G. Tsiliki, H.
Sarimveis, C. T. Evelo, V. Hongisto, P. Kohonen, E. Willighagen, R.
C. Grafström, Toxicol. Sci. 2018, 162, 264.

[28] K. Jagiello, S. Halappanavar, A. Rybińska-Fryca, A. Willliams, U. Vo-
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