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Abstract

Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, 

but proteomics of low sample amounts remains limited in depth and throughput. To increase the 

throughput of sensitive proteomics, we developed an experimental and computational framework, 

called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed 

analysis with plexDIA increases throughput multiplicatively with the number of labels without 

reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, 

plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. 

Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled 

three-plex sets and increased data completeness, reducing missing data more than twofold across 

samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 

98% data completeness within a plexDIA set while using ~5 minutes of active chromatography 
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per cell. These results establish a general framework for increasing the throughput of sensitive and 

quantitative protein analysis.

Mass spectrometry (MS) methods can achieve deep proteome coverage1,2, low missing 

data3, high throughput4,5 and high sensitivity6. However, simultaneously achieving all these 

objectives is a considerable challenge7,8. Resolving this challenge will empower biomedical 

projects that are impractical with current methods8, especially those that require single-

cell protein analysis9-11. Toward this goal, the throughput of sensitive protein analysis 

may be increased by different strategies: (1) increasing sample throughput and robustness 

by chemical labeling and (2) decreasing MS analysis time per sample by simultaneous 

(parallel) analysis of multiple peptides. These strategies are complementary, and we sought 

to combine them to achieve a multiplicative increase in the rate of quantifying the proteomes 

of limited sample amounts.

Chemical labeling is often used with data-dependent acquisition (DDA) to increase 

throughput via parallel sample analysis (Fig. 1a) and to control for shared artifacts, such 

as disturbances in peptide separation and ionization12-14. Because quantifying a mammalian 

proteome requires analyzing hundreds of thousands of precursor ions, and DDA methods 

analyze one precursor per MS2 scan, even the most optimized DDA methods require up 

to 1 day of liquid chromatography with tandem mass spectrometry (LC–MS/MS) for deep 

proteome analysis1. Non-isobaric labels, such as mTRAQ and dimethyl labeling, allow for 

sample multiplexing but further increase the number of precursor ions and, thus, the time 

needed for MS1-multiplexed DDA analysis15. In contrast, approaches using isobaric labels 

(such as tandem mass tags (TMTs)) do not increase the number of distinguishable precursor 

ions and can reduce the analysis time per sample16,17, albeit quantification with TMT is 

often affected by co-isolation interference13,18.

The throughput of DDA analysis can be increased by decreasing the ion accumulation times 

for MS2 scans, although this results in accumulating fewer ions and, thus, limits sensitivity7. 

Indeed, sensitive analysis of small sample amounts requires (and is, thus, limited by) long 

ion accumulation times, which are typically substantially longer than the detection time 

required by MS detectors6,19,20. Even with short ion accumulation times for unlimited 

sample amounts, the requirement to serially analyze hundreds of thousands of precursor ions 

remains a major challenge for simultaneously achieving high throughput and deep proteome 

coverage by serial precursor analysis.

A fundamental solution to this challenge is the concept of isolating and analyzing multiple 

precursor ions simultaneously by data-independent acquisition (DIA)21. This concept has 

been implemented into methods for label-free DIA (LF-DIA) protein analysis22-26. Such 

parallel analysis of peptides decreases the time needed to analyze thousands of precursor 

ions and makes the throughput of optimized LF-DIA and TMT-DDA workflows similar 

(Fig. 1a), allowing routine quantification of about 6,000 proteins in 2 hours17. Recent 

DIA technologies further enabled quantification of over 8,000 proteins in 1.5 hours27, and 

TMTpro tags increased multiplexing to 18-plex for DDA methods4. Thus, multiplexed DDA 

and LF-DIA afford similar throughput (Fig. 1a).
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We sought to further increase the throughput of sensitive DIA by multiplexing samples 

labeled with non-isobaric isotopologous mass tags, capitalizing on the fact that increasing 

the number of precursor ions does not increase the time needed to analyze them via tandem 

DIA-MS, in contrast to DDA-MS15,21. This creates a hypothetical possibility that we sought 

to test: the number of proteins accurately quantified by multiplexed DIA may increase 

multiplicatively with the number of labels used (Fig. 1a). If feasible, this possibility may 

enable higher throughput and more sensitive multiplexed proteomics, including single-cell 

proteomics, as previously suggested7,28. Although the feasibility of DIA multiplexed by 

SILAC29 or pulsed SILAC30,31 has been clearly demonstrated, its ability to multiplicatively 

increase quantitative data points remains unclear. Similarly, clever strategies have used both 

isobaric and isotopologous tags to multiplex DIA, but they have afforded the quantification 

of relatively few proteins32-34. Thus, the potential of multiplexed DIA to increase sample 

throughput while preserving proteome coverage and quantification accuracy has not been 

realized due to the increased complexity of DIA data from labeled samples33-37.

We hypothesized that an optimized experimental and analytical framework may enable 

n-fold multiplexed DIA to increase n-fold the number of accurate protein data points (Fig. 

1a). We test this hypothesis for n = 3 using amine-reactive non-isobaric isotopologous mass 

tags (mTRAQ), hoping that this particular choice of mass tags can establish a framework 

that will, in the future, generalize to a variety of isotopologous non-isobaric mass tags with 

higher capacity for multiplexing. Specifically, we sought to develop a general framework 

and an analysis pipeline to increase the throughput of sensitive and quantitative protein 

analysis via plexDIA.

Results

To enhance MS data interpretation, the plexDIA module of DIA-NN capitalizes on the 

expected regular patterns in the data, such as identical retention times and known mass 

shifts between the same peptide labeled with different isotopologous mass tags (Fig. 

1b and Extended Data Fig. 1)7. DIA-NN uses neural networks to confidently identify 

labeled peptides, and these identifications are then used to re-extract data for the same 

peptide labeled with a different tag. Neural networks then calculate false discovery rates 

(FDRs) for all peptides based on a decoy channel strategy, which is empirically validated 

by two-species spiked experiment shown in Extended Data Fig. 2. Despite the n-fold 

increased spectral complexity, the plexDIA framework aims to accurately quantify peptides 

by calculating ratios of fragments from the most confident isotopologous precursor to the 

translated isotopologous precursors at the apex where the signal is greatest and the effect of 

interference is lowest. The mean fragment ratio is used to scale the precursor quantity of the 

best isotopologous precursor to the less-confident isotopologous precursors (Fig. 1b).

plexDIA benchmarks.

We sought to evaluate whether plexDIA can multiplicatively increase the number of 

quantitative data points relative to matched LF-DIA analysis while maintaining similar 

quantitative accuracy. Toward that goal, we mixed proteomes in precisely specified ratios 

shown in Fig. 1c, thus creating a benchmark of known protein ratios for thousands of 

Derks et al. Page 3

Nat Biotechnol. Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proteins spanning a wide dynamic range of abundances, similar to previous benchmarks23. 

Specifically, we made three samples (A, B and C), each with an exactly specified amount 

of Escherichia coli, Saccharomyces cerevisiae and Homo sapiens (U-937 and Jurkat) cell 

lysate (Fig. 1c). A distinct aspect of this design is the incorporation of human proteomes of 

different cell types, which affords additional benchmarking for the reproducibility of protein 

identification across diverse samples and for relative protein quantification.

Each sample was either analyzed by LF-DIA or labeled with one of three amine-reactive 

isotopologous chemical labels (mTRAQ: Δ0, Δ4 or Δ8) (Fig. 1c). With this experimental 

design, plex-DIA enables threefold reduction in LC–MS/MS time per sample (Fig. 1d). The 

combined labeled samples were analyzed by plexDIA, and the result was used to benchmark 

proteomic coverage, quantitative accuracy, precision and repeatability across runs relative 

to LF-DIA of the same samples. LF-DIA and plexDIA were evaluated with two data 

acquisition methods, V1 and V2, shown in Fig. 1e. V1 included multiple high-resolution 

MS1 survey scans to increase the temporal resolution of precursor sampling, as previously 

reported3, whereas V2 included more MS2 scans to increase proteome coverage (Fig. 1e). 

The only difference between the duty cycles of LF-DIA and plexDIA was a 100-m/z 
increment in the MS1 and MS2 windows of plexDIA to account for the mass of mTRAQ 

added to the peptides (Methods).

plexDIA increases throughput multiplicatively.

To directly benchmark the analysis of 500-ng protein samples by plexDIA relative to LF-

DIA, the multiplexed and LF samples described in Fig. 1c were analyzed in triplicate by 

LC–MS/MS on a Q Exactive orbitrap (first generation, Thermo Fisher Scientific) with a 

60-minute active nano-LC gradient. The throughput increases for duty cycles V1 (Fig. 2) 

and V2 (Extended Data Fig. 3) were similar, except that V2 achieved greater proteome 

coverage with both plexDIA and LF-DIA. The parallel data acquisition by all DIA methods 

resulted in a greater number of identified peptides and proteins compared to the DDA runs 

(Fig. 2a,b). Both V1 and V2 resulted in approximately 2.5-fold more precursors and protein 

data points for plexDIA than for LF-DIA per unit time (Fig. 2a,b and Extended Data Fig. 

3a,b).

plexDIA increases data completeness across samples.

Next, we sought to compare LF-DIA and plexDIA in terms of the consistency of protein 

quantification across samples. The systematic acquisition of ions by DIA is well-established 

as a strategy for increasing the repeatability of peptide identification relative to shotgun 

DDA24. In addition to consistent data acquisition, plexDIA may further reduce the 

variability between samples and runs and, thus, further increase the consistency (overlap) 

between quantified proteins relative to LF-DIA.

Indeed, both SILAC and isobaric labeling reduce missing data by enabling the quantification 

of peptides identified in at least one sample from a labeled set18,38. Similarly, plexDIA 

takes advantage of the precisely known mass shifts in the mass spectra for a peptide labeled 

with different tags to propagate peptide sequence identifications within a run. Specifically, 

confidently identified precursors in one channel (label) are matched to corresponding 
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precursors in the other channels. This is the default analysis used with standards A, B 

and C. plexDIA has an additional mode for the special case when some proteins are present 

only in some samples of labeled sets. In such cases, plexDIA can enable sample-specific 

identification for each protein by using multiple MS1-based and MS2-based features to 

rigorously evaluate the spectral matches within a run and explicitly assign confidence for the 

presence of each protein in each sample. Such a special case is exemplified by a plexDIA 

set in which one sample has both yeast and bacterial proteins, whereas another sample has 

only yeast proteins (Extended Data Fig. 2). These analytical capabilities are described in the 

Methods.

To assess whether plexDIA can improve data completeness, the protein groups quantified 

across samples A, B and C were plotted as Venn diagrams for each replicate of plexDIA and 

LF-DIA (Fig. 2c). On average, the protein groups quantified in common across samples A, 

B and C were 6,282 for plexDIA and 5,851 for LF-DIA. The corresponding numbers for the 

V2 method are 7,923 for plexDIA and 8,318 for LF-DIA (Extended Data Fig. 3c). Thus, a 

three-plex plexDIA increased the rate of quantifying protein ratios across all three samples 

by 3.22-fold for the V1 method and by 2.86-fold for the V2 method, per unit time.

We further benchmarked the consistency of identified proteins both from the repeated 

analysis of the same sample (such as replicate injections of sample A) and from the analysis 

of different samples (such as comparing samples B and C). Consistent with previous reports 

for DIA data completeness, both LF-DIA and plexDIA identified largely the same proteins 

from replicate injections, quantified by high Jaccard indices and only about 13–15% non-

overlapping proteins, as shown in Fig. 2d,e. This overlap is similar to the overlap of a high-

quality LF-DIA dataset by Navarro et al.23, as shown in Extended Data Fig. 4. The overlap 

between the proteins identified in distinct samples remained similarly high for plexDIA, 

whereas it was substantially reduced for the LF-DIA analysis (Fig. 2d,e). This increased 

repeatability for plexDIA likely arises from the fact that samples A, B and C are analyzed 

in parallel as part of one set. Such a multiplexed approach also reduces missing data 

within a plexDIA set to 2–3% (Fig. 2d,e). The larger the difference in protein composition 

between two samples, the higher the fraction of missing data for LF-DIA. In contrast, the 

missing data for plexDIA was low across all pairs of samples (Fig. 2e). The advantages 

of improved data completeness by plexDIA are especially pronounced when comparing 

the number of protein ratios from plexDIA and LF-DIA for samples, which differ more in 

protein abundance—for example, B and C; sample C has sixfold more E. coli and sixfold 

less S. cerevisiae relative to sample B. As a result, LF-DIA allowed the quantification of 

only 1,383 ratios between E. coli and S. cerevisiae proteins, whereas plexDIA allowed the 

quantification of 1,807 protein ratios (Fig. 3a-c).

Quantitative accuracy of plexDIA is similar to LF-DIA.

To benchmark the quantitative accuracy and precision of plexDIA and LF-DIA, we 

compared the measured protein ratios between pairs of samples to the ones expected 

from the study design (Fig. 1). Because each sample contains a known amount of E. 
coli, S. cerevisiae and H. sapiens protein lysate, and most peptides are unique to each 

species, the protein ratios between pairs of samples correspond to the corresponding mixing 
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ratios23,24. The expected ratios allow for rigorous benchmarking of the accuracy and 

precision of plexDIA and LF-DIA. H. sapiens protein group ratios were excluded from 

analyses involving sample C as they would compare U-937 (A and B) to Jurkat (C) cell 

lines; therefore, deviations from expected ratios would be a combination of quantitative 

noise and cell-type-specific differences in protein abundance.

For well-controlled comparisons between the quantitative accuracy of LF-DIA and plexDIA, 

we used the set of protein ratios quantified by both methods. The comparison produced 

using the V1 method is shown in Fig. 3a-c and Extended Data Fig. 6, whereas the results 

from V2 are shown in Extended Data Fig. 5. These results indicate that, on average, 

plexDIA has similar accuracy and precision to LF-DIA. Consistent with the expectation 

that labeling helps to control for nuisances, the results indicate that plexDIA quantification 

within a set is slightly more accurate than across sets (Fig. 3d). However, the difference is 

small, and accuracy across different plexDIA sets is high (Extended Data Fig. 7a-c).

By design, plexDIA allows quantifying precursors based on MS2-level and MS1-level 

data, and we evaluated the quantitative accuracy for both levels of quantification (Fig. 3e). 

Because both lysine and N-terminal amine groups are labeled by the amine-reactive mTRAQ 

labels, both b-fragment and y-fragment ions of lysine peptides are sample specific and, 

thus, contribute to MS2-level quantification. In contrast, only b-ions are sample specific for 

arginine peptides, and, thus, only b-ions are used for their MS2-level quantification. As a 

result, the MS2-level quantification accuracy for arginine peptides is slightly lower (Fig. 

3e). The small magnitude of this difference is likely attributable to the fact that mTRAQ 

stabilizes b-ions39. The accuracy of MS1 quantification by V1 is high for all peptides and 

slightly higher than the accuracy of MS2 quantification (Fig. 3e). The MS2-optimized duty 

cycle (V2) resulted in deeper proteome coverage and lower accuracy for both LF-DIA and 

plexDIA (Extended Data Fig. 5). However, different duty cycles implemented on different 

instruments will likely improve the accuracy and coverage by MS2-optimized methods.

Repeatability of plexDIA is similar to LF-DIA.

To assess the repeatability of plexDIA and LF-DIA quantitation, we computed the 

coefficient of variation (CV) for proteins quantified in triplicate runs for each method 

using MaxLFQ abundances40. We required each protein group to be quantified three times 

for plexDIA and LF-DIA, and then the CVs for the overlapping sample-specific protein 

groups (n = 12,863) were plotted in Fig. 4a. The results indicate that plexDIA and LF-DIA 

have relatively consistent quantitation and similar quantitative repeatability, with median 

CVs for repeated injections of 0.103 and 0.108, respectively. Repeatability of plexDIA was 

also compared for triplicates of the same labeled samples and for triplicates in which each 

replicate had samples with alternating labels. Median CVs for the triplicates were 0.110 and 

0.148 for ‘same labels’ and ‘different labels’ experiments, respectively (Extended Data Fig. 

7d).

Estimating differential protein abundance by plexDIA and LF-DIA.

We investigated the agreement of differential protein abundance between U-937 and Jurkat 

cell lines with plexDIA and LF-DIA. Differential protein abundance was estimated from 
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LF-DIA data, and the differentially abundant proteins at 1% FDR were used to assess the 

agreement between U-937 and Jurkat protein ratios estimated by plexDIA and LF-DIA (Fig. 

4b). The estimates by the two methods are similar, as indicated by a Spearman correlation of 

0.90 for differentially abundant proteins (n = 1,078 at 1% FDR) and a Spearman correlation 

of 0.78 for all intersected human proteins (n = 2,728) (Fig. 4b).

We also compared the ability of plexDIA and LF-DIA to recall true differentially abundant 

proteins as a function of each method’s empirical FDR. Our experimental design from 

Fig. 1c provides strong ground truth. It dictates that, between samples A and B, only S. 
cerevisiae and E. coli are differentially abundant because they were spiked in at different 

ratios (1:2 and 4:1, respectively), whereas human proteins are not because they are present 

in a 1:1 ratio and compare the same cell type (U-937 monocytes). Therefore, true positives 

(S. cerevisiae and E. coli proteins) and true negatives (H. sapiens proteins) are known. With 

this prior knowledge, we compared the number of true positives for LF-DIA and plexDIA as 

a function of the empirical FDR (Fig. 4c). Both methods used three replicates and performed 

similarly at 1% empirical FDR, with 643 proteins and 663 proteins found to be differentially 

abundant for plexDIA and LF-DIA, respectively. The slight increase of true positives for 

LF-DIA at higher empirical FDR may be due to its slightly higher precision as visible in Fig. 

3. In conclusion, plexDIA achieved similar statistical power as LF-DIA while using three 

times less instrument time and expense.

Cell division cycle analysis with plexDIA.

Next, we applied plexDIA to quantify protein abundance across the cell division cycle 

(CDC) of U-937 monocyte cells. The CDC analysis allows further validation of plexDIA 

based on well-established biological processes during the CDC while simultaneously 

offering the possibility of new discoveries. The ability of plexDIA to analyze small samples 

made it possible to isolate cells from different phases of the CDC based on their DNA 

content (Fig. 5a). The cell isolation used fluorescence-activated cell sorting (FACS), which 

allowed us to analyze cell populations from G1, S and G2/M phases without the artifacts 

associated with blocking the CDC to achieve population synchronization41.

The peptides from the sorted cells were labeled with non-isobaric isotopologous labels 

and then combined and analyzed both by MS1-optimized (V1) and MS2-optimized (V2) 

plexDIA methods (Fig. 5a). By using different data acquisition methods, we aimed to (1) 

reduce systematic biases that may be shared by technical replicates and (2) evaluate the 

agreement between MS1-based and MS2-based quantification by plexDIA in the context 

of a biological experiment. Analyzing the V1 and V2 data with DIA-NN resulted in 4,391 

unique protein groups and 4,107 gene groups at 1% global FDR. These data were filtered to 

include only proteotypic peptides, and then gene-level information was used for downstream 

protein set enrichment analysis (PSEA) and differential protein abundance analysis.

To identify biological processes regulated across the phases of the CDC, we performed 

PSEA using data from both V1 and V2 (Fig. 5b). The V1 and V2 data indicated very 

similar PSEA patterns and identified canonical CDC processes, such as the activation 

of the MCM complex during S phase and chromatid segregation and mitotic nuclear 

envelope disassembly during G2/M phase (Fig. 5b). These expected CDC dynamics and 
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the agreement between V1 and V2 results demonstrate the utility of plexDIA for biological 

investigations. Furthermore, the PSEA indicated metabolic dynamics in the tricarboxylic 

acid (TCA) cycle and fatty acid beta-oxidation. These results provide direct evidence for the 

suggested coordination among metabolism and cell division42,43.

To further explore the proteome remodeling during the CDC, we identified differentially 

abundant proteins across G1, S and G2/M phase (Fig. 5c). From the 4,107 proteins identified 

across V1-acquired and V2-acquired data, 400 proteins were found to be differentially 

abundant between cell cycle phases at 1% FDR. Some of these proteins are displayed in Fig. 

5c, organized thematically based on their functions. Consistent with results from PSEA, we 

found good agreement between V1 and V2 and expected changes in protein abundance, such 

as polo-like kinase 1 and ubiquitin-conjugating enzyme E2 peaking in abundance during 

G2/M phase.

In addition to the differential abundance of classic CDC regulators, we found that some 

poorly characterized proteins were also differentially abundant, such as proteins CDV3 and 

JPT2. To further investigate these proteins, we examined the extracted-ion chromatogram 

(XIC) for representative peptides from these proteins (Fig. 5d). The XIC demonstrates 

consistent quantitative trends and co-elution among precursors and peptide fragments 

labeled with different mass tags. This consistency among the raw data bolsters the 

confidence in the findings by plexDIA, such as differential abundance of CDV3 and JPT2.

Single-cell analysis with plexDIA.

Next, we evaluated the potential of plexDIA to quantify proteins from single human cells. 

Single cells from melanoma (WM989-A6-G3), pancreatic ductal adenocarcinoma (PDAC) 

and monocyte (U-937) cell lines were prepared and combined into plexDIA sets using 

nano-ProteOmic sample Preparation (nPOP)44.

We aimed to test its generalizability to different types of MS detectors, an orbitrap and a 

time-of-flight (TOF) detector, and its ability to take advantage of ion mobility technology, 

such as trapped ion mobility spectrometry45. The technologies were implemented by 

analyzing single-cell plexDIA samples using two commercial platforms: timsTOF SCP 

(Fig. 6a-f) and Q Exactive classic (Fig. 6g-l). Both platforms achieved high quantitative 

accuracy and data completeness. To support high sample throughput, both platforms used 

short chromatographic gradients to separate the peptides (Fig. 6d, j), which, in the case 

of timsTOF SCP, allowed quantifying about 1,000 proteins per cell while using about 10 

minutes of total instrument time (only 5 minutes of active chromatography) per single 

cell. Thus, plexDIA increases sample throughput by 3- to 12-fold over the top-performing 

single-cell proteomics methods that do not use isobaric mass tags46,47.

As observed with bulk samples, plexDIA resulted in high data completeness among single-

cell proteomes (Fig. 6e,k). It exceeded 98% within labeled sets analyzed by timsTOF SCP 

(Fig. 6e) and remained over 50% even between plexDIA sets analyzed by Q Exactive 

(Fig. 6k). This high level of data completeness is enabled by leveraging the co-elution of 

isotopologues with precisely known mass offsets (Fig. 1b). Still, about 5% of the single cells 
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had similar missing data to negative controls and were removed from downstream analysis 

as sample preparation likely failed (Extended Data Fig. 8).

plexDIA quantified protein fold changes spanning a 1,000-fold dynamic range and exhibited 

good agreement with corresponding fold changes quantified from 100-cell bulk samples 

(Fig. 6f,l). To explore the raw data supporting these measurements, we plotted both MS1-

level and MS2-level XICs from pairs of isotopologous precursors (Fig. 6m). The data 

indicate that (1) the isotopologously labeled precursors co-elute and apex synchronously, 

and (2) the lowly abundant precursors whose identification depended on the plexDIA 

module have precursors, fragments and intensities in excellent agreement with the more 

abundant isotopologues and with the bulk measurements (Fig. 6l,m). These findings 

demonstrate that plexDIA may improve the sensitivity of single-cell proteomic analysis 

and, thus, increase data completeness, especially across cells with very different proteomes.

Sampling and detecting a sufficient number of precursor copies is key for accurate 

precursor quantification; otherwise, quantification accuracy is undermined by counting 

noise19,48. Because peptide fragmentation is usually incomplete, approaches like plexDIA 

that can perform MS1-level quantification are likely to count more copies per peptide than 

approaches relying on MS2-level or MS3-level quantification6. To evaluate this expectation, 

we estimated the number of peptide and protein copies that the orbitrap counted from 

single cells (Fig. 6n,o). The total number of peptide molecules counted by the Q Exactive 

instrument per single cell was about 300,000 and up to 1,000,000 for some single cells. 

The median number of copies sampled per peptide per single cell was about 30 (Fig. 

6n,o). These estimates rely on orbitrap physics49,50 and were not extended to the single-cell 

measurements by the timsTOF SCP, which we expect to sample more protein copies per cell.

Single-cell plexDIA data acquired from Q Exactive and timsTOF SCP instruments were 

projected using a weighted principal component analysis (PCA) (Fig. 6p). To evaluate if the 

cell type separation is consistent with relative protein levels measured in bulk samples, we 

also projected 100-cell bulk plexDIA standards acquired on Q Exactive (Fig. 6p). We found 

strong agreement between single-cell samples and 100-cell bulk samples. Similarly, single-

cell data acquired by Q Exactive and timsTOF SCP clustered by cell type, not platform type. 

To ensure that clustering was not an artifact of label-specific biases, we plotted the same 

PCA, except colored by the mTRAQ label that was used for tagging each single cell and 

found little to no dependence of labels on clustering (Extended Data Fig. 9).

Discussion

Although multiple methods allow increasing proteomics throughput, plexDIA is distinct 

in simultaneously allowing high sensitivity, depth and accuracy. plexDIA enables a 

multiplicative increase (threefold with three labels) in the rate of consistent protein 

quantification across limited sample amounts while preserving proteomic coverage, 

quantitative accuracy, precision and repeatability of LF-DIA. Similarly to other labeling 

methods, such as TMT-DDA, parallel analysis of multiple samples by plexDIA saves 

LC–MS/MS time. Currently, the commercially available labels for plexDIA are low-plex 

(mTRAQ, TMT0/TMT/shTMT or dimethyl labeling12), compared to 18-plex isobaric 
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TMTpro labels available for DDA4. This current plex disadvantage is offset by the parallel 

precursor analysis enabled by plexDIA. Indeed, quantifying about 8,000 proteins per sample 

took 0.5 hours for three-plexDIA (Extended Data Fig. 5) and 1.1 hours for a highly 

optimized 16-plex TMTpro workflow51.

Furthermore, three-plexDIA affords higher sensitivity because it does not require offline 

fractionation and does not incur associated sample losses. We expect that the plexDIA 

framework will motivate the development of higher plex mass tags for plexDIA that are 

optimized for different applications, such as for single-cell proteomics7.

The parallel sample and peptide analysis by plexDIA becomes increasingly important for 

lowly abundant samples because they require long ion accumulation times that undermine 

the throughput of serial acquisition methods, such as TMT-DDA, even when the vast 

majority of MS2 scans result in confident peptide identifications7,52. Thus, plexDIA is 

particularly attractive for the analysis of nanogram samples as it may afford accurate and 

deep proteome quantification without using two-dimensional peptide separation (offline 

fractionation)7,19,28.

Our data demonstrate that plexDIA reduces the amount of missing data between diverse 

samples both within and across runs. This reduction stems from buffering sample-to-sample 

variability in protein composition. Furthermore, we introduced an approach for matching 

precursors within a run, which reduces missing data to a mere 2–3% in bulk samples 

(Fig. 2) and 2% in single-cell samples (Fig. 6). Thus, plexDIA analysis of samples with 

variable protein composition or abundance results in less missing data. This opens the 

potential for further gains. For example, small samples could be labeled and then combined 

with a labeled carrier sample to improve proteomic coverage of the smaller samples. Such 

non-isobaric carrier design will naturally extend the isobaric carrier concept20,28,53 and its 

benefits to DIA analysis for deep single-cell proteomics analysis. Indeed, the dynamic range, 

accuracy and data completeness of the single-cell protein data obtained by plexDIA (Fig. 6) 

can enable interpreting natural variation across the proteomes of single cells54,55. plexDIA 

offers a framework that may scale to n labels and, thus, increase throughput n-fold and 

increase the fraction of proteins quantified across all samples. Crucially, plexDIA maintains 

accurate quantification and good repeatability. Here we demonstrate this potential for n = 3. 

Increasing n beyond three offers clear benefits but also faces challenges. One challenge is 

the increased potential for interference, which can be resolved by increasing the resolving 

power of MS scans and improving data analysis. Another challenge is sampling enough 

ions from each peptide given the finite capacity of MS detectors, which can be relieved by 

sampling smaller m/z ranges—for example, quantification relying on small MS2 windows 

or split m/z ranges at MS1. The capacity of MS detectors is less limiting for small samples, 

such as single cells, and, thus, increasing the number of labels holds much potential for 

single-cell proteomics, as previously discussed11,28.

plexDIA can enable further gains in sensitivity for single-cell proteomics7, beyond the 

results demonstrated in Fig. 6. This may be achieved by including an isotopologous carrier 

channel, wherein a concentrated standard or pooled sample is used (1) to increase the 

sensitivity and, thus, identification numbers and data completeness in other channels and 
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(2) to provide a reference signal for quantification. The quantitative aspect here has a 

double benefit. Quantification accuracy and robustness can be improved by (1) using 

MS1-level and MS2-level signals that are minimally affected by interference and by (2) 

calculating quantities relative to the internal standard, which is likely to also substantially 

reduce the batch effects associated with LC–MS performance variation. This makes the 

technology introduced by plexDIA highly promising not just for very deep profiling of 

selected samples using offline fractionation but also for large-scale experiments, wherein 

batch effects are a substantial challenge. Another avenue of plexDIA is increasing the 

throughput of applications seeking to quantify protein interactions, conformations and 

activities. For example, plexDIA is readily compatible with the recently reported covalent 

protein painting that enables analysis of protein conformations in living cells56,57. Because 

there are no fundamental limitations preventing the creation of non-isobaric labels that 

would allow a higher degree of multiplexing with DIA, we expect plexDIA to enable even 

higher throughput in the future. Given these considerations, we think that plexDIA will 

eventually become the predominant DIA workflow, preferable over LF approaches for most 

applications.

Methods

Cell culture.

U-937 (monocytes) and Jurkat (T cells) were cultured in RPMI 1640 Medium (Sigma-

Aldrich, R8758), and HPAF-II cells (PDACs, American Type Culture Collection (ATCC), 

CRL-1997) were cultured in EMEM (ATCC, 30-2003). All three cell lines were 

supplemented with 10% FBS (Gibco, 10439016) and 1% penicillin–streptomycin (Gibco, 

15140122) and grown at 37 °C. Melanoma cells (WM989-A6-G3, a kind gift from Arjun 

Raj, University of Pennsylvania) were grown as adherent cultures in TU2% media, which 

is composed of 80% MCDB 153 (Sigma-Aldrich, M7403), 10% Leibovitz L-15 (Thermo 

Fisher Scientific, 11415064), 2% FBS, 0.5% penicillin–streptomycin and 1.68 mM calcium 

chloride (Sigma-Aldrich, 499609). All cells were harvested at a density of 106 cells per ml 

and washed with sterile PBS. For bulk plexDIA benchmarks, U-937 and Jurkat cells were 

resuspended to a concentration of 5 × 106 cells per ml in LC–MS water and stored at −80 

°C.

E. coli and S. cerevisiae were grown at room temperature (21 °C), shaking at 300 r.p.m., in 

Luria Broth (LB) and yeast-peptone-dextrose (YPD) media, respectively. Cell density was 

measured by OD600, and cells were harvested mid-log phase, pelleted by centrifugation and 

stored at −80 °C.

Preparation of bulk plexDIA samples.

The harvested U-937 and Jurkat cells were heated at 90 °C in a thermal cycler for 10 

minutes to lyse by mPOP58. Triethylammonium bicarbonate (TEAB) was added to a 

final concentration of 100 mM (pH 8.5) for buffering, and then proteins were reduced 

in tris(2-carboxyethyl)phosphine (TCEP, Supelco, 646547) at 20 mM for 30 minutes at 

room temperature. Iodoacetamide (Thermo Fisher Scientific, A39271) was added to a final 

concentration of 15 mM and incubated at room temperature for 30 minutes in the dark. Next, 
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benzonase nuclease (Millipore, E1014) was added to 0.3 U μl−1 of Trypsin Gold (Promega, 

V5280) to 1:25 ratio of substrate:protease and LysC (Promega, VA1170) to 1:40 ratio of 

substrate:protease and then incubated at 37 °C for 18 hours. E. coli and S. cerevisiae samples 

were prepared similarly; however, instead of lysis by mPOP, samples were lysed in 6 M urea 

and vortexed with acid-washed glass beads alternating between 30 seconds vortexing and 30 

seconds resting on ice, repeated for a total of five times.

After digestion, all samples were desalted by Sep-Pak (Waters, WAT054945). Peptide 

abundance of the eluted digests was estimated by NanoDrop A280, and then the samples 

were dried by speed vacuum and resuspended in 100 mM TEAB (pH 8.5). U-937, Jurkat, 

E. coli and S. cerevisiae digests were mixed to generate three samples, which we refer 

to as samples A, B and C; the mixing ratios are described in Extended Data Fig. 10. 

Samples A, B and C were split into two groups: (1) was kept label free, and (2) was 

labeled with mTRAQ Δ0, Δ4 or Δ8 (SciEx, 4440015, 4427698 and 4427700), respectively. 

An appropriate amount of each respective mTRAQ label was added to each sample A–C, 

following the manufacturer’s instructions. In short, mTRAQ was resuspended in isopropanol 

and then added to a concentration of 1 U per 100 μg of sample and left to incubate 

at room temperature for 2 hours. We added an extra step of quenching the labeling 

reaction with 0.25% hydroxylamine for 1 hour at room temperature, as is commonly done 

in TMT experiments where the labeling chemistry is the same6,50. After quenching, the 

mTRAQ-labeled samples (A–C) were pooled to produce the final multiplexed set used for 

benchmarking plexDIA.

Preparation of single-cell plexDIA samples.

Single cells were thawed from liquid nitrogen storage in 10% DMSO and culture media at 

a concentration of 1 × 106 cells per ml. Cells were first washed twice in PBS to remove 

DMSO and media and then were suspended in PBS at 200 cells per μl for sorting and 

sample preparation by nPOP, as detailed by Leduc et al.44. In brief, single cells were isolated 

by cellenONE and prepared in droplets on the surface of a glass slide, including lysing, 

digesting and labeling individual cells. In each droplet, single cells were lysed in 100% 

DMSO; proteins were digested with Trypsin Gold at a concentration of 120 ng μl−1 and 5 

mM HEPES (pH 8.5); peptides were chemically labeled with mTRAQ; and then, finally, 

single cells were pooled into a plexDIA set for subsequent analysis. Cells were prepared 

in clusters of three for ease of downstream pooling into plexDIA sets, and a total of 48 

plexDIA sets were prepared per single glass slide.

Modifications were made to the original nPOP sample preparation protocol to enable single-

cell plexDIA. We found the mTRAQ labeling reaction, unlike TMT labeling reagents, 

requires the presence of aqueous phase; therefore, an additional 15 nl of 200 mM TEAB 

buffer (pH 8.5) was added to each droplet, and the droplets were not dried down before 

adding mTRAQ labels. mTRAQ labels were dissolved at a concentration of 0.02 U μl−1 in 

ethanol, and 30 nl of this solution was added to each single cell. To dispense ethanol with 

the cellenONE, the cellenONE pipette aspirated 5 μl of air, followed by 20 μl of ethanol 

before aspirating 10 μl of mTRAQ. Lastly, when quenching the labeling reaction, only one 
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addition of 20 nl of 5% hydroxlamine was performed. All prior and subsequent sample 

preparation steps were carried out as specified by Leduc et al.44.

Each plexDIA set was composed of a single PDAC, melanoma and U-937 cell, except if a 

negative control was present in place of a cell. For samples run on the Q Exactive, every 

fourth set contained a negative control that received all the same reagents but did not include 

a single cell. This resulted in 132 single cells prepared with 12 total negative controls. 

Ten additional plexDIA sets were run on the timsTOF SCP for a total of 30 single cells 

(no negative controls). Cell types were labeled with randomized mass tags designs in the 

plexDIA sets to avoid any systematic biases with labeling. Specifically, each cell type was 

labeled with each mass tag as described in the single-cell metadata file.

CDC, FACS and sample preparation.

U-937 monocytes were grown as described above and harvested and aliquoted to a final 

1-ml suspension of approximately 1 × 106 cells in RPMI 1640 Medium. Then, DNA was 

stained by incubating the cells with Vybrant DyeCycle Violet Stain (Invitrogen, V35003) at 

a final concentration of 5 μM in the dark for 30 minutes at 37 °C, as per the manufacturer’s 

instructions. Next, the cells were centrifuged and then resuspended in PBS to a density of 

1 × 106 cells per ml. The cell suspension was stored on ice and protected from light until 

sorting began.

The cells were then sorted with a Beckman CytoFLEX SRT. The population of U-937s 

was gated to select singlets based on FSC-A and FSC-H; this population of singlets was 

then sub-gated based on DNA content using the PB-450 laser (ex = 405 nm / em = 450 

nm). The G1 population is the most abundant population in actively dividing cells, and the 

G2/M populations should theoretically have double the intensity (DNA content), whereas the 

S-phase lies in between. Populations of G1, S and G2/M cells were collected based on these 

sub-gates and sorted into 2-ml Eppendorf tubes.

After sorting, the cells were centrifuged at 300g for 10 minutes; PBS was removed; and 

then the cells were resuspended in 20 μl of HPLC water to reach a density of approximately 

4,000 cells per μl. The cell suspensions were lysed using the mPOP method, which involves 

freezing at −80 °C and then heating to 90 °C for 10 minutes. Next, the cell lysates were 

prepared exactly as described in the ‘Sample preparation’ section. In brief, the cell lysate 

was buffered with 100 mM TEAB (pH 8.5), and then proteins were reduced with 20 mM 

TCEP for 30 minutes at room temperature. Next, iodoacetamide was added to a final 

concentration of 15 mM and incubated at room temperature for 30 minutes in the dark, 

and then benzonase nuclease was added to 0.3 U μl−1. Trypsin Gold and LysC were then 

added to the cell lysate at 1:25 and 1:40 ratio of protease:substrate, and then the samples 

were incubated at 37 °C for 18 hours. After digestion, the peptides were desalted by stage 

tipping with C18 extraction disks (Empore, 66883-U) to remove any remaining salt that 

was introduced during sorting59. G1 cells were labeled with mTRAQ Δ0; S cells were 

labeled with mTRAQ Δ4; and G2/M cells were labeled with Δ8 and then combined to form 

a plexDIA set of roughly 2,000 cells per cell cycle phase (label). The combined set was 

analyzed with 2-hour active gradients of MS1-optimized (V1) and MS2-optimized (V2) 

methods as described in the ‘Acquisition of bulk data’ section.
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Acquisition of bulk data.

Multiplexed and LF samples were injected at 1-μl volumes via Dionex UltiMate 3000 

UHPLC to enable online nLC with a 25 cm × 75 μm IonOpticks Aurora Series UHPLC 

column (AUR2-25075C18A). These samples were subjected to electrospray ionization (ESI) 

and sprayed into a Q Exactive orbitrap for MS analysis. Buffer A is made of 0.1% formic 

acid (Pierce, 85178) in LC–MS-grade water. Buffer B is made of 80% acetonitrile and 0.1% 

formic acid mixed with LC–MS-grade water.

The gradient used for LF-DIA is as follows: 4% Buffer B (minutes 0–11.5), 4–5% Buffer 

B (minutes 11.5–12), 5–28% Buffer B (minutes 12–75), 28–95% Buffer B (minutes 75–77), 

95% Buffer B (minutes 77–80), 95–4% Buffer B (minutes 80–80.1) and then hold at 4% 

Buffer B until minute 95, flowing at 200 nl min−1 throughout the gradient. Instrument 

control and data acquisition were performed via Xcalibur. The V1 duty cycle was comprised 

of 5×(1 MS1 full scan × 5 MS2 windows) as illustrated in Fig. 1b. Thus, the duty cycle has a 

total of 25 MS2 windows to span to full m/z scan range (380–1,370 m/z) with 0.5-Thomson 

(Th) overlap between adjacent windows. The length of the windows was variable for each 

subcycle (20 Th for subcycles 1–3, 40 Th for subcycle 4 and 100 Th for subcycle 5). Each 

MS1 full scan was conducted at 140,000 resolving power, 3 × 106 automatic gain control 

(AGC) maximum and 500-ms maximum injection time. Each MS2 scan was conducted at 

35,000 resolving power, 3 × 106 AGC maximum, 110-ms maximum injection time and 27% 

normalized collision energy (NCE) with a default charge of 2. The RF S-lens was set to 

80%. The V2 duty cycle consisted of one MS1 scan conducted at 70,000 resolving power 

with a 300-ms maximum injection time and 3 × 106 AGC maximum, followed by 40 MS2 

scans at 35,000 resolving power with 110-ms maximum injection time and 3 × 106 AGC 

maximum. The window length for the first 25 MS2 scans was set to 12.5 Th; the next seven 

windows were 25 Th; and then the last eight windows were 62.5 Th. Adjacent windows 

shared a 0.5-Th overlap. All other settings were the same as the LF-DIA V1 method. All LF 

samples for bulk benchmarking containing S. cerevisiae, E. coli and H. sapiens were run in 

triplicate. However, the third run of LF-DIA sample C using the V2 method was an outlier 

and was omitted from analysis due to poor performance.

mTRAQ labeling increases hydrophobicity of peptides, which is why a higher % Buffer B 

was used during the active gradient of multiplexed samples; in addition, the scan range was 

shifted 100 m/z higher than LF-DIA to account for the added mass of the label. The gradient 

used for plexDIA is as follows: 4% Buffer B (minutes 0–11.5), 4–7% Buffer B (minutes 

11.5–12), 7–32% Buffer

B (minutes 12–75), 32–95% Buffer B (minutes 75–77), 95% Buffer B (minutes 77–80), 

95–4% Buffer B (minutes 80–80.1) and then hold at 4% Buffer B until minute 95, flowing 

at 200 nl min−1 throughout the gradient. The plexDIA V1 duty cycle was comprised of 5×(1 

MS1 full scan × 5 MS2 windows), for a total of 25 MS2 windows to span to full m/z scan 

range (480–1,470 m/z) with 0.5-Th overlap between adjacent windows. The length of the 

windows was variable for each subcycle (20 Th for subcycles 1–3, 40 Th for subcycle 4 and 

100 Th for subcycle 5). Each MS1 full scan was conducted at 140,000 resolving power, 3 

× 106 AGC maximum and 500-ms maximum injection time. Each MS2 scan was conducted 

at 35,000 resolving power, 3 × 106 AGC maximum, 110-ms maximum injection time and 

Derks et al. Page 14

Nat Biotechnol. Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27% NCE with a default charge of 2. The RF S-lens was set to 30%. The plexDIA V2 

duty cycle consisted of one MS1 scan conducted at 70,000 resolving power with 300-ms 

maximum injection time and 3 × 106 AGC maximum, followed by 40 MS2 scans at 35,000 

resolving power with 110-ms maximum injection time and 3 × 106 AGC maximum. The 

window length for the first 25 MS2 scans was set to 12.5 Th; the next seven windows were 

25 Th; and then the last eight windows were 62.5 Th. Adjacent windows shared a 0.5-Th 

overlap. All other settings were the same as the plexDIA V1 method. Data acquired for the 

CDC used 2-hour active gradients of the V1 and V2 methods.

The gradient used for mTRAQ DDA is the same used for plexDIA. However, the duty 

cycle was a shotgun DDA method. The MS1 full scan range was 450–1,600 m/z and was 

performed with 70,000 resolving power, 3 × 106 AGC maximum and 100-ms injection time. 

This shotgun DDA approach selected the top 15 precursors to send for MS2 analysis at 

35,000 resolving power, 1 × 105 AGC maximum, 110-ms injection time, 0.3-Th isolation 

window offset, 0.7-Th isolation window length, 8 × 103 minimum AGC target and 30-

second dynamic exclusion.

Acquisition of single-cell data.

Q Exactive.—plexDIA single-cell sets and 100-cell standards were injected at 1-μl 

volumes via Dionex UltiMate 3000 UHPLC to enable online nLC with a 15 cm × 75 

μm IonOpticks Aurora Series UHPLC column (AUR2-15075C18A). Instrument control and 

data acquisition were performed via Xcalibur. These samples were subjected to ESI and 

sprayed into a Q Exactive orbitrap for MS analysis. Buffer A is made of 0.1% formic acid 

(Pierce, 85178) in LC–MS-grade water. Buffer B is made of 80% acetonitrile and 0.1% 

formic acid mixed with LC–MS-grade water. The gradient used is as follows: 4% Buffer B 

(minutes 0–2.5), 4–8% Buffer B (minutes 2.5–3), 8–32% Buffer B (minutes 3–33), 32–95% 

Buffer B (minutes 33–34), 95% Buffer B (minutes 34–35), 95-4% Buffer B (minutes 35–

35.1) and then hold at 4% Buffer B until minute 53, flowing at 200 nl min−1 throughout the 

gradient. The plexDIA duty cycle was comprised of one MS1 followed by four DIA MS2 

windows of variable m/z length (specifically 120 Th, 120 Th, 200 Th and 580 Th) spanning 

378–1,402 m/z. Each MS1 and MS2 scan was conducted at 70,000 resolving power, 3 × 106 

AGC maximum and 300-ms maximum injection time. NCE was set to 27% with a default 

charge of 2. The RF S-lens was set to 80%.

To generate a spectral library from 100-cell standards on the Q Exactive, the same settings 

were used with the exception that the duty consisted of one MS1 and 25 MS2 windows 

of variable m/z length (specifically, 18 windows of 20 Th, two windows of 40 Th, three 

windows of 80 Th and two windows of 160 Th). The MS2 scans were conducted at 35,000 

resolving power, 3 × 106 AGC maximum and 110-ms maximum injection time.

timsTOF SCP.—The single-cell plexDIA sets were separated on a nanoElute liquid 

chromatography system (Bruker Daltonics) using a 25 cm × 75 μm, 1.6-μm C18 

(AUR2-25075C18A-CSI, IonOpticks). The analytical column was kept at 50 °C. Solvent 

A was 0.1% formic acid in water, and solvent B was 0.1% formic acid in acetonitrile. The 

column was equilibrated with 4 column volumes of mobile phase A before sample loading. 
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The peptides were separated over 30 minutes at 250 nl min−1 using the following gradients: 

2–17% B in 15 minutes, 17–25% B in 5 minutes, 25–37% B in 3 minutes and 37–85% B in 

3 minutes and then maintained at 85% for 4 minutes.

Instrument control and data acquisition were performed via timsControl 3.1. The timsTOF 

SCP was operated in dia-PASEF mode with the following settings: mass range 100–1,700 

m/z, 1/k0 Start 0.6 V s cm−2, End 1.2 V s cm−2; ramp and accumulation times were set to 

166 ms; capillary voltage was 1,600 V, dry gas 3 L min−1 and dry temp 200 °C. dia-PASEF 

settings: Each cycle consisted of 1× MS1 full scan and 5× MS2 windows covering 297.7–

797.7 m/z and 0.63–1.10 1/k0. Each window was 100 Th wide by 0.2 V s cm−2 high. 

There was no overlap in either m/z or 1/k0 (Fig. 6). The cycle time was 0.68 seconds. 

Collision-induced dissociation (CID) energy was 20–59 eV as a function of the inverse 

mobility of the precursor.

Spectral library generation.

The in silico predicted spectral library used in LF-DIA analysis was generated by DIA-NN’s 

(version 1.8.1 beta 16) deep-learning-based spectra and retention time and IMs prediction 

based on Swiss-Prot H. sapiens, E. coli and S. cerevisiae FASTAs (canonical and isoform) 

downloaded in February 2022. The spectral library used for plexDIA benchmarking was 

created in a similar process, with the exception of a few additional commands entered 

into the DIA-NN command line GUI: (1) {–fixed-mod mTRAQ 140.0949630177, nK} 
and (2) {–original-mods}. Two additional libraries were generated: (1) mTRAQ-labeled 

spectral library from FASTAs containing only E. coli and S. cerevisiae sequences; (2) 

mTRAQ-labeled spectral library from a FASTA containing only H. sapiens sequences. The 

former was used to search data shown in Extended Data Fig. 2, and the latter was used to 

search CDC and 100-cell standards. Triplicates of 100-cell standards of PDAC, melanoma 

and U-937 cells were run with the one MS1 × 25 MS2 scans method, searched using 

the in silico generated human-only spectral library. The results of this search generated a 

sample-specific library covering about 5,000 protein groups. This library was used to search 

single-cell plexDIA sets acquired on the Q Exactive and on the timsTOF SCP as well as 

100-cell standards run on the Q Exactive with the same method used to acquire single-cell 

plexDIA data.

plexDIA module in DIA-NN.

A distinct feature of DIA-MS proteomics is the complexity of produced spectra, which are a 

mixture of fragment ions originating from multiple co-isolated precursors. This complexity 

has necessitated the rise of a variety of highly sophisticated algorithms for DIA data 

processing. Current DIA software, such as DIA-NN25, aims to find peak groups in the 

data that best match the theoretical information about such peptide properties as the MS/MS 

spectrum, the retention time and the ion mobility. Once identified correctly, the peak group

—that is, the set of XICs of the precursor and its fragments in the vicinity of the elution apex

—allows to integrate either the MS1-level or MS2-level signals to quantify the precursor, 

which is the ultimate purpose of the workflow.
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Similarly to match-between-runs (MBR) algorithms, plexDIA data provide the opportunity 

to match corresponding ions, in this case between the same peptide labeled with different 

mass tags. However, the use of isotopologous mass tags, such as mTRAQ, allows to match 

the retention times within a run with much higher accuracy than what can be achieved across 

runs. Thus, the sequence propagation can be more sensitive and reliable than with MBR7. 

This allows to enhance sequence identifications analogously to the isobaric carrier concept 

introduced by TMT-based single-cell workflows53,60. With the isobaric carrier approach, 

a carrier channel is loaded with a relatively high amount of peptides originating from a 

pooled sample that facilities peptide sequence identification20,28. We implemented a similar 

approach in the plexDIA module integrated in DIA-NN. Once a peptide is identified in 

one of the channels, its exact retention time apex can be determined, which, in turn, 

helps identify and quantify the peptide in all of the channels by integrating the respective 

precursor (MS1) or fragment ion (MS2) signals.

Apart from the identification performance, plexDIA also can increase quantification 

accuracy. The rich complex data produced by DIA promote more accurate quantification 

because of algorithms that select signals from MS/MS fragment ions that are affected by 

interferences to the least extent25. For LF-DIA, DIA-NN selects fragments in a cross-run 

manner: fragments that tend to correlate well with other fragments across runs are retained, 

whereas those that often exhibit poor correlations due to interferences are excluded from 

quantification. Although this approach yields good results, a limitation remains for LF-DIA: 

fragment ions only affected by interferences in a modest proportion of runs are still used 

for quantification, thus undermining the reliability of the resulting quantities in those runs. 

Here, plexDIA provides a unique advantage. Theoretically, a single MS1-level or MS2-level 

signal with minimal interference is sufficient to calculate the quantitative ratio between the 

channels. In this case, if low interference quantification is possible in at least one ‘best’ 

channel, this quantity can be multiplied by the respective ratios across other channels to 

obtain accurate estimates of quantities in all channels that share at least one low interference 

signal with this ‘best’ channel. This idea is implemented in DIA-NN to produce ‘translated’ 

quantities, which have been corrected by using ratios of high-quality MS1 or MS2 signals 

between channels as described in Fig. 1b and Extended Data Fig. 1.

Estimating FDR.—The DIA-NN module uses a decoy-based approach, but, instead of 

regular decoy precursors, as used in the LF setting and likewise during the first step of 

the plexDIA data processing workflow, it relies on a decoy channel. Here, for each peak 

group match, regular or translated, DIA-NN calculates a number of scores that reflect 

the channel-specific signal evidence. A separate classifier based on an ensemble of neural 

networks, identical in architecture to the one used to obtain the regular q values25, is then 

trained to distinguish between sets of scores originating from target channels and the decoy 

channel, leading to the calculation of composite scores for the peak groups and, thus, the 

channel q values.

Data analysis with DIA-NN.

DIA-NN (version 1.8.1 beta 16) was used to search LF-DIA and plexDIA raw files, which is 

available at https://plexdia.slavovlab.net/ and https://scp.slavovlab.net/plexDIA. All LF-DIA 
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benchmarking raw files were searched together with MBR if the same duty cycle was used; 

likewise, all plexDIA benchmarking raw files were searched together with MBR if the same 

duty cycle was used, with the exception of the CDC experiments that used V1 and V2 

methods—these two runs were searched together.

DIA-NN search settings: Library Generation was set to ‘IDs, RT and IM Profiling’, 

Quantification Strategy was set to ‘Peak height’, scan window = 1,Mass accuracy 

= 10 p.p.m. and MS1 accuracy = 5 p.p.m. ‘Remove likely interferences’, ‘Use 

isotopologues’ and ‘MBR’ were enabled. Additional commands entered into the DIA-NN 

command line GUI for plexDIA: (1) {–fixed-mod mTRAQ 140.0949630177, nK}, (2) 

{–channels mTRAQ, 0, nK, 0:0; mTRAQ,4, nK, 4.0070994:4.0070994; mTRAQ, 8, nK, 

8.0141988132:8.0141988132}, (3) {–original-mods}, (4) {–peak-translation}, (5) {–ms1-

isotope-quant}, (6) {–report-lib-info} and (7) {–mass-acc-quant 5.0}. Note, (7) is only 

necessary for instances when MS2 quantitation is intended to be used; this command will 

use the pre-defined mass accuracy (for example, 10 p.p.m.) to identify precursors but restrict 

the mass error tolerance to the value specified for quantitation; this can help reduce the 

effect of interferences for MS2-level quantitation. For LF-DIA, only the following additional 

commands were used: (1) {–original-mods}, (2) {–peak-translation}, (3) {–ms1-isotope-

quant}, (4) {–report-lib-info} and (5) {–mass-acc-quant 5.0}. The same search settings 

were used for single-cell Q Exactive and timsTOF SCP data; however ‘scan window’ was 

increased to 5.

Searching DDA data with MaxQuant.

MaxQuant (version 1.6.17.0) was used to search triplicate mTRAQ DDA, bulk 

benchmarking runs. MBR was enabled, and ‘Type’ was selected as ‘Standard’ with 

‘Multiplicity’ = 3; mTRAQ-Lys0 and mTRAQ-Nter0, mTRAQ-Lys4 and mTRAQ-Nter4 

and mTRAQ-Lys8 and mTRAQ-Nter8 were selected for light, medium and heavy labels, 

respectively. Variable modifications included Oxidation (M) and Acetyl (Protein-N-term); 

Carbamidomethyl (C) was selected as a fixed modification. Trypsin was selected as the 

protease and searched with maximum missed cleavage = 2.

Quantifying proteins for bulk plexDIA benchmarks.

MaxLFQ abundance for protein groups was calculated based on MS1 intensities 

(specifically the ‘MS1 Area’ column output by DIA-NN) using the DIA-NN R package25 

for data acquired with the V1 method. However, for data acquired using the V2 method, 

MS2 quantitation (specifically the ‘Precursor Translated’ column output by DIA-NN) was 

used for quantitation. These protein abundances were used to calculate protein ratios across 

samples, which were normalized by subsetting human proteins (which are present in a 1:1 

ratio, theoretically) and multiplying by a scalar such that the human protein ratios were 

centered on 1, and, thus, the other species (E. coli and S. cerevisiae) would be systematically 

shifted to account for any small loading differences across samples.

The quantitative comparisons between LF-DIA and plexDIA throughout this article are for 

intersected sets of proteins so that the results would not be influenced by proteins analyzed 
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by only one method and not the other. For example, compared distributions were for the 

same set of proteins to avoid ‘survival biases’61.

PSEA.

PSEA was performed across the multiplexed bulk samples corresponding to cells sorted 

by DNA content into cell cycle phases (G1, S and G2/M). The reference human gene 

set database was acquired from the Gene Ontology Annotation62. The Kruskal–Wallis test 

was used to determine whether the hypothesis that all multiplexed samples had equivalent 

median protein abundances for a functionally annotated group of proteins could be rejected 

at a q value ≤0.05. Only protein sets with at least four proteins present were statistically 

tested. PSEA was run separately for the multiplexed samples analyzed by V1 and V2 

methods. Protein sets were combined from both data acquisition methods if at least one 

method produced a q value ≤0.05.

Differential protein abundance testing.

Differential protein abundance testing was performed using precursor-level quantitation. 

To account for variation in sample loading amounts, precursors from each sample were 

normalized to their sample median. Then, each precursor was normalized by its mean across 

samples to convert it to relative levels. The normalized relative precursor intensities from 

different replicates were grouped by their corresponding protein groups and compared by a 

two-tailed t-test (Fig. 4b,c) or ANOVA (Fig. 5c) to estimate the significance of differential 

protein abundance across samples/conditions. This comparison captures both the variability 

between different replicates and different peptides originating from the same protein. 

To correct for multiple hypotheses testing, we used the Benjamini–Hochberg method to 

estimate q values for differential abundance of proteins and protein sets.

Relative protein fold change between U-937 cells and Jurkat cells, bulk.

Protein group abundances were calculated by MaxLFQ from triplicates of LF-DIA and 

plex-DIA; specifically, sample B and sample C were compared to calculate relative fold 

changes between H. sapiens cell lines U-937 and Jurkat. The protein groups plotted were 

required to be quantified in each of the triplicates of plexDIA and LF-DIA. A Spearman 

correlation was calculated for all protein groups and for differentially abundant protein 

groups.

Correcting isotopic envelope of plexDIA precursors.

mTRAQ labels, which were used in this demonstration of plexDIA, are separated by 4 Da. 

Because C-terminal arginine precursors are singly labeled and have a mere 4 Da separating 

isotopologous precursors, there is greater potential of isotopic envelope interference from 

lighter channels into heavier channels than there is for C-terminal lysine precursors, which 

would be separated by 8 Da; therefore, to improve quantitative accuracy, we correct the 

theoretical super-position of isotopic envelopes between channels for C-terminal arginine 

precursors. This can be accomplished because each precursor has a well-defined theoretical 

distribution of isotopes that we model with a binomial distribution; we use this theoretical 
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distribution of isotopes to subtract and add back a precise amount of signal from heavier 

channels to lighter channels for MS1-level quantitation of each precursor.

Extracted ion current.

A precursor from a subset of proteins found to be differentially abundant was selected to be 

plotted to display the extracted ion current at MS1 and for fragments at MS2. Ion current 

was extracted using the DIA-NN GUI command interface by typing {–vis 25, PEPTIDE} 
where ‘PEPTIDE’ is the peptide sequence and ‘25’ is the number of scans to extract. MS1 

and MS2 XICs were plotted to show the full elution profile. The four highest correlated 

fragments at MS2 were plotted; y-ions from C-terminal arginine peptide were excluded from 

plotting at MS2 level because these fragments are a super-position across samples as the 

C-terminus of arginine peptides is not labeled and, therefore, not sample specific. The lines 

in Figs. 5d and 6m were colored dynamically as a function of intensity.

Estimating peptide and protein copy numbers.

Precursor copy numbers at the MS1 level were estimated based on the signal-to-noise (S/N) 

level of individual peaks. The noise level of centroided spectra were used as reported by 

the Thermo firmware and extracted using a modified version of the ThermoRawFileParser63. 

Precursors reported by DIA-NN were matched to the S/N data based on the reported 

retention time with a tolerance of five scans and 12-p.p.m. mass error. The number of 

charges in an orbitrap is proportional to the S/N level and scales with a linear factor CN. 

This factor has been estimated to be CN = 3.5 for the Q Exactive orbitrap64,65 and has been 

confirmed by investigations with high-field orbitraps49. This proportionality constant was 

estimated at a resolving power of 240,000 and must be scaled by the square root ratio with 

the resolving power used for acquiring the spectra (R = 70,000). Precursor copy numbers are 

then calculated based on the number of charges z per precursor.

copy number = S
N ⋅

CN
z

240, 000
R

Analogous to the quantification, copy numbers were summed over the M and M + 1 peaks. 

Peptide-level copy numbers were calculated as the sum of all charge states found for a given 

peptide; protein-level copy numbers were calculated as the sum of all peptides not shared 

with other proteins (proteotypic).

Single-cell data analysis.

To increase sensitivity of single-cell analysis, Ms1. Extracted quantities output by DIA-NN 

were used for quantitation rather than Ms1.Area. Single cells with more than 60% missing 

data (no extracted MS1-level quantitation) at precursor level were considered to have failed 

in sample preparation and were removed from analysis. Quantitative accuracy of single-cell 

sets was assessed by calculating fold change between PDAC and U-937 cell types of 

averaged single-cell MaxLFQ protein quantities and calculating a Spearman correlation to 

100-cell bulk comparisons. The 100-cell bulk comparisons consisted of triplicates in which 

each replicate alternated the labeling scheme. For a protein group to be included in the 
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comparison, it was required to be quantified in at least five single cells and two-thirds of 

the bulk triplicates. Both the timsTOF SCP single-cell data and Q Exactive single-cell data 

were benchmarked to the same 100-cell Q Exactive-acquired plexDIA sets. Because missing 

data in DIA is related to low protein abundance, the missing MaxLFQ protein abundances 

in single cells and bulk were imputed with the lowest non-zero protein abundance for that 

protein in the same cell type and condition (bulk or single cells). The mean of each protein 

across the single-cell observations and bulk triplicates (respectively) was taken to represent 

that cell type and condition-specific protein abundance.

Single-cell sets acquired on the timsTOF SCP and Q Exactive were prepared on different 

days with different batches of cells. Generally, the data are quite similar as indicated by PCA 

(Fig. 6p), but quantitative discrepancies between bulk samples, which were acquired on the 

Q Exactive from one batch of cells, and single-cell sets on the timsTOF SCP from another 

batch of cells, may arise from real cellular differences as they were prepared from different 

cellular batches.

Next, 100-cell bulk plexDIA triplicates were used to identify proteins that were differentially 

abundant between U-937 and PDAC cells. Three proteins were chosen, and one precursor 

from each protein was selected to have its ion chromatogram extracted and plotted from 

single-cell Q Exactive-acquired data. See the ‘Extracted ion current’ subsection for more 

details about how this is performed.

PCA was performed on Ms1.Extracted timsTOF SCP single-cell data, Q Exactive single-cell 

data and Q Exactive 100-cell data. The following is a brief outline of the computational 

workflow. The abundance of each precursor was divided by the mean abundance of all three 

isotopologous precursors within the plexDIA set; then, the precursor of each labeled cell in 

each plexDIA was normalized to its median abundance; and then, each normalized precursor 

was divided by the mean of normalized precursor abundance across all labels and sets. 

These normalized precursor abundances were collapsed to protein group level by the median 

normalized abundance precursor. The protein group data were then normalized in the same 

way the precursors were normalized. Missing protein group data for each cell were imputed 

by k-nearest neighbors; the dataset was batch corrected for labels; and finally, a PCA was 

generated from the data. To increase the weights of proteins that are differentially abundant 

between the single cells in a coherent manner, we weighted each protein with the norm of 

its correlation vector (vector of pairwise correlations to all other proteins), as was previously 

described50.

Derks et al. Page 21

Nat Biotechnol. Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1 ∣. plexDIA data processing by DIA-NN.
The plexDIA module in DIA-NN starts the data processing by splitting the input spectral 

library or a sequence database into multiple channels, wherein query precursor ions are 

generated for each of the label states. In addition, a decoy channel is generated by 

considering a ‘decoy’ label with a higher mass than the actual labels, for example, +12 

for mTRAQ. A preliminary precursor ion identification step is then carried out, wherein 

a best matching peak group is found, as in label-free search, for all of the precursors, 

from all the channels. These peak groups are scored by the regular neural network-based 

classifier implemented in DIA-NN. The most confident match is then selected, across all 

the non-decoy channels, for each charged peptide. DIA-NN then assumes that this most 

confident channel pinpoints the correct retention time of the peptide. In the process we 

refer to as ‘translation of identifications’, DIA-NN re-extracts the signals at this retention 

time for the other channels, regardless of whether these have been successfully matched 

to some peak groups during the previous step. Scoring of these re-extracted peak groups 

using the previously trained neural network classifier leads to the assignment of ‘translated 

q-values’, which reflect the confidence level in these identifications if they were made 

independently from translation, and can be used for downstream data filtering. As each 

plexDIA acquisition measures multiple samples, DIA-NN calculates ‘channel q-values’ that 

reflect the confidence in the precursors being present in specific channels. This is achieved 

using a target-decoy method as explained in Methods. Finally, DIA-NN also takes advantage 
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of the presence of multiple channels when quantifying precursors. Here, DIA-NN calculates 

the ratios between different channels using the signal ratios for selected fragment ions at 

the elution apex, thus minimizing the influence of any interfering signals. The ‘translated’ 

quantities are then calculated for all the channels except the most confident one, by dividing 

the quantity in the latter by the respective ratio.

Extended Data Fig. 2 ∣. plexDIA analysis of proteins present only in one samples but missing 
from another.
We sought to test identification propagation by plexDIA for the case when proteins are 

present only in some samples and not in others. To do so, we prepared a standard in which 

one sample (labeled with mTRAQ, 0) had both 0.3 μg E. coli and 0.3 μg S. cerevisiae while 

another (labeled with mTRAQ Δ4) had only 0.3 μg S. cerevisiae. The combined set was 

analyzed by plexDIA using the V1 method. (a) Distributions of raw MS1 precursor intensity 

for E. coli and S. cerevisiae precursors at channel-q-value < 0.01. (b) Distributions of 

raw MS2 quantification of precursors filtered for channel-q-value < 0.01. The red asterisks 

correspond to the means of the distributions.
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Extended Data Fig. 3 ∣. plexDIA proteomic coverage and data completeness for V2.
(a) Number of distinct precursors identified from 60 min active gradient runs for plexDIA, 

LF-DIA, and shotgun-DDA of mTRAQ at 1 % FDR. The DIA analysis used the V2 method, 

an MS2-optimized data acquisition cycle shown in Fig. 1e. Triplicates of each sample were 

analyzed (except sample C of LF-DIA, duplicates are analyzed), and the results displayed 

as mean; error bars correspond to standard error. (b) Total number of protein data points for 

plexDIA, LF-DIA and mTRAQ DDA at 1 % global protein FDR, (n = 3). (c) Venn-diagrams 

of each replicate for plexDIA and LF-DIA display protein groups quantified across samples 

A, B and C. The mean number of proteins groups intersected across samples A, B and 

C is 7,923 for plexDIA and 8,318 for LF-DIA. (d) We compute pairwise Jaccard indices 

to compare pairwise data completeness between plexDIA, LF-DIA and shotgun DDA for 

mTRAQ. All data were analyzed using match between runs. (e) Distributions of missing 

data between pairs of runs of either the same sample (that is, replicate injections) or between 

different samples.

Extended Data Fig. 4 ∣. Comparison of proteomic overlap between our runs to a high-quality 
DIA dataset Navarro et al.
DIA runs (including raw data from Navarro et al.) were searched with DIA-NN using match 

between runs. Results indicate that the data completeness from LF-DIA in this study is 

comparable to other high quality LF-DIA datasets.
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Extended Data Fig. 5 ∣. plexDIA quantitative accuracy for MS2-optimized data acquisition (V2).
As demonstrated with the MS1-optimized method in Fig. 3 of the main text, here we show 

quantitative accuracy of plexDIA using MS2-optimized data acquisition—specifically, we 

only show data from the second run of a triplicate set. (a) The number of protein groups 

quantified in both samples A and B is shown with barplots. plexDIA quantified 7,610 PGs, 

LF-DIA 9,387 PGs, and intersected between plexDIA and LF-DIA was 5,967 PGs. These 

5,967 PGs were plotted to compare quantitative accuracy between plexDIA and LF-DIA for 

in-common protein groups. To improve visibility, the scatter plot x and y axes were set to 

display data points between 0.25% and 99.75% range. (b) Same as (a), but for samples A 

and C; human proteins were excluded because they compare two different human cell types. 

(c) Same as (b), but for samples B and C. (d) Absolute protein ratio errors were calculated 

for samples A/B, A/C and B/C and combined to compare ratio errors for samples within 

a plexDIA run (for example, run2 A / run2 B) to samples across runs (for example, run1 A /

run2 B) with plexDIA. (e) Absolute precursor ratio errors were calculated for samples A/B, 

A/C and B/C and combined to compare MS2-quantified ratio errors for C-terminal lysine 

precursors and C-terminal arginine precursors. Boxplots: The box defines the 25th and 75th 

percentiles and the median is marked by a solid line. Outliers are marked as individual dots 

outside the whiskers. All data shown are from (n = 1) representative replicate.
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Extended Data Fig. 6 ∣. Quantitative accuracy for DIA replicates using V1.
Similar to main Fig. 3, we display the results from the other replicates for a total of (n = 3) 

replicates. (a) Figures are the same as shown in Fig. 3 of the main text with the exception 

that this shows the first replicate of plexDIA and the first replicate of samples A, B and C for 

LF-DIA. (b) Same as (a), but for the third replicate of plexDIA and LF-DIA, samples A, B 

and C. Boxplots: The box defines the 25th and 75th percentiles and the median is marked by 

a solid line. Outliers are marked as individual dots outside the whiskers. Panel a shows data 

from (n = 1) replicate and panel b shows data from another (n = 1) replicate for a total of (n 

= 2) replicates shown in this figure.
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Extended Data Fig. 7 ∣. Quantitative accuracy and repeatability across different plexDIA sets 
and labels.
(a) Relative protein levels between samples A,B and C estimated from samples analyzed in 

different plexDIA sets, that is, out-of-set quantification. The quantitative accuracy between 

sets (and thus runs) is comparable to the set accuracy shown in Fig. 3. The display is the 

same as shown in main Fig. 3, but the protein ratios are estimated across runs (for example, 

run 1 A / run 2 B); LF-DIA is showing protein ratios for the 2nd replicate of samples A, 

B and C. (b) Same as (a), but for samples A and C; H. sapiens proteins were not analyzed 

because they are from distinct cell types. (c) Same as (b) but for samples B and C. All data 

shown in panels a–c are from (n = 1) representative replicate. Boxplots: The box defines the 

25th and 75th percentiles and the median is marked by a solid line. Outliers are marked as 

individual dots outside the whiskers. (d) Quantitative repeatability of plexDIA across across 

different labels. Protein CVs were estimated for the same samples labeled with the same 

label (as in main Fig. 4) or for the same sample labeled with different labels in different 

runs for example, run 1, Δ0, sample A & run 2, Δ4, sample A & run 3, Δ8, sample A. 

Both distributions contains CV for the same set of (n = 15,158) sample-specific protein data 

points per condition (Same Labels or Different Labels). The median CV when using the 

same label was 0.110 while the label swap had a median CV of 0.148.
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Extended Data Fig. 8 ∣. plexDIA missing data in single cells and negative controls.
Percent of precursors with no MS1-level quantitation per single cell or negative control. 

Single cells were required to have <60% missing data to be included in downstream 

analysis.
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Extended Data Fig. 9 ∣. Single-cell PCA colored by mTRAQ label.
Rather than colors corresponding to a cell type as performed in Fig. 6p, here colors 

correspond to which mTRAQ label was used to tag the single cells. This is performed 

to check whether labeling-induced biases affect clustering of single-cells; here there appears 

to be little to no effect.

Extended Data Fig. 10 ∣. Relative protein abundances for each species per label.
Distribution of relative protein abundance of each species across labels. The Δ0, Δ4 and Δ8 

samples were pooled and used for quantitative benchmarking of plexDIA.
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Fig. 1 ∣. Experimental design for acquisition and evaluation of plexDIA data.
a, The throughput of MS proteomics can be increased by parallel analysis of multiple 

peptides or by parallel analysis of multiple samples. plexDIA aims to combine both 

approaches to achieve multiplicative gains. b, Precursor identifications from one label can 

be confidently transferred to isotopologous precursors with FDR control. The abundance 

of labeled precursors can be estimated by the consensus fold change relative to best 

quantified isotopologous precursor. c, Standards used for benchmarking LF-DIA and 

plexDIA quantification were prepared by mixing the proteomes of different species and 

cell types as shown. LF-DIA analyzed 500 ng from each of the three samples (A, B and C) 

separately, whereas plexDIA analyzed a mixture of these samples labeled with non-isobaric 

mass tags (mTRAQ). d, Analyzing samples by plexDIA is cheaper than analysis by LF-DIA 

because running n samples in parallel reduces the LC–MS/MS time per sample n-fold, and 

the cost of labeling is low. This estimate is based on a facility fee of $150 USD per hour 

of active gradient. e, We benchmarked the performance of plexDIA with two DIA methods, 

V1 and V2. V1 is an MS1-optimized method that uses frequent, high-resolution MS1 scans 

to facilitate accurate quantification, whereas V2 is an MS2-optimized method that takes a 

single MS1 scan and more MS2 scans per duty cycle.
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Fig. 2 ∣. plexDIA proteome coverage and overlap between samples and runs.
a, Number of distinct precursors identified from 60-minute active gradient runs of plexDIA, 

LF-DIA and mTRAQ DDA at 1% FDR. The DIA analysis employed the V1 duty cycle 

shown in Fig. 1c. Each sample was analyzed in triplicate (n = 3), and the results are 

displayed as mean; error bars correspond to standard error. b, Total number of protein data 

points for plexDIA, LF-DIA and mTRAQ DDA at 1% global protein FDR (n = 3). c, Venn 

diagrams of each replicate for plexDIA and LF-DIA display protein groups quantified across 

samples A, B and C. The mean number of protein groups intersected across samples A, B 

and C is 6,282 for plexDIA and 5,851 for LF-DIA. d, The similarity between the quantified 

proteins across samples is quantified by the corresponding pairwise Jaccard indices to 

display data completeness. e, Distributions of missing data for protein groups between pairs 

of runs of either the same sample (that is, replicate injections) or between different samples. 

All analyses used MBR. The corresponding results for the V2 duty cycle are shown in 

Extended Data Fig. 3.
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Fig. 3 ∣. Quantitative accuracy and precision of plexDIA and LF-DIA.
a, Bars correspond to the number of quantified protein ratios between samples A and B by 

plexDIA, by LF-DIA or by both methods (intersected proteins). To improve visibility, the 

scatter plot x and y axes were set to display data points between the 0.25% and 99.75% 

range. b, Same as a but for samples A and C. c, Same as a but for samples B and C. 

The protein ratios displayed in a–c are estimated from a single replicate, and two more 

replicates are shown in Extended Data Fig. 6. d, A comparison between the errors within 

and across plexDIA sets indicates similar accuracy. The error is defined as the difference 

between the mixing and the measured protein ratios for all pairs of samples, A/B, A/C and 

B/C. The absolute values of these errors are displayed for samples within a plexDIA set 

(for example, run2 A / run2 B) and for samples across sets (for example, run1 A / run2 B). 

The corresponding accuracy within and across plexDIA for the V2 methods is shown in 

Extended Data Fig. 5. e, Absolute precursor ratio errors were calculated for samples A/B, 
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A/C and B/C and combined to compare ratio errors for MS1 and MS2 quantification. The 

MS2 quantification of precursors having C-terminal lysine or arginine is shown separately. 

Boxplots: The box defines the 25th and 75th percentiles, and the median is marked by a 

solid line. Outliers are marked as individual dots outside the whiskers.
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Fig. 4 ∣. Using plexDIA to estimate differential protein abundance.
a, Quantitative repeatability was estimated by calculating CVs for MaxLFQ protein 

abundances (12,863 sample-specific protein data points) calculated across triplicates for 

plexDIA and LF-DIA. b, Proteins found to be differentially abundant between U-937 and 

Jurkat cells by LF-DIA were plotted as ratios of U-937/Jurkat for plexDIA and LF-DIA 

and colored by density. The Spearman correlation shown was calculated to quantify the 

agreement between the estimated relative protein levels of differentially abundant proteins at 

1% FDR. Non-differentially abundant proteins are plotted in black; the Spearman correlation 

of all proteins (n = 2,728) and differentially abundant proteins at 1% FDR (n = 1,078) is 0.78 

and 0.90, respectively. c, Number of differentially abundant proteins between samples A and 

B as a function of the empirical FDR. The y axis shows the number of true positives (only 

S. cerevisiae and E. coli proteins, which are differentially abundant), and the x axis shows 

the FDRs estimated from the human proteins identified to be differentially abundant. The 

differential abundance was estimated using three replicates from each method, and, thus, 

LF-DIA took three times more instrument time per sample than plexDIA. TP, true positive.

Derks et al. Page 38

Nat Biotechnol. Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5 ∣. Cell cycle analysis with plexDIA.
a, U-937 monocytes were sorted by FACS based on DNA content to separate into G1, S and 

G2/M cell cycle phases. The samples were prepared as a plexDIA set and then analyzed with 

MS1-optimized and MS2-optimized data acquisition methods (referred to as V1 and V2, 

respectively). b, PSEA of cell cycle phases from plexDIA data. c, A subset of proteins found 

to be differentially abundant at 1% FDR across cell cycle phases was grouped by function 

and then plotted to show the relative abundances across cell phases. d, XICs at MS1 and 

MS2 for precursors from poorly characterized proteins, CDV3 and JPT2.
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Fig. 6 ∣. Single-cell protein analysis with plexDIA.
a, Cartoon visualizing the duty cycle used to analyze single-cell plexDIA sets with timsTOF 

SCP. Number of precursors (b) and protein groups (c) identified per single cell—data for (n 
= 30) single cells. d, Mean number of precursors identified from each cell type per minute 

of chromatographic gradient. e, Data completeness measured by Jaccard index within and 

between plexDIA sets—data for (n = 10) sets. f, Comparison of protein fold changes 

estimated from bulk samples (100 cells, x axis) or single cells (y axis). Panels g–l show 

analogous results to a–f but for data from a Q Exactive classic. Panels h and i show data 

for (n = 125) single cells, and panel k shows data for (n = 48) sets. m, XICs for precursors 

(MS1 level) and for peptide fragments (MS2 level) for peptides from differentially abundant 

proteins, HMGA1, TUBB and KRT7; data are from single cells analyzed by Q Exactive. 

Median number of copies for each peptide (n) and protein group (o), per single cell; data are 

from single cells analyzed by Q Exactive. Each distribution in n has (n > 1,800) peptides, 

and each distribution in o has (n > 700) proteins. p, PCA of 155 single cells, including both 

the cells analyzed by timsTOF SCP or by Q Exactive. The single cells are projected together 

with plexDIA triplicates of 100-cell bulk samples analyzed by Q Exactive. All peptides and 

proteins shown are at 1% FDR. Boxplots: The box defines the 25th and 75th percentiles, 

and the median is marked by a solid line. Outliers are marked as individual dots outside the 

whiskers. PC, principal component; QE, Q Exactive.
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