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Artificial Intelligence in Hepatology- Ready for
the Primetime
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Artificial Intelligence (AI) is a mathematical process of computer mediating designing of algorithms to support
human intelligence. AI in hepatology has shown tremendous promise to plan appropriate management and
hence improve treatment outcomes. The field of AI is in a very early phase with limited clinical use. AI tools
such as machine learning, deep learning, and ‘big data’ are in a continuous phase of evolution, presently being
applied for clinical and basic research. In this review, we have summarized various AI applications in hepatology,
the pitfalls and AI's future implications. Different AI models and algorithms are under study using clinical, lab-
oratory, endoscopic and imaging parameters to diagnose and manage liver diseases and mass lesions. AI has
helped to reduce human errors and improve treatment protocols. Further research and validation are required
for future use of AI in hepatology. ( J CLIN EXP HEPATOL 2023;13:149–161)
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In recent years, the development of Artificial Intelli-
gence (AI) in the fields of gastroenterology and hepa-
tology has made remarkable progress. The use of AI

is studied in gastroenterology for the endoscopic evalua-
tion of Barrett's oesophagus, oesophageal and gastric ma-
lignancies, colorectal polyp detection and characterization,
evaluation of inflammatory bowel disease and capsule
endoscopy for obscure gastrointestinal bleed1 (Table 1).
With the increased development and usage of AI in gastro-
enterology, research in the field of hepatology also has
accelerated. AI in hepatology can be used to detect liver
fibrosis, diagnose non-alcoholic fatty liver disease
(NAFLD), differentiate focal liver lesions, diagnose hepato-
cellular cancer, prognosticate chronic liver disease (CLD)
s: artificial intelligence, machine learning, deep learning, hepatol-
FLD
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tions: ACLF: acute on chronic liver failure; AI: artificial intelli-
LD: alcoholic liver disease; ALT: alanine transaminase; ANN: arti-
ral network; AST: aspartate aminotransferase; AUD: alcohol use
; CHB: chronic hepatitis B; CHC: chronic hepatitis C; CLD:
liver disease; CNN: convolutional neural network; DL: deep
; FIB-4: fibrosis-4 score; GGTP: gamma glutamyl transferase;
patocellular carcinoma; HDL: high density lipoprotein; ML: ma-
rning;MLR:multi-nomial logistic regressions; NAFLD: non-alco-
tty liver disease; NASH: non-alcoholic steatohepatitis; NLP:
language processing; RF: random forest; RTE: real-time tissue
aphy; SOLs: space-occupying lesions; SVM: support vector ma-
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and facilitate transplant sciences. However, multiple issues
are to be sorted out to establish the AI's full functionality
and clinical use. Here, we review the practical applications
and ongoing research of AI in hepatology. AI has impacted
health-related systems by accurately and rapidly eluci-
dating pathology, radiology and endoscopy images,
reducing medical errors and improving workflow.2 AI has
aided non-experts also to reach a diagnosis by increasing
the performance quality of images. The use of labelled
‘big data’ along with exceptionally enhanced computers
and cloud storage, has enabled a giant leap in the develop-
ment of AI sciences. This will impact at three different
strata: for physicians, via quick and precise data interpreta-
tion; for healthcare, by increasing work efficiency; and for
patients, by allowing them to promote healthy living using
their data.
ARTIFICIAL INTELLIGENCE - DEFINITION,
TERMINOLOGY AND CONCEPTS

Artificial Intelligence is an umbrella term that mainly infers
the use of mathematics using computers to generate soft-
ware, performing functions as natural human intelligence
such as problem-solving and decision-making.3 The glos-
sary of terms1,4,5,6,7,8 used in the AI platform are listed
and defined in Table 2. The hierarchy patterns of various
types of AI are shown in Figure 1. The overview of the
deep learning (DL) tool is demonstrated in Figure 2.
RADIOMICS AND RADIOGENOMICS

The term “Radiomics” is defined as a process that uses com-
puters to extract a large amount of information from
different types of images, form various quantifiable fea-
tures, and using AI algorithms build models to predict
vier B.V. All rights reserved.
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Table 1 Glossary of Common Terms and Definitions Used in Artificial Intelligence Domains.
Artificial intelligence (AI) A mathematical process of computer mediating designing of algorithms and

models to augment, recreate and support the natural human intelligence and
decision-making. AI lets machines perform tasks that would normally require
human intelligence.

Algorithms Collection of specific mathematical formulae that would form the basis of a
computational learning methodology.

Data Data is a conglomerate of information used for processing, which can be in
the form of numbers, alphabets, images or videos.

Machine learning (ML) Type of learning through computer-based predictions using mathematical
algorithm by analysis of provided data. It helps in predictions about unseen
data using learned data.

Deep learning (DL) Advanced and complex form of machine learning that uses multiple
algorithms arranged in complex neural networks. Due to interweaving of
multiple algorithms, infinite patterns and complex data can be generated from
data sets.

Artificial or Convolutional neural network (ANN/CNN) Neural networks are complex models generated by arranging together
algorithms in layers. The most superficial layer draws out the most readily
accessible data, analyses it, and then triggers selected deeper layers. Deeper
layers in turn extract finer data and then trigger even deeper layers. Once the
deepest layer is triggered, the complex neural network will make a prediction.

Training dataset Data sets that are used for initial development of complex algorithms. This
data is analysed again and again in a repetitive fashion until output is
generated that matches the reference label.

Validation dataset Data sets used to fine-tune algorithms and adjust the parameters of a model.

Supervised learning Refers to use of labelled data to train algorithms. Once trained, the algorithm
can be used to generate labels for new, unseen data. Most commonly used in
medical research for AI tools.

Unsupervised learning Refers to use of unlabelled data to train algorithms. Complex method and not
used widely for medical applications.

Abbreviations: AI, artificial intelligence; ANN, artificial neural network; CNN, convolutional neural network; DL, deep learning; ML, machine learning.
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the outcomes pertaining to the diagnosis, treatment and
prognosis of clinical problems especially cancer.9 Data is
drawn out from medical images using high-throughput
mining and applied within clinical management flow-
Table 2 Applications of AI in Various Endoscopic Procedures.

Procedure

Upper endoscopy 1. Ea
2. Re

in
3. Oe
4. H
5. Ga

Colonoscopy 1. Re
2. Po
3. Po
4. Di

Wireless capsule endoscopy (WCE) 1. Le
2. Int
3. Ce

Endoscopic Ultrasound (EUS) 1. Di
2. To

ne
3. EU
4. Di

150 © 2022 Indian National Associa
charts to improve diagnostic, predictive and prognostic ac-
curacy. This is especially becoming useful in cancer
research. Radiomic analysis uses image-based signatures
for precision diagnosis and treatment, providing a robust
Application

rly dysplasia detection in Barrett's oesophagus
al-time image segmentation in volumetric laser endomicroscopy (VLE)
Barrett's oesophagus
sophageal squamous dysplasia detection
pylori infection detection
stric cancer detection and depth of invasion delineation

al-time polyp detection
lyp classification (Neoplastic vs non-neoplastic)
lyp characterization and detection of depth of invasion
agnosis of inflammatory polypoidal lesions on endocytoscopic images

sion (polyp, bleeding, ulcers) detection and classification
estinal motility assessment
liac disease and Tropical sprue assessment

fferentiate chronic pancreatitis from pancreatic cancer
diagnose the percentage of necrosis in peripancreatic walled-off
crotic collection
S elastography
fferentiate autoimmune pancreatitis from chronic pancreatitis

tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.



A mathematical process of computer mediating
designing of algorithms and models to augment,
recreate and support the natural human intelligence
and decision-making

Type of learning through computer-based
predictions using mathematical algorithm by
analysis of provided data. It helps in predictions
about unseen data using learned data��

Advanced and complex form of machine learning
that uses multiple algorithms arranged in complex
neural networks.

Figure 1 Arrangement of the hierarchy of artificial intelligence domains.
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tool in modern medicine. Radiomics is useful not only for
liver malignant lesions like HCC and non-HCC malig-
nancy but also for benign conditions like NASH, NAFLD
and portal hypertension. Presently, the branch of radio-
mics lacks the standard evaluation of multiple published
investigations. Hence, detailed guidelines and criteria
Figure 2 Overview of a Deep Learning tool using data in Input layer then run
Output layer.

Journal of Clinical and Experimental Hepatology | January–February 2023 |
need to be set to apply radiomics in clinical medicine.10

The gene–expression profile of a tumour helps to predict
the biological behaviour and plan further management af-
ter tumour resection. For all practical purposes, the only
way to assess gene expression is to use tissue obtained
through biopsy or tumour resection, with the
ning Inter-neuron connections, finally showing Model predictions in the
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Figure 3 Graphical presentation showing applications of AI in Hepatology.
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disadvantages being haemorrhage and tumour metastasis,
although very rare. So, preoperative evaluation of the
tumour-gene expression preferably though non-invasive
routes are the ideal target. With the genomic revolution
in the early 1990s, medical research has been driven to
study the basis of human disease on a genomic level and
devise precise cancer therapies tailored to a tumour's spe-
cific genetic makeup. The novel approach of using radio-
mics to extract genomic data has been termed
“radiogenomics”. It aims to correlate the genotype (gene ex-
pressions and mutations) and phenotype (imaging charac-
teristics), to facilitate a deeper understanding of tumour
biology and study the intrinsic tumour heterogeneity.11

Imaging characteristics can then behave as molecular sur-
rogates that can help to predict gene-expression-associated
treatment responses of various forms of cancer. These find-
ings pave a way for the futuristic role of diagnostic and in-
terventional radiologists in using radiographic images for
the genetic assessment of cancer patients.12
APPLICATIONS OF AI IN HEPATOLOGY

Recently, there has been a great amplification of AI-based
applications and softwares in the field of Gastroenterology
and Endoscopy13 (Table 2). We will discuss the various ap-
plications of AI in Hepatology14 under the following sub-
headings-
152 © 2022 Indian National Associa
A. Liver fibrosis in chronic hepatitis B (CHB)
B. Liver fibrosis in chronic hepatitis C (CHC)
C. Alcoholic liver disease
D. NASH and non-alcoholic fatty liver disease (NAFLD)
E. Diagnosis of DILI, PSC and PBC.
F. Prognosis of CLD, portal hypertension, oesophageal

varices and ACLF
G. Diagnosis and characterization of liver space-

occupying lesions (SOLs)
H. Diagnosis and management of hepatocellular carci-

noma (HCC)
I. Liver transplantation

A. Liver fibrosis in chronic hepatitis B (CHB)

Viral hepatitis is a significant cause of CLD. Liver
fibrosis and CLD are risk factors for hepatocellular carci-
noma (HCC) and hence death. It is practically impossible
to perform a liver biopsy in all patients; hence AI algo-
rithms have been developed for non-invasive evaluation
of liver fibrosis. Some of the studies done using AI algo-
rithms will be mentioned in the following sections. Wang
D. et al15 proposed a bayesian learning algorithm to develop
a three-layer artificial neural network (ANN) in patients
with CHB. Age, platelet count, aspartate aminotransferase
(AST), alanine aminotransferase (ALT), and gamma-
glutamyl transferase (GGTP) were the most critical factors
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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in the predictive model. Similarly, using the non-invasive
fibrosis-4 score (FIB-4 score), in the discovery dataset (n =
490) of CHB patients, a learning algorithm known as
Gradient Boosting (GB) clearly proved the superiority of
other methods as well as FIB-4 score (P < 0.001) in the pre-
diction of advanced hepatic failure and cirrhosis.16 DL and
radiomics can be used for quantitative analyses of liver
fibrosis17 in CHB cirrhosis. To improve the staging of
fibrosis, machine learning (ML)-based classification of
real-time tissue elastography (RTE) was developed based
on four classical classifiers (i.e. Support vector machine, Na€õve
Bayes, Random Forest and K-Nearest Neighbour).18 Wang K.
et al19 by a prospective multi-centre study, have shown
that radiomics of shear wave elastography (DLRE) per-
formed better for liver fibrosis prediction in patients with
CHB when compared to two-dimensional shear wave elas-
tography (2D-SWE) or serum markers. Radiomics fibrosis in-
dex (RFI), a new DL-based model developed using
gadoxetic acid-enhanced MRI, was found to be superior
to AST: platelet ratio and fibrosis-4 (FIB-4) index, for stag-
ing liver fibrosis.20 These AI models predict the risk of liver
fibrosis with high accuracy and hence can help to prevent
unnecessary liver biopsies.

B. Liver fibrosis in chronic hepatitis C (CHC)

Hepatitis C virus is a significant and one of the com-
monest causes of CLD presently. Hepatitis C has an 85%
likelihood of chronicity after an acute infection. In patients
with CHC, followed for 20 years, progression to cirrhosis
occurs in about 20–25% patients. Various AI modules
have been framed to study cirrhosis due to CHC, some of
which are being mentioned. Using 414 liver biopsies
from transplant explants (training dataset) and testing
on the remaining 96 biopsies (validation set), with a cut-
off of >0.4, ANN given by Piscaglia et al21 provided an accu-
rate prediction of significant fibrosis based on clinical vari-
ables, hence avoiding unnecessary liver biopsies,
particularly in the setting of liver transplantation. In
another study by Hasheem et al,22, using ML algorithm
on 39,567 patients with CHC, four parameters – age,
AST, platelet count and albumin were found to be statisti-
cally significant for advanced fibrosis. Konerman et al23

demonstrated AI models, constructed using two ML
methods (Boosting and Random Forest) and logistic regression
in CHC patients, which helped to target costly therapies
in patients who needed it urgently. Analysis of 72,638 pa-
tients with CHC of the National Veterans Health Adminis-
tration data showed that boosted survival tree-based models
using longitudinal information were statistically better
than cross-sectional or linear models for cirrhosis predic-
tion in CHC.24 An ANN was created by Takayama et al25

that identified patients with CHC who responded to ther-
apy with pegylated interferon a-2b plus ribavirin with 82%
sensitivity and 88% specificity, in the era before the use of
directly acting antivirals (DAA) for CHC.
Journal of Clinical and Experimental Hepatology | January–February 2023 |
C. Alcoholic liver disease

Alcohol-related liver disease is an area of hepatology, in
which very few studies using AI have been done. Studies
have demonstrated the prediction of hepatic fibrosis in pa-
tients with alcohol use disorder (AUD). Using a group of
31 NAFLD patients with BMI below 30 and a group of
Alcoholic liver disease (ALD) patients with cirrhosis
(ALDC n = 51) or without cirrhosis (ALDNCn = 51), serum
transaminases, cell death markers and (adipo-) cytokines
were assessed.ML techniques based on ALT/AST ratio, adi-
pokines and cytokines helped to distinguish NAFLD and
ALD.26 Tumour necrosis factor (TNF)-alpha and adipo-
nectin were significantly lower in NAFLD patients. ALDC
patients had a significantly higher serum concentrations
of cell death markers, hyaluronic acid, adiponectin, and
TNF-alpha as compared to ALDNC.

D.NASHand non-alcoholic fatty liver disease (NAFLD)

The incidence of NAFLD is increasing worldwide nowa-
days, and it has become one of the most common causes of
cirrhosis. One of the primary goals of ML application
development in hepatology is diagnosing fatty liver disease
and staging liver fibrosis, hence substituting pathological
analysis. Supervised ML classifierswere trained by Vanderbeck
et al27 using a digital library of pathology images of 47 liver
biopsies from patients with normal liver and with NAFLD
patients. The classification algorithm performed with 89%
overall accuracy and identified steatosis, bile ducts, portal
veins, and sinusoids with high precision and recall. Accu-
rate localization of microscopic liver anatomy landmarks
facilitates the detection of other histological lesions.

A widely used pathologist score (Kleiner score) uses
ballooning, inflammation, steatosis and fibrosis as the
main histopathology features of NASH/NAFLD. Auto-
mated DL-based scores using the above findings enables
pathologist-like scoring of NASH models.28 Sowa J-P
et al used ML techniques to analyse specific liver serum pa-
rameters, hyaluronic acid (HA) and cell death markers of
126 patients undergoing bariatric surgery for morbid
obesity. Out of these serum markers, a fibrosis scoring sys-
tem could be generated using AI, even if only marginally
fibrotic tissue is available.29 Based on findings that six pre-
dictors including hypertension, alanine aminotransferase
(ALT), high-density lipoprotein (HDL), triglyceride, hae-
moglobin A1c, white blood cell count are important pa-
rameters for NAFLD diagnosis in general polulation, a
‘NAFLD ridge score’ was developed as a robust and straight-
forward reference comparable to existing NAFLD scores to
exclude NAFLD patients in epidemiological studies.30 ML
methods using history, demographic details and labora-
tory values of the patient can predict non-alcoholic steato-
hepatitis (NASH) in NAFLD patients.31 It can help tomake
predictive models of patients having higher chances of
developing cirrhosis.
Vol. 13 | No. 1 | 149–161 153



AI IN HEPATOLOGY KALAPALA ET AL

A
rtifi

cia
lIn

tellig
en

ce
While ultrasound is the primary modality used for treat-
ing the NAFLD, due to unavailability of the skilled sonogra-
phers, especially in resource-scarce regions, the quality of
diagnosis is severely affected. To address this problem, DL
methods for classifying the fatty liver in ultrasound images
were used. The performance analysis of the proposed frame-
work shows that the NAFLD in ultrasound images can be
detected with an accuracy of 90.6%.32 Liver biopsy is pres-
ently the gold standard modality for the diagnosis of
NAFLD. To remove the intra- and inter-observer variability,
a transfer-based DL algorithm, AlexNet-CNN was developed
using liver biopsy images in mice and compared to conven-
tional non-DL algorithms - ANN, multi-nomial logistic re-
gressions (MLR), support vector machine (SVM) and
random forest (RF). It was shown that AlexNet-CNN could
automatically score liver fibrosis stages with a level of accu-
racy similar to conventional non-DL algorithms.33 A super-
visedDLmodel with a convolutional neural network (CNN)
architecture using high discrimination capability of histo-
logical tissue alterations of NAFLD showed a classification
accuracy of 95%. The classification capability of the new
CNN model showed superior classification accuracy
compared with a pre-trained AlexNet model, a visual geom-
etry group (VGG)-16 deep architecture and a conventional
multi-layer perceptron (MLP).34

E. Diagnosis of DILI, PSC and PBC

Diagnostic dilemma exists for some hepatic conditions
like drug-induced liver injury (DILI), primary sclerosing
cholangitis (PSC), primary biliary cirrhosis (PBC) even af-
ter thorough clinical and biochemical examinations.
DILI is a condition with serious consequences, especially
with the rampant use of complementary and alternative
medicines (CAM). DILI can present with various clinico-
pathologic presentations like acute hepatitis, chronic hep-
atitis, granulomatous hepatitis, cholestatic hepatitis,
steatohepatitis, vascular disorders or tumours leading to
a lot of overlap in diagnosis. Hence AI tools35 with predic-
tion models can help to predict the group of patients
which can be predisposed to DILI and also can play an
important role in diagnosis. Kristina et al36 demonstrated
a ML tool to detect PSC compatible cholangiographic im-
aging using 3D-MRCP images with high sensitivity. Eaton
et al37 gave a PSC Risk estimate tool (PREsTo) using 9
biochemical variables to predict the outcome in patients
with PSC, after excluding those with advanced PSC and
cholangiocarcinoma. This ML tool using ‘Gradient Boosting’
can be an excellent non-invasive method for prediction of
decompensation, when compared to MELD score and
Mayo Risk Score. Similarly, a risk score for PBC38 was devel-
oped using ML. This unsupervised ML tool identified
novel subgroups of PBC patients and provided prognosis
based on serum albumin levels. It showed that UDCA
induced increase of S. Alb >1.2. Lower limit of normal is
associated with improved liver transplant-free survival.
154 © 2022 Indian National Associa
F. Prognosis of CLD, portal hypertension, oesophageal
varices and acute on chronic liver failure (ACLF)

Prediction of disease progression in CLD and portal hy-
pertension is necessary for planning further management
and hence prognostication. Bleeding oesophageal varices
are an important cause of mortality in CLD patients. AI
tools can help in the management of CLD and prediction
of bleeding from varices. Two radiomics signatures (rGEV and
rHRV) were developed, in a multi-centre study, using non-
contrast-enhanced CT images. They act as a non-invasive
complementary predictor in diagnosing gastroesophageal
varices (GEV) and predicting high-risk varices (HRV) in
compensated advanced CLD.39 Using laboratory parame-
ters and liver stiffness, ML model, Extreme-gradient boosting
(XGBoost) improved the endoscopic stratification to pre-
dict variceal bleeding in patients with compensated CLD
with oesophageal varices.40 A DL-based model perfor-
mance for CHC patients using a random forest analysis
showed an excellent prediction of survival without a trans-
plant, although less robust for predicting evolution to hep-
atoma at 12 and 36 months.41

An ANN model to predict the presence of oesophageal
varices in patients with CHB42 was developed by Hong
et al with three variables (platelet count, portal vein diam-
eter and spleen width). An algorithmically developed for-
mula, called the EVendo score, can predict oesophageal
varices (EVs) and Varices needing treatment (VNT) based
on readily available data in patients with cirrhosis. This
score could avoid unnecessary procedures, especially in pa-
tients at low risk for VNT.43

An ML algorithm employing ultrasound shear wave
elastography has been developed for colour analysis for
CLD classification.44 A meta-analysis of AI-assisted tools
using non-invasive modalities like clinical parameters, ul-
trasonography, elastography, computerized tomography
(CT) and magnetic resonance imaging (MRI) has shown
the promise in diagnosing CLD. Validations studies are
warranted before their applications in clinical practice.45

Recently, a DL-based AI tool named ‘AI-Cirrhosis-ECG
(ACE) score’ was proposed by Ahn et al. This score is based
on cirrhosis-related ECG (Electrocardiogram) signals. This
score can differentiate ECGs from patients with or without
cirrhosis and can be a useful low-cost tool in the care of pa-
tients with cirrhosis.46 The VIRGIN Study47 done in China
presented an analytical method to calculate a virtual Portal
Pressure Gradient (vPPG) based on CT angiography and
Doppler ultrasound, hence avoiding the invasive HVPG
measurement for portal hypertension. Musunuri B. et al
investigated the role of the ANN, which functionally
mimics biological neural systems, in predicting 90-day liver
disease-related mortality in ACLF patients. An accuracy of
94.12% was noticed in predicting 30-day mortality and
88.2% in predicting 90-day mortality, with an area under
the curve of 0.915 and 0.921, respectively. ANN plays a
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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very important role in predicting short-term mortality pa-
tients with high accuracy. Its application in patients with
ACLF is promising as it automates and eases the method
of identifying those patients at a higher risk of mortality.48

G. Diagnosis and characterization of liver space-
occupying lesions (SOLs)

Various DL-based models have been developed using
contrast-enhanced ultrasound, CT scan and MRI to char-
acterize focal liver lesions49,50,51,52. But extensive validation
is needed before establishing clinical use. A DL technique
using Stacked Sparse Auto-encoders (SSAE) with ultrasound
images suggested for diagnosing hepatic nodules (liver
cysts, haemangioma, and HCC)53 has high accuracy in
overall classification (97.2%) compared with three estab-
lished methods: Naive Bayes, multi-support vector machine
and K-Nearest Neighbor. Since MRI diagnosis is affected by
subjective variations, CNNs were used to develop a DL sys-
tem (DLS) to classify liver tumours based on clinical data,
laboratory parameters and MR images (enhanced and un-
enhanced).52 Multiple predictionmodels were designed us-
ing CNN for 5-year metachronous liver metastasis (5YLM),
applying combinations of clinical variables (age, sex, T
stage, N stage) and top principal components (PCs) with
logistic regression classification. The model using “1st
PC (PC1) + clinical information” had a significant correla-
tion with sex, body mass index, alcohol consumption, and
fatty liver status.54

H. Diagnosis and management of hepatocellular carci-
noma (HCC)

ML has various applications for the study of HCC,
including diagnosis, staging, management and prog-
nosis based on the stage of HCC. Sato et al55 developed
a novel model for HCC diagnosis, showing high accuracy
(87.3%) compared to a single tumour marker (alpha feto-
protein 70.7%, des-alpha-fetoprotein-L3 71.1% and
gamma-carboxyprothrombin 74.9%). This model
decreased the rate of liver SOLs, previously misclassified
as HCC. A study by Singal et al56 showed that ML algo-
rithms outperformed conventional regression models
and markedly improved the accuracy of prediction and
risk stratification for HCC development in 442 patients
with compensated cirrhosis. A study by Nam JY et al57

compared a DL-based model with previous HCC predic-
tion models, including Chinese University HCC score
(CU-HCC), platelets, age, gender-hepatitis B score
(PAGE-B), age, diabetes, race, aetiology of cirrhosis, sex,
and severity HCC score (ADDRESS-HCC), HCC-Risk
Estimating Score in CHB patients Under Entecavir
(HCC-RESCUE), Toronto HCC risk index (THRI), and
modified PAGE-B score (mPAGE). This model had better
performance than the previous models for predicting the
HCC risk in 424 patients with HBV-related cirrhosis on
potent antivirals.
Journal of Clinical and Experimental Hepatology | January–February 2023 |
Multi-omics (use of multiple –“omes” such as the
genome, microbiome, etc) approach was used to make a
DL-based model of 360 patients with HCC, using RNA
sequencing, methylation data and miRNA sequencing
from The Cancer Genome Atlas.58 It was the first study
to employ DL to identify multi-omics features linked to
the differential survival of patients with HCC. Two DL al-
gorithms were built, using whole-slide digitized histologi-
cal data for predicting the survival of patients with HCC
treated with surgery.59 This analysis included two indepen-
dent cohorts. A discovery cohort (n = 194) was used to
develop the algorithm and included an independent vali-
dation cohort (n = 328). This study highlights the impor-
tance of machine interactions for the appropriate
construction of DL algorithms using histology slides.

Randhwa et al,60, using support vector, with MRI images
as data, made an AI tool to improve radiological image
classification of HCC. This can help radiologists diagnose
liver tumours early. Using regularization in the vector score
in the classification stage removes the overfitting problem
and leads to the accurate identification of different tumour
types. A DL-based assistant has been developed to help pa-
thologists differentiate between two subtypes of primary
liver cancer, HCC and cholangiocarcinoma, on haematox-
ylin and eosin-stained whole-slide images (WSI), and eval-
uated its effect on the diagnostic performance of 11
pathologists with varying levels of expertise.61 This DL-
based assistant helped to increase the accuracy of patholo-
gists.

The segmentation of HCC in CT images allows assess-
ment of tumour load, treatment planning, prognosis and
monitoring of treatment response. Since manual segmen-
tation is a very time-consuming task and, in many cases,
prone to inaccuracies, automatic tools for tumour detec-
tion and segmentation are highly desirable. One such
network architecture was formed and evaluated on data
provided from the radiological centre in Innsbruck,
Austria. It consists of two consecutive nested fully CNN
together with a joint minimization strategy. The first
sub-network segments the liver, whereas the second sub-
network segments the actual tumour inside the liver.62

Automatic segmentation of liver and tumours using a fully
convolutional neural (FCN) network is highly advanta-
geous as it will plan surgical management and follow-up
assessment. A study by Alirr et al has shown this DL
method as a promising tool for automatic analysis of the
liver and its tumours.63

A systematic review by Azer et al of data analysing pa-
thology, cellular and radiological images of HCC or liver
masses using CNNs were identified and analysed.64 The re-
view showed an optimal level of accuracy of CNNs for the
segmentation and classification of HCC and other liver
mass lesions. Dynamic contrast-enhanced MRI provides
the most comprehensive information for differential diag-
nosis of liver tumours. DL tools can be used for
Vol. 13 | No. 1 | 149–161 155



Table 3 Future Research Points of Investigations for
Artificial Intelligence in Gastroenterology and Hepatology.
U Absence of good quality datasets for algorithm development

U Non-uniformity in the sizes of testing and training datasets.

U Wide variations in the performance criteria (sensitivity, speci-
ficity, accuracy, precision, AUROC)

U Need of validation techniques in various studies

U Need of randomized controlled trials comparing AI-based
approaches with non-AI-based approaches

U Ethical issues creating biases in studies

U Use of therapeutic advances like immunotherapy for advanced
management is yet to be investigated.

Abbreviation: AUROC, area under the receiver operating characteristic.
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classification and mutation prediction based on histopa-
thology images. Chen et al65 showed that the performance
level of a DL model was close to the ability of a 5-year expe-
rience pathologist, with high accuracy for differentiating
benign and malignant conditions. This model has shown
that four important genes, namely- FMN2, CTNNB1,
TP53 and ZFX4, predicted from histopathology images,
could assist in the classification and detection of gene mu-
tation in liver cancer.

I. Liver transplantation

An ANN model, based on clinical and biochemical data
of cirrhotic patients, having a high probability of mortality
in 1 year; was developed by Banerjee et al66 for the identifi-
cation of the best candidates for liver transplantation.
Three-dimensional (3D) simulation software, using 3D visuali-
zation and 3D reconstruction of CT images, is a valuable
tool for pre-hepatectomy assessment, virtual hepatectomy
and measuring hepatic volumes. These 3D models com-
bined with hydrodynamic analysis have been used to diag-
nose andmanage portal hypertension.67 An ANNwas used
to predict survival times of 1168 patients planned for liver
transplantation, by Khosravi et al.68 It estimated a survival
probability of 1–5 years with an AUROC curve of 86.4% vs.
80.7% for Cox proportional hazard regression models.
ANN has helped to make liver donor-recipient matching
models by researchers, providing powerful technology
that would ease decision-making.69 AI tools using liver seg-
mentation will hence help to plan hepatic resection, pre-
vent donor-recipient mismatch, improve survival of graft
and patient overall and also help in the approval of new
immunosuppressant drugs by playing an important role
in research and development in drug trials. The salient
studies of AI and ML are listed in Table 4.
KEY POINTS

Various AI-based applications and models, devel-
oped using clinical, laboratory and radiology data,
play an important role in diagnosis, prediction of
severity and prognostication of liver diseases
(Figure 3).
THE LIMITATIONS OF AI IMPLEMENTATION

There are certain obstacles and pitfalls, despite all the ad-
vantages of AI technology. Medicine is a field of science
with multiple research gaps, hence designing perfect AI
models has been difficult to date, especially in gastroenter-
ology and hepatology (Table 3). A flawed algorithm can
cause harm to a large group of patients. Instead of a single
doctor's mistake harming a patient, the potential for ma-
chine algorithms causing iatrogenic risk is vast. As a result,
systematic amendment, extensive simulation, validation
156 © 2022 Indian National Associa
and audit along with prospective trials and scrutiny are
required when an AI algorithm is launched in clinical prac-
tice. Another critical aspect of the future of AI rests with
the preservation and protection of data and personal infor-
mation, maintaining privacy. Given the risks of hacking
and data robbery, there will be less interest in the use of al-
gorithms that risk revealing a patient's medical history.

Now, as AI moves towards face recognition and the use
of genomic imprints, it further stresses the fact that data
security will be a chief concern. Developing software with
full-proof security systems, especially for data transfer
and storage, will help increase the confidence of patients
for AI development.

High dependency on AI tools can result in the reduction
of the skills of clinicians. One should remember that AI
tools also have diagnostic errors. Hence, clinicians should
be vigilant in the initial phase of AI implementation, disap-
proving the diagnosis; they believe AI has made an error.
The initial use of AI tools will prolong diagnostic time,
mainly due to the clinicians learning the new process and
technology adapting itself to new unprocessed data. Hence
there should be a dedicated team of people involved in the
development of AI applications.

It is improbable that the AI systems will render clini-
cians input completely obsolete, as the AI systems are de-
signed to keep human intelligence as a centre-space.
They lack the technical complexity required to achieve au-
tonomy.70 Rather than hinder the already skilled clini-
cians, they will aid and further support for patient
management. Clinicians should embrace AI systems as ad-
juncts to increase the quality of care. Machines cannot
replace the component of ‘human touch’; hence clinicians
ethically will play a major role in decision-making for their
patients based on patient's preferences and comfort.
Another limitation of AI technology at present is the lack
of superior quality datasets for algorithm development.
Currently, with the lack of utility of ML algorithms in clin-
ical practice, most of the evidence is from preclinical trials.
Hence collections of data and storage from involvements
of multiple centres with high volume load will help in
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.



Table 4 Salient Studies of AI and ML in Liver Diseases.

Study Disease Patients Modality AI techniques used Salient features

Wei et al.16 HBV/HCV Train: 343 HBV
Test: 147 HBV; 484 HCV

Clinical and Laboratory data Decision Tree,
Random Forest,
Gradient Booster

Age, AST, ALT and platelet count were used to
construct ML algorithms to predict fibrosis in HBV
patients. The model was superior to FIB-4 score.

Wang K et al.19 HBV Training: 266 HBV
Validation: 132 HBV

Ultrasound Convolutional
Neural Network

Deep learning Radiomics of Elastography (DLRE) was
superior to 2D-Sheer Wave Elastography and
biomarkers for assessing liver fibrosis stages.

Konerman MA et al.23 HCV Train: 533 HCV
Test: 183 HCV

Clinical and Laboratory data Logistic Regression,
Random Forest

ML-based longitudinal fibrosis prediction model
shows AUROC = 0.78–0.79 for fibrosis progression
and AUROC = 0.79–0.86 for clinical progression

Vanderbeck et al.27 NASH/NAFLD NAFLD-27
Healthy liver-20

Pathology data Support Vector Machine Automatic classification algorithm of steatosis had an
89% overall accuracy and identified macrosteatosis
with $95%precision and recall

Yip TF et al.30 NASH/NAFLD Train: 146 NAFLD;354
Healthy volunteers (HV)
Test: 118 NAFLD, 394 HV

Clinical and Laboratory data Logistic Regression,
Ridge Regression,
AdaBoost,
Decision Tree

ML algorithms based on ALT, HDL-C, triglycerides,
HbA1C, WBC and Hypertension were used to develop
NAFLD prediction scores. Overall accuracy of NAFLD
ridge score- 87%, AUROC- 0.87, 92% sensitivity and
90% specificity.

Agarwal S et al.40 CLD/Oesophageal
varices

828 patients having
compensate advanced
CLD with oesophageal
varices (EV)

Laboratory data
Endoscopy images
Liver stiffness measurement

Extreme Gradient Boosting (XGBoost) The accuracy of machine learning (ML)-based model
to predict future VB was 98.7 (97.4–99.5)%, 93.7
(88.8–97.2)%, and 85.7 (82.1–90.5)% in derivation
(n = 497), internal validation (n = 149), and external
validation (n = 182) cohorts, respectively, which was
better than endoscopic classification [58.9 (55.5–
62.3)%] alone.
Patients stratified high risk on both endoscopy and
model had 1-year and 3-year bleeding rates of 31–
43% and 64–85%, respectively

Dong TS et al.43 Oesophageal
varices

Train: 238 Liver cirrhosis
Test: 109 Liver cirrhosis

Clinical and Laboratory data Random Forest EVendo score was developed to identify oesophageal
varices with AUROC = 0.82, and could spare 30–40%
low-risk patients from unnecessary procedures.

Minerali et al.74 DILI 1036 FDA-approved
individual compounds

Biopharmaceutics Drug
Disposition Classification
System dataset

Bayesian machine
learning models

A ML tool named MegaTox� can predict DILI in early-
stage clinical compounds and recently approved FDA
drugs.

Eaton et al.37 PSC outcomes Train: 509 PSC
Test: 278 PSC

Clinical data Gradient Boosting A score PREsTo was created using nine variables.
Thismodel can predict decompensation and performs
better than Mayo Risk score and MELD score.
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collecting data. Proper validation studies then need to be
done after the AI tools have been made.

Specific DL methods are considered ‘black-box’models,
so it is not easy to understand the processing of data. This
has prohibited physicians from finding potential con-
founding variables. There has been much published about
‘black-box’warning of algorithms.71 AI use can be ethically
challenging, as patient preferences cannot be machine
learnt. Also, in case of misdiagnosis, who shall be legally
responsible - whether the endoscopist, the clinician or
the programmer is still undecided? Moreover, the racial
distinction might be necessary for certain areas (as fibrosis
in viral hepatitis), and it may be an inherent bias in AI. So,
different population groups must be considered in devel-
oping and validating AI tools, to increase their sensitivity,
specificity and accuracy.
KEY POINTS

Use of AI technology is advantageous to the fields of
gastroenterology, hepatology and medicine in gen-
eral, but have some roadblocks at present. Mainly
being data security, lack of human touch, concerns
regarding overpowering human intelligence and
lack of proper databases. These pitfalls shall be
overcome in the future with proper clinical trials
and studies.
THE FUTURE PERSPECTIVES OF AI IN
HEPATOLOGY

The field of AI at present is full of promises but relatively
less in proofs and validation. Before it is used in clinical
practice, AI requires rigorous studies, clinical validation in
a real-world scenario and publication in peer-reviewed jour-
nals. There are concerns that machines in the future will
replace doctors, but the fact is that the designers of AI mod-
ules are cautious for that to happen. Human life is too
precious and cannot be experimented with as a ‘self-driven
car’. Hence the usage of AI in clinical practice will be slow
and cautious, first involving processes with minimal risk
and complications. Gradually this will lay the foundation
for high-performance medicine, which will absorb more
and more human data, decreasing the reliance on human
resources and eventually form a symbiotic relationship be-
tween human and machine intelligence for the betterment
of humankind. The expansion of AI in gastroenterology
and hepatology is crucial for the progress of these fields.
Also, the use of AI is advantageous compared to traditional
regression analysis methods used in research by incorpo-
rating large samples and by reducing interobserver bias.

An upcoming impact of AI is that it forms an important
part of the evolution of precision and personalized medicine. It
describes the revolution in health care triggered by
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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knowledge gained from sequencing the human genome.
The field has evolved to recognize how the intersection of
multi-omic data combinedwithmedical history, social/behav-
ioural determinants, and environmental knowledge pre-
cisely characterizes health states, disease states, and
therapeutic options for affected individuals. The synergy
ofAI and precision medicine has augmented the yield of highly
personalized medical diagnostic and therapeutic informa-
tion. The ultimate goal of this combination is the preven-
tion and early detection of diseases affecting the
individual, which could ultimately decrease the disease
burden for the public at large, and, therefore, the cost of pre-
ventable health care for all. Genotype-guided treatment of
HCC is an example of precision medicine. The genetic charac-
terization of HCC is not well established like other malig-
nancies due to a lack of genomic studies. However, ‘big
genomic data’ and AI analysis will help identify patients
with CLD who are at high risk for fibrosis or HCC. Patients
with advanced HCC are presently treated with newer agents
such as molecular targeted therapy or immunotherapy.
However, the group of patients who will respond to the
drugs is not known. If AI can predict this treatment
response, precision medicine can become a reality soon.

Healthcare systems in developing countries like India
have a lot of challenges, especially in the rural areas. AI
helps in addressing these issues by assisting the doctors
in better and quick diagnosis, delivering personalized
healthcare, providing high-quality healthcare to rural
areas, and helping doctors and nurses in training to handle
complex medical conditions. AI can help monitor a pa-
tient's condition having chronic ailments with the help
of a smartphone.72 Using clinical, genetic, molecular infor-
mation from large datasets, AI can be helpful to find new
therapeutic targets. Apart from the extensive number of
AI applications being made, a lot of unmet needs are
work on alcohol related liver injury, metabolic and autoim-
mune liver diseases. Hence there is a lot of scope for tech-
nical growth in the AI sub-speciality, paving the way to
improve the accuracy of the AI tools. AI systems for liver
segmentation and diagnosis should be widely available
within the next 5 years, which will help in liver lesion char-
acterization and aid in liver transplantation. Working in
isolation from AI and data scientists will be a hindrance
to the growth of clinical medicine. Hence, the adoption
of coordinated research opportunities will facilitate the
development of many clinically useful tools.
KEY POINTS

The future of AI is promising with the introduction
of precision and personalized medicine, mainly
involving data from the human genome. Overall
healthcare services will improve especially in rural
areas of developing and underdeveloped countries.

Journal of Clinical and Experimental Hepatology | January–February 2023 |
SUMMARY

AI is an upcoming promising technology that is rapidly
becoming an essential part of patient management. Appli-
cations of AI have expanded in all branches of medicines,
especially endoscopy and hepatology. The conglomeration
of data which can be clinical/laboratory, multi-omics, natural
language processing (NLP) and Image recognition (both
radiology-based and pathology-based) has contributed to the
prediction of fibrosis, classification of liver masses and pre-
diction of treatment response and transplant outcomes.73

In this review the majority of studies mentioned focussed
on diagnosis part. There are very few studies that help to
predict treatment response, post-liver transplant response,
and prediction of hepatotoxicity in newer drug develop-
ment and more studies are needed. AI also helps for real-
time biomonitoring, by identification of patients at high
risk of clinical decompensation and hospital admission,
so that timely intervention can be done for high-risk pa-
tients. With the increasing advancement of image capture
and storage, AI will bring striking changes to the diagnosis
of various liver diseases with the ‘big data’ being available.
However, there are many hurdles to overcome, which re-
searchers will do in the near future using validation studies
and molecular research. It is expected that gastroenter-
ology and hepatology will be one of the first areas in med-
icine to introduce AI tools on a wide-scale basis, due to its
inherent reliance on endoscopic and radiological imaging.
Hence, GI and liver specialists should be proud that our
field sets the ground for AI development in medicine.
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