Skip to main content
. 2022 Dec 30;8(12):e38533. doi: 10.2196/38533

Table 1.

Performance of the artificial intelligence algorithm for predicting rapid diagnostic test (RDT) results with respect to human visual reading in (1) the validation set, (2) the field study for reading antibody (Ab) RDTs, and (3) in the field study when reading antigen (Ag) RDTs.

Evaluation data AUCa (95% CI) Sensitivity (95% CI) Specificity (95% CI) Tests, n
Negative Positive
1: RDT manufacturer (Ab) and band

Abbott


IgG 99.5 (98.7-100) 96.4 (94.1-98.8) 100 (100-100) 94 145


IgM 92.5 (85.4-99.6) 80.8 (75.8-85.8) 90.7 (87.0-94.3) 184 55

UNScience


IgG 100 (100-100) 100 (100-100) 100 (100-100) 100 140


IgM 89.5 (83.7-95.2) 80.0 (74.9-85.1) 88.6 (84.6-92.6) 214 26

AllTest


IgG 99.8 (99.4-100) 97.9 (96.1-99.7) 100 (100-100) 96 144


IgM 90.6 (85.0-96.1) 79.6 (74.5-84.7) 86.0 (81.6-90.4) 186 54

Global


IgG 99.8 (99.5-100) 98.1 (97.1-99.1) 100 (100-100) 290 429


IgM 90.8 (87.4-94.3) 80.0 (77.1-82.9) 89.0 (86.2-90.9) 584 135
2: RDT manufacturer (Ab) and band

Roche


IgG 100 (100-100) 100 (100-100) 94.4 (92.8-96.1) 18 154


IgM 99.6 (96.0-100) 100 (100-100) 95.8 (94.3-97.3) 166 6
3: RDT manufacturer (Ag) and band

Abbott


Test 100 (100,100) 100 (100,100) 100 (100,100) 68 28

aAUC: area under the curve.