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Abstract

Background: Subtypes of pulmonary arterial hypertension (PAH) differ in both fundamental 

disease features and clinical outcomes. Angiogenesis and inflammation represent disease features 

that may differ across subtypes and are of special interest in connective tissue disease-associated 

PAH (CTD-PAH). We compared inflammatory and angiogenic biomarker profiles across different 

etiologies of PAH and related them to clinical outcomes.

Methods: Participants with idiopathic PAH, CTD-PAH, toxin-associated PAH (tox-PAH), 

or congenital heart disease-associated PAH (CHD-PAH) were enrolled into a prospective 

observational cohort. Baseline serum concentrations of 33 biomarkers were related to three-year 

mortality, echocardiogram, REVEAL score, and six-minute walk distance (6MWD). Findings 

were validated using plasma proteomic data from the UK PAH Cohort Study.

Results: 112 patients were enrolled: 45 idiopathic, 27 CTD-PAH, 20 tox-PAH, 20 CHD-PAH. 

Angiogenic and inflammatory biomarkers were distinctly elevated within the CTD-PAH cohort. 

Six biomarkers were associated with mortality within the entire PAH cohort: interleukin-6 
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(IL-6, HR:1.6, 95% CI:1.18–2.18), soluble fms-like tyrosine kinase 1 (sFlt-1, HR:1.35, 95% 

CI:1.02–1.80), placental growth factor (PlGF, HR:1.55, 95% CI:1.07–2.25), interferon gamma-

induced protein 10 (IP-10, HR:1.44, 95% CI:1.04–1.99), tumor necrosis factor-beta (TNF-β, 

HR:1.81, 95% CI:1.11–2.95), and NT-proBNP (HR:2.19, 95% CI:1.52–3.14). Only IL-6 and NT-

proBNP remained significant after controlling for multiple comparisons. IL-6, IP-10, and sFlt-1 

significantly associated with mortality in CTD-PAH, but not non-CTD-PAH subgroups. In the UK 

cohort, IP-10, PlGF, TNF-β, and NT-proBNP significantly associated with five-year survival.

Conclusions: Levels of angiogenic and inflammatory biomarkers are elevated in CTD-PAH, 

compared with other etiologies of PAH, and may correlate with clinical outcomes including 

mortality.

Introduction:

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling 

and leads to progressive right heart failure and ultimately death within a median of 

approximately six years from diagnosis.1 PAH subtypes include, but are not limited to, 

idiopathic (IPAH), connective tissue disease-associated (CTD-PAH), toxin-associated (tox-

PAH), and congenital heart disease-associated (CHD-PAH).2 Patients across PAH subtypes 

differ in survival, symptom progression, and hemodynamics.3–7 Variation between subtypes 

in fundamental features like vasodilator responsivity,3,8,9 rates of bone morphogenic protein 

receptor type 2 (BMPR2) mutation,10–12 and response to medical therapy8,9,13,14 suggests 

that differences in outcomes may be driven by underlying pathophysiological divergence. 

Increasingly, the field has recognized the need for precision-medicine approaches to 

PAH.15,16 Despite this recognition, personalized or subtype-specific medication strategies 

have yet to be developed, and guideline-based treatment algorithms do not distinguish by 

PAH subtype.17,18 Treatment personalization is limited by our incomplete understanding 

of disease pathophysiology, and further obscured by disease heterogeneity both across and 

within subtypes.15,16,19

Peripheral serum biomarkers have emerged as a promising tool that offers the possibility of 

investigating disease heterogeneity at multiple levels and informing diagnosis and prognosis 

of PAH. Biomarkers of inflammation and angiogenesis are especially intriguing as they 

reflect likely mechanisms of disease which may be therapeutically targetable.20 Specific 

inflammatory and angiogenic markers are elevated in PAH and variably predict patient 

outcomes21–26; however, few studies have compared biomarker concentrations across PAH 

subtypes and related them to clinical outcomes. Examining PAH patients in aggregate may 

obscure important signals within subtypes and delay recognition of separately targetable 

disease endotypes in PAH. Conversely, robust findings within one subtype may drive 

statistical significance in the aggregate group, leading to inappropriate application of therapy 

to all patients, including subgroups that may not benefit. These issues are critical for 

understanding PAH pathobiology and moving towards personalized medicine for individuals 

with PAH.

As such, the aim of this study was to evaluate the angiogenic and inflammatory biomarker 

profiles of patients across four PAH subtypes within a well-characterized prospective 
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observational cohort of patients with PAH. We hypothesized that these markers would 

systematically vary by PAH etiology and would have distinct relationships with mortality, 

echocardiographic findings, disease severity, and six-minute walk distance (6MWD).

Methods:

Data Collection and Study Procedures

Participants from the University of Washington pulmonary vascular disease clinic with an 

established diagnosis of PAH were enrolled in the Seattle Right Ventricle Translational 

Science (Servetus) cohort from April 2014 through May 2016. PAH diagnostic criteria 

were based on guidelines from the 5th World Symposium on Pulmonary Hypertension 

including a mean pulmonary artery pressure (mPAP) ≥ 25 mmHg, pulmonary capillary 

wedge pressure (PCWP) ≤ 15 mmHg, and pulmonary vascular resistance (PVR) > 3 Wood 

Units measured up to one year before study entry.27 Participants with IPAH, tox-PAH, 

CTD-PAH, or CHD-PAH were included in this analysis. At enrollment, demographics were 

recorded, New York Heart Association (NYHA) functional class was assessed using a 

standardized decision aid, 6MWD was completed, and REVEAL 2.0 score was calculated.28 

Echocardiograms obtained up to six months before the index visit were read by one of two 

cardiologists using a standardized research protocol including measurement of RV basal 

diameter in diastole. Blood samples were collected on enrollment, processed, and frozen 

at −80°C using a standardized protocol.29 Samples were thawed only once for the current 

analysis and run in a single batch. An array of biomarkers was assayed using a Meso Scale 

Discovery multiplex immunoassay. N-terminal pro-brain natriuretic peptide (NT-proBNP) 

was measured for all participants and served as a “control” marker that was expected to 

correlate with clinical outcomes. Survival was monitored for 36 months from enrollment 

and included research questionnaires that were collected every four months. Vital status was 

available for all participants at study completion.

Statistics

To compare biomarker levels across subtypes, biomarker concentrations were standardized 

by z-score by subtracting the sample mean and then dividing by SD. Biomarker 

concentrations across subtypes were compared using Kruskal–Wallis one-way analysis 

of variance with Dunn’s comparison testing. Data was organized into a heatmap using 

GraphPad Prism (version 9.3.0 for Windows, GraphPad Software).

For relationships with mortality, biomarker levels were standardized within their own 

distribution by dividing each biomarker by the standard deviation (SD) for that marker. For 

each individual biomarker, separate Cox proportional hazards models were run to estimate 

relationships of a one-SD difference with the hazard of mortality over three years. Age, 

gender, and PAH etiology were considered in a fully adjusted model that was determined 

a priori. An additional exploratory model including NT-proBNP was performed to assess 

whether associations were independent of an established marker of severity. For biomarkers 

associated with mortality in the cohort at-large, analyses were repeated separately for each 

of the four subtypes of PAH. Linear regression estimated associations between a one-SD 

difference in biomarkers (exposure) and 6MWD (meters), right ventricular basal diameter 
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(RVD, mm), tricuspid annular plane systolic excursion (TAPSE, mm), or REVEAL score. 

Covariates included age, gender, height, weight, and PAH etiology. For mortality-associated 

biomarkers, Spearman’s rank correlation coefficients were calculated.

A p-value ≤ 0.05 was defined as significant in the primary interpretation to avoid Type 

II error and a ‘false negative’ in this hypothesis-generating cohort. Primary analyses 

were complete case analyses of biomarkers with >90% capture. Given the possibility 

that “missing” biomarkers might represent biomarkers below the lower limit of detection, 

sensitivity analyses replaced “missing” biomarkers with a value equal to the lower limit of 

detection in the cohort. Statistical analysis and data illustration were performed with STATA 

15.1 (StataCorp) and GraphPad Prism software.

Confidence in the results and external validation

Given that multiple biomarkers were tested, results in the Servetus cohort were also 

evaluated against a more restrictive false discovery rate (FDR) of 5% using a Benjamini-

Hochberg procedure. In addition, for biomarkers associated with mortality in Servetus, a 

focused validation using the UK PAH Cohort Study was performed.30,31 Proteomic data 

for 357 patients with idiopathic or heritable PAH was obtained on plasma samples, using 

an aptamer-based assay (SomaScan 4). For each significant biomarker in the Servetus 

cohort, Cox regression analyses corrected for age and sex, were used to validate or refute 

associations with all-cause five-year mortality or lung transplant in the UK Cohort.30

Results:

PAH Patient Characteristics

A total of 112 patients with pulmonary arterial hypertension (PAH) were included in this 

study (Table 1). The largest group was patients with IPAH. Nearly all tox-PAH participants 

were a result of methamphetamine use and most CTD-PAH patients had systemic sclerosis 

(70.4%). Age varied by subtype, with CTD-PAH participants being the oldest and CHD-

PAH participants the youngest. Most patients were female (82% overall). While the majority 

of CTD-PAH, IPAH, and CHD-PAH patients were NYHA Functional Class I or II, a higher 

percentage of tox-PAH patients were functional class III. Mortality at 3-years was highest in 

CTD-PAH (33%) and lowest in IPAH (9%). Most patients were on PAH-directed therapy at 

the time of enrollment (Table 1).

Biomarker Concentrations Across PAH Subtypes and Individual Patients

Each biomarker was available for over 90% of patients; patient-level data for 

missing measurements is shown in the online supplement. Comparison of standardized 

concentrations for the 33 biomarkers across subtypes revealed a distinct CTD-PAH 

biomarker profile (Figure 1). Mean concentrations were highest in the CTD-PAH group 

in 25 out of 33 surveyed biomarkers. Overall, 13 biomarkers were significantly different 

across groups, and in all cases CTD-PAH was higher than one or more groups. These 13 

biomarkers were: interleukin (IL)-7, IL-10, IL-12p40, tumor necrosis factor-alpha (TNF-α), 

TNF-β, interferon gamma-induced protein 10 (IP-10), monocyte chemoattractant protein-1 

(MCP-1), and placental growth factor (PlGF) at p<0.01, and IL-17, serum amyloid A 
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(SAA), soluble intracellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion 

marker (sVCAM-1), and vascular endothelial growth factor (VEGF) at p<0.05 (Figure 1). 

While CTD-PAH had the highest average age, biomarker levels did not increase with age 

within this subtype, and age did not appear to explain observed biomarker differences. 

Participant-level data for each biomarker was tabulated as a heatmap and showed higher 

levels of angiogenic and inflammatory biomarkers throughout the CTD-PAH cohort (Figure 

S1).

Biomarkers Associated with Mortality in All PAH

Biomarkers were investigated for their association with mortality in the full cohort of 112 

enrolled PAH patients. Six of 33 biomarkers were associated with mortality: IL-6 (adjusted 

HR:1.6, 95%CI:1.18–2.18), IP-10 (adjusted HR:1.44, 95%CI:1.04–1.99), TNF-β (adjusted 

HR:1.81, 95%CI:1.11–2.95), soluble fms-like tyrosine kinase 1 (sFLT-1, adjusted HR:1.55, 

95%CI:1.07–2.25), PlGF (adjusted HR:1.55, 95%CI:1.07–2.25), and NT-proBNP (adjusted 

HR:2.19, 95%CI:1.05–1.99, (Figure 2). Exploratory models evaluated the association with 

mortality in individuals with otherwise similar levels of NT-proBNP at baseline. After 

accounting for differences in NT-proBNP, IP-10 was not independently associated with 

mortality. The relationships of the other biomarkers with mortality were qualitatively similar 

after adjustment by NT-proBNP, but were attenuated, and only TNF-β remained statistically 

significant (HR:1.71, 95%CI:1.07–2.72; Figure S2). Sensitivity analysis performed by 

setting all missing biomarkers to the lowest detectable level did not influence the association 

with mortality. Accounting for multiple hypothesis testing using a threshold FDR < 5%, 

only IL-6 and NT-proBNP remained significant. Spearman testing did not suggest strong 

correlation among mortality-associated biomarkers (Figure S3).

Validation of Biomarker Associations with Mortality

Using data from the UK PAH Cohort Study (n=357), four of six proteins from the Servetus 

cohort were associated with worse adjusted five-year transplant-free survival: NT-proBNP 

(p<0.001), TNF-β (p=0.009), IP-10 (p<0.001), and PlGF (p=0.05). IL-6 and sFLT-1 did not 

correlate with survival (Table S1).

Biomarker Association with Mortality by PAH Subtype

Having identified associations with mortality in the overall cohort and significantly different 

biomarker distribution in CTD-PAH compared to other subtypes, we performed subgroup 

analyses to determine if biomarker levels were differentially associated with mortality in 

CTD-PAH compared with non-CTD-PAH (pooled IPAH, tox-PAH, and CHD-PAH patients). 

There were similar numbers of deaths in the two groups with nine deaths among CTD-

PAH participants and ten deaths among non-CTD PAH participants. Elevation of IL-6 

(adjusted HR:1.71, 95%CI:1.12–2.62), IP-10 (adjusted HR:1.53, 95%CI:1.06–2.19), and 

sFlt-1 (adjusted HR:1.92, 95%CI:1.13–3.29) were associated with mortality in CTD-PAH, 

while associations did not reach significance in non-CTD-PAH but in many cases were 

qualitatively similar (Figure 3). NT-proBNP elevation was associated with mortality in both 

CTD-PAH (HR:2.97, 95%CI:1.45–6.06) and non-CTD-PAH (HR:1.88, 95%CI:1.20–2.96). 

Serum concentrations for three of the six biomarkers (IP-10, TNF-β, and PIGF) were 

significantly different in CTD-PAH compared to the other subtypes (Figure S4).
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Biomarker Association with Markers of Disease Severity

For the six markers associated with mortality, linear regression was performed to evaluate 

associations with REVEAL risk score, right heart structure, right heart function, and 

exercise capacity. Increased IL-6, Flt-1, PlGF, IP-10, and NT-proBNP were associated with 

significant increases in REVEAL 2.0 score in the overall cohort of PAH patients (Figure 4). 

Elevated NT-proBNP was also associated with increased RVD (p<0.01), decreased TAPSE 

(p<0.01), and 6MWD (p<0.01). IL-6 was associated with increased RVD (p=0.04) and 

decreased 6MWD (p<0.01), and PlGF with decreased 6MWD (p=0.02). When stratified into 

CTD-PAH and non-CTD-PAH, NT-proBNP continued to be associated with outcomes in 

both groups. Among those with CTD-PAH (but not those without), sFLT-1 was associated 

with REVEAL score and IP-10 and IL-6 with 6MWD. Among those with non-CTD-PAH, 

PlGF and IL-6 were associated with a worse REVEAL score (Table S2).

Discussion:

In this single-center prospective cohort, we found that circulating levels of angiogenic and 

inflammatory cytokines were elevated in CTD-PAH, compared with three other subtypes 

of PAH. Significant heterogeneity in cytokine expression was observed at the level of both 

patient and subtype. Several biomarkers were associated with clinical outcomes, including 

mortality, and were validated using a second cohort. Interestingly, we identified distinct 

biomarker associations by subtype, such as those seen with sFLT-1 in CTD-PAH. Although 

large-scale proteomic analyses have made important recent contributions to understanding 

PAH, granular distinctions about protein levels and protein-outcome associations by 

PAH subtype are not yet well reported. This awareness has important implications for 

understanding heterogeneity in PAH.

Inflammation and angiogenesis are both involved in PAH pathogenesis, and prior 

studies have identified elevated circulating markers of inflammation and angiogenesis 

in PAH compared with control participants.25,26,32,33 Our research extends these studies 

and identifies differential expression of inflammatory and angiogenic cytokines among 

individual subtypes of PAH. While there was significant heterogeneity among patients, 

even within PAH subtypes, we identified relatively consistent elevation of cytokines in 

the CTD-PAH group compared to the other groups. Indeed, all 13 biomarkers that were 

statistically different across subtypes were elevated in CTD-PAH. Prior studies have reported 

on increased concentrations of individual cytokines in CTD-PAH, including IL-6,23,34 but 

our work is among the first to provide in-depth comparison of multiple biomarker levels 

across several subtypes of PAH. Mildly elevated markers of endothelial activation or 

vascular inflammation may be seen in patients with CTD at baseline and be associated 

with risk for PAH.35,36 Although speculative, elevation of these markers before overt disease 

develops may reinforce a mechanistic explanation for our observations.

Relating biomarker levels to clinical outcomes, we identified six markers that associated 

with higher three-year mortality: NT-proBNP, IL-6, IP-10, TNF-β, sFlt-1, and PlGF. In 

complementary and reassuring analyses, five of these six markers were also strongly 

associated with REVEAL score. While IL-625,32,34 and sFlt-123 have previously been 

associated with mortality in PAH, to our knowledge associations of TNF-β, IP-10, and 
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PlGF with mortality have not been described before. In our single-institution cohort with 

limited power, only IL-6 and NT-proBNP were significant after accounting for multiple 

comparisons with a more stringent FDR threshold; nevertheless, focused validation in 

idiopathic/heritable PAH using the UK PAH Cohort Study reinforced the initial observation 

that IP-10, TNF-β, PlGF, and NT-proBNP had significant associations with survival. 

Although speculative, a mechanistic explanation for these associations is plausible. IL-6 

can cause vascular inflammation and remodeling, and lead to pulmonary vascular lesions 

in murine models.37 Abnormalities in vascular endothelial growth factor (VEGF) signaling 

are implicated in angiogenesis in PAH, and VEGF pathway members PlGF and sFLT-1 

are both implicated in deranged angiogenesis in preeclampsia and atherosclerosis.38–40 

In addition, IP-10 provokes both vascular inflammation and impaired angiogenesis,24 and 

endothelial-derived TNF-β promotes vascular inflammation.41

Highlighting the potential for subtype-specific relationships, we found that sFLT-1 was 

associated with mortality in the full Servetus cohort; however, this relationship was 

predominantly seen in individuals with CTD-PAH, and no association was observed in those 

with non-CTD-PAH (Figure 3). While sFLT-1 was not “validated” in the UK cohort, this 

may be enitrely consistent with our findings given the lack of individuals with CTD-PAH in 

the UK Cohort.

IL-6 was also not validated in the UK cohort, which is curious given that association 

of IL-6 with PAH outcomes is widely reported.25,32,34,37 Importantly, a prior publication 

found poor correlation between SomaScan and two other methods of IL-6 detection.42 

As aptamer-based assays are more widely embraced in protein research, this discordance 

with IL-6 may reinforce the importance of complementary studies using both immunoassay-

based approaches (such as Servetus) and aptamer-based approaches (such as the UK 

cohort). High-dimensional proteomic analysis is a cutting-edge tool with substantial promise 

to elucidate complex mechanisms in PAH.30,31,43 Using aptamer-based approaches, such 

studies examine thousands of proteins using an unbiased approach that can suggest 

unexpected associations and optimize risk prediction.30 On the other hand, the use of 

immunoassays targeting a focused set of biomarkers, such as in our primary analyses, 

has unique strengths and weaknesses relative to a hypothesis-neutral proteomic approach. 

In addition to the noted differences across assays, a focused approach reduces the power 

needed to suggest a significant result, which can be important in a rare disease like PAH 

where relatively small sample sizes, even in large collaborations, limit power.

In addition to the iterative identification of additional biomarkers of interest, the key 

finding of this study is the heterogeneity across patients and subtypes of PAH which 

remains underreported. Understanding this heterogeneity is important to identify more 

precise approaches to PAH prognostication and treatment.15–18 Despite a recognition that 

more precision is needed, studies have generally focused on prognostication or treatment 

for PAH patients in aggregate. Our results support the intuitive paradigm that there may 

be sufficient heterogeneity within PAH to warrant more focused investigation of subtype-

specific biological pathways. Approaches targeting angiogenesis or inflammation may have 

disproportionate benefit in CTD-PAH – a hypothesis that finds support in reports on small 

numbers of patients with PAH associated with systemic lupus erythematosus or mixed 
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connective tissue disease who improved with immunosuppression.14,44 Finally, our study 

identified significant heterogeneity on a patient level as well as between subtypes. Recent 

exciting work using machine-learning identified disease endotypes within PAH that were not 

explained by etiology.45

Our study has several important limitations. Most notably, we were limited by low mortality 

and sample size which precluded firm conclusions about relationships with mortality in 

tox-PAH or CHD-PAH. Multiple comparisons increased the probability of identifying a 

relationship by chance alone and while we are reassured by the UK validation, within 

Servetus alone only IL-6 and NT-proBNP were associated with mortality after correction 

for multiple comparisons (FDR 5%). In addition, it should be noted that in the UK cohort, 

PlGF’s association barely met our significance threshold with a p-value of 0.0503 that 

rounded to 0.05 using three significant figures to determine significance.46 It is noteworthy 

that an alternative explanation for our findings would be differences in severity of illness 

by subtype, rather than PAH subtype itself. Reassuringly, we obtained similar results 

following adjustment by NT-proBNP; however, the possibility of residual confounding 

by severity persists. Finally, we did not record information about whether patients were 

on immunosuppressing medications, which may bias interpretation of biomarker levels 

especially within the CTD-PAH cohort.

In summary, in a single-center cohort, we observed elevated inflammatory and angiogenic 

biomarker levels in CTD-PAH when compared to three other PAH subtypes, along with 

distinct associations with survival within CTD-PAH versus non-CTD-PAH subtypes. We 

corroborate prior work suggesting IL-6 is associated with PAH outcomes and newly identify 

IP-10, TNF-β, and PlGF as associated with mortality in in both a discovery and validation 

cohort. We cautiously suggest sFlt-1 may be uniquely important in CTD-PAH and deserve 

further evaluation in this context. These results should encourage further research into 

subtype heterogeneity in PAH, particularly as mechanism-specific therapies are tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BMPR2 Bone morphogenic protein receptor type 2

CHD-PAH Congenital heart disease-associated PAH

CTD-PAH Connective tissue disease-associated PAH

IL Interleukin

IP-10 Interferon gamma-induced protein 10

IPAH Idiopathic PAH

mPAP Mean pulmonary artery pressure

NT-proBNP N-terminal prohormone of brain natriuretic peptide

PAH Pulmonary arterial hypertension

PCWP Pulmonary capillary wedge pressure

PlGF Placental growth factor

PVR Pulmonary vascular resistance

RVD Right ventricular basal diameter

sFlt-1 Soluble fms-like tyrosine kinase 1

TAPSE Tricuspid annular plane systolic excursion

TNF Tumor necrosis factor
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Tox-PAH Toxin-associated PAH

VEGF Vascular endothelial growth factor
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Figure 1: Heatmap of biomarker concentrations by PAH subtype.
Heatmap displays row Z scores for serum markers of angiogenesis and inflammation across 

subtypes of pulmonary arterial hypertension. Asterisks denote biomarkers that significantly 

differ across subtype: * p≤0.05, ** p≤0.01. PAH: pulmonary arterial hypertension; IPAH: 

idiopathic PAH; CTD-PAH: connective tissue disease-associated PAH; Tox-PAH: toxin-

associated PAH; CHD-PAH: congenital heart disease-associated PAH.
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Figure 2: Biomarker associations with mortality in the pooled PAH cohort.
Cox proportional hazards models adjusted for age, sex, and pulmonary arterial hypertension 

etiology were run evaluating biomarker associations with mortality. The hazard ratio for 

a one-standard-deviation change in biomarker level against mortality is shown. Definition 

of abbreviations: IL-6: interleukin-6; IP-10: interferon gamma-induced protein 10; TNF-β: 

tumor necrosis factor-beta; sFlt-1: soluble fms-like tyrosine kinase 1; PlGF: placental growth 

factor; NT-proBNP: N-terminal pro-brain natriuretic peptide.
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Figure 3: Biomarker association with mortality across different subgroups.
Cox proportional hazards models adjusted for age, sex, and pulmonary arterial hypertension 

etiology were performed separately for the CTD-PAH and non-CTD-PAH subgroups. 

The non-CTD-PAH subgroup includes patients with idiopathic, congenital heart disease-

associated, and toxin-associated PAH. Definition of abbreviations: PAH: pulmonary arterial 

hypertension; CTD-PAH: connective tissue disease-associated PAH; IL-6: interleukin-6; 

IP-10: interferon gamma-induced protein 10; TNF-β: tumor necrosis factor-beta; sFlt-1: 

soluble fms-like tyrosine kinase 1; PlGF: placental growth factor; NT-proBNP: N-terminal 

pro-brain natriuretic peptide.
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Figure 4: Biomarker associations with echocardiographic and clinical outcomes.
Linear regression models were run on biomarker associations with REVEAL 2.0 score, right 

ventricle (RV) diameter, tricuspid annular plane systolic excursion (TAPSE), and 6-minute 

walk distance (6MWD). Models were adjusted for age, sex, etiology, and height. Graphs 

display the difference in REVEAL score, RV diameter, TAPSE, or 6MWD associated with a 

standard deviation change in biomarker concentration (* p≤0.05; ** p≤0.01; *** p≤0.001).
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Table 1

Baseline patient characteristics

Patient Characteristics All PAH
(n=112)

CTD-PAH
(n=27)

IPAH
(n=45)

Tox-PAH
(n=20)

CHD-PAH
(n=20)

Age (year) 51.6 (14.4) 58.6 (11.5) 53.4 (14.4) 47.8 (8.8) 41.8 (16.9)

Female sex 82% (92) 89% (24) 76% (34) 90% (18) 84% (16)

BMI (kg/m2) 29.1 (7.3) 27.6 (6.5) 30.8 (7.7) 32.1 (6.8) 24.1 (4.8)

NYHA Functional Class

 I/II 66% (57) 65% (13) 71% (25) 44% (7) 75% (12)

 III 22% (25) 30% (6) 20% (7) 50% (8) 25% (4)

 IV 6% (5) 5% (1) 9% (3) 6% (1) 0% (0)

6MWD (meters) 366 (107) 334 (105) 387 (119) 358 (84) 372 (102)

Deceased 17% (19) 33% (9) 9% (4) 15% (3) 15% (3)

PAH Therapy

 Monotherapy 32% (36) 41% (11) 27% (12) 35% (7) 30% (6)

 Dual Therapy 35% (39) 33% (9) 38% (18) 40% (8) 25% (5)

 Triple Therapy 19% (21) 19% (5) 24% (11) 10% (2) 15% (3)

 No Therapy 14% (16) 7% (2) 11% (5) 15% (3) 30% (6)

Right Heart Catheterization All PAH
(n=95)

CTD-PAH
(n=25)

IPAH
(n=36)

Tox-PAH
(n=18)

CHD-PAH
(n=16)

RAP (mmHg) 8.9 (5.8) 7.9 (5.4) 9.9 (5.7) 10.1 (5.9) 6.7 (6.2)

mPAP (mmHg) 47.1 (12.7) 42.8 (10.8) 49.5 (11.4) 51.0 (11.2) 44.1 (17.3)

PCWP (mmHg) 10.4 (3.4) 9.6 (3.5) 11.2 (3.4) 11.2 (2.7) 9.1 (3.8)

CI (L/min/m2) 2.6 (0.8) 2.3 (0.6) 2.6 (0.7) 2.3 (0.7) 3.3 (0.6)

PVR (Wood units) 8.8 (4.8) 9.5 (5.3) 8.6 (4.4) 10.0 (5.0) 6.6 (4.3)

Echocardiography All PAH
(n=88)

CTD-PAH
(n=16)

IPAH
(n=39)

Tox-PAH
(n=18)

CHD-PAH
(n=13)

RV Diameter (mm) 46 (9) 42 (8) 47 (10) 47 (7) 45 (1)

TAPSE (mm) 21 (6) 20 (4) 22 (6) 19 (6) 20 (6)

Data are presented as mean (standard deviation) or % (n). Functional class was available for 88 patients (79%) and 6MWD data for 98 (87.5%). For 
the 95 patients undergoing right heart catheterization, right atrial pressure data was available for 86 patients (91%), wedge pressure for 84 (88%), 
cardiac index for 73 (77%) and pulmonary vascular resistance for 70 (74%). Of the 88 patients with an echocardiogram, RV diameter and TAPSE 
were not measurable in 2 patients. PAH: pulmonary arterial hypertension; IPAH: idiopathic PAH; CTD-PAH: connective tissue disease-associated 
PAH; Tox-PAH: toxin-associated PAH; CHD-PAH: congenital heart disease-associated PAH; BMI: body mass index; NYHA: New York Heart 
Association; 6MWD: 6-minute walk distance; RAP: right atrial pressure; mPAP: mean pulmonary artery pressure; PCWP: pulmonary capillary 
wedge pressure; CI: cardiac index; PVR: pulmonary vascular resistance; RV: right ventricle; TAPSE: tricuspid annular plane systolic excursion.
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