Skip to main content
. 2022 Dec 26;26(1):105677. doi: 10.1016/j.isci.2022.105677

Table 2.

Performance comparison of SSM to previous studies on DILIst dataset was retrieved from24

Model AUC F1-score MCC Accuracy
SSM

SSM - RF (margin to DeepDILI) 0.691 ± 0.011 (+0.032) 0.784 ± 0.008 (+0.029) 0.338 ± 0.030 (+0.007) 0.687 ± 0.005 (−)
SSM - MLP 0.654 ± 0.008 0.752 ± 0.007 0.240 ± 0.019 0.639 ± 0.006
SSM - soft voting: RF & MLP 0.664 ± 0.008 0.760 ± 0.007 0.264 ± 0.020 0.683 ± 0.004

Mold2 descriptor

DeepDILI 0.659 0.755 0.331 0.687
XGBoost 0.651 0.015 0.732 ± 0.012 0.219 ± 0.037 0.642 ± 0.016
RF 0.658 ± 0.012 0.736 ± 0.009 0.225 ± 0.030 0.645 ± 0.013
SVM 0.645 ± 0.009 0.752 ± 0.008 0.220 ± 0.035 0.646 ± 0.013
KNN 0.580 ± 0.021 0.657 ± 0.020 0.125 ± 0.038 0.582 ± 0.019
LR 0.628 ± 0.009 0.744 ± 0.007 0.130 ± 0.038 0.617 ± 0.011

Deep graph neural network methods

InfoMax 0.624 ± 0.009 0.687 ± 0.007 0.226 ± 0.027 0.627 ± 0.011
ContextPred 0.628 ± 0.009 0.687 ± 0.030 0.242 ± 0.029 0.632 ± 0.018
EdgePred 0.642 ± 0.010 0.690 ± 0.021 0.261 ± 0.025 0.639 ± 0.015
AttrMask 0.608 ± 0.009 0.653 ± 0.032 0.203 ± 0.032 0.606 ± 0.022
MolHGCN 0.541 ± 0.024 0.669 ± 0.023 0.087 ± 0.051 0.576 ± 0.025
GraphLOG 0.577 ± 0.017 0.751 0.000 0.602

Standard error of DeepDILI was not provided from the original article.

Performance without errors in GraphLOG indicates that all predicted values were DILI-positive.

The performance values of the previous models on DILIst data were built on Mold2 descriptor. Performance comparison on TDC-benchmark DILI dataset36 is provided in Table S1.