Table 2.
Performance comparison of SSM to previous studies on DILIst dataset was retrieved from24
| Model | AUC | F1-score | MCC | Accuracy |
|---|---|---|---|---|
| SSM | ||||
| SSM - RF (margin to DeepDILI) | 0.691 0.011 (+0.032) | 0.784 0.008 (+0.029) | 0.338 0.030 (+0.007) | 0.687 0.005 (−) |
| SSM - MLP | 0.654 0.008 | 0.752 0.007 | 0.240 0.019 | 0.639 0.006 |
| SSM - soft voting: RF & MLP | 0.664 0.008 | 0.760 0.007 | 0.264 0.020 | 0.683 0.004 |
| Mold2 descriptor | ||||
| DeepDILI | 0.659 | 0.755 | 0.331 | 0.687 |
| XGBoost | 0.651 0.015 | 0.732 0.012 | 0.219 0.037 | 0.642 0.016 |
| RF | 0.658 0.012 | 0.736 0.009 | 0.225 0.030 | 0.645 0.013 |
| SVM | 0.645 0.009 | 0.752 0.008 | 0.220 0.035 | 0.646 0.013 |
| KNN | 0.580 0.021 | 0.657 0.020 | 0.125 0.038 | 0.582 0.019 |
| LR | 0.628 0.009 | 0.744 0.007 | 0.130 0.038 | 0.617 0.011 |
| Deep graph neural network methods | ||||
| InfoMax | 0.624 0.009 | 0.687 0.007 | 0.226 0.027 | 0.627 0.011 |
| ContextPred | 0.628 0.009 | 0.687 0.030 | 0.242 0.029 | 0.632 0.018 |
| EdgePred | 0.642 0.010 | 0.690 0.021 | 0.261 0.025 | 0.639 0.015 |
| AttrMask | 0.608 0.009 | 0.653 0.032 | 0.203 0.032 | 0.606 0.022 |
| MolHGCN | 0.541 0.024 | 0.669 0.023 | 0.087 0.051 | 0.576 0.025 |
| GraphLOG | 0.577 0.017 | 0.751 | 0.000 | 0.602 |
Standard error of DeepDILI was not provided from the original article.
Performance without errors in GraphLOG indicates that all predicted values were DILI-positive.