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Abstract
Ovarian cancer (OC) is the most common malignant cancer in the female reproductive system. Hypoxia is an important part 
of tumor immune microenvironment (TIME), which is closely related to cancer progression and could significantly affect 
cancer metastasis and prognosis. However, the relationship between hypoxia and OC remained unclear. OCs were molecularly 
subtyped by consensus clustering analysis based on the expression characteristics of hypoxia-related genes. Kaplan–Meier 
(KM) survival was used to determine survival characteristics across subtypes. Immune infiltration analysis was performed 
by using Estimation of Stromal and Immune cells in Malignant Tumors using Expression data (ESTIMATE) and microenvi-
ronment cell populations-counter (MCP-Counter). Differential expression analysis was performed by using limma package. 
Next, univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were used to build 
a hypoxia-related risk score model (HYRS). Mutational analysis was applied to determine genomic variation across the 
HYRS groups. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to compare the effectiveness 
of HYRS in immunotherapy prediction. We divided OC samples into two molecular subtypes (C1 and C2 subtypes) based 
on the expression signature of hypoxia genes. Compared with C1 subtype, there was a larger proportion of poor prognosis 
genotypes in the C2 subtype. And most immune cells scored higher in the C2 subtype. Next, we obtained a HYRS based on 
7 genes. High HYRS group had a higher gene mutation rate, such as TP53. Moreover, HYRS performed better than TIDE 
in predicting immunotherapy effect. Combined with clinicopathological features, the nomogram showed that HYRS had the 
greatest impact on survival prediction and a strong robustness.
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Introduction

Ovarian cancer (OC) is the third most common malignant 
tumor of the female reproductive system, with an incidences 
lower than cervical cancer and uterine corpus cancer (Jayson 
et al. 2014). OC occurrence ranks the seventh among all 
female cancer patients (Reid and Permuth 2017). Although 
its incidence is not the highest, the mortality and prognosis 
of OC are significantly poor (Caan and Thomson 2007). The 

death rate of OC will be even higher in 2040, according 
to statistical models (Kamath Mulki 2021). Asymptomatic, 
secret growth, and lack of screening are important reasons 
for the late diagnosis of OC (Jacobs et al. 2004). Therefore, 
OC is also known as the “silent killer” (Das and Bast 2008). 
The current main treatments for OC are surgery and cisplatin 
chemotherapy. Although the rise of immunotherapy, targeted 
therapy, and other therapeutic methods has advanced the 
treatment of OC, the improvement of 5-year survival rate is 
still slow (Lee et al. 2018). The limitations of OC therapy 
have hindered the clinical OC-targeted therapy; therefore, 
novel prognostic models and loci to make targeted therapy 
more feasible are urgently needed.

Hypoxia, which is an important feature of solid tumors 
like OC, could result in increased patient resistance to ther-
apy due to reduced oxygen availability, ultimately favoring 
tumor progression (Brahimi-Horn and Chiche 2007). Dis-
ruption of cell cycle checkpoints and reversal of oncogene/
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suppressor genes are considered to be the initial stages of 
tumorigenesis (Molinari 2000; Moron et al. 2018; Duffy and 
Crown 2021). Moreover, hypoxia is one of the foundations to 
tumor progression, stronger drug resistance, and metastasis 
(Vaupel et al. 2007; Wang et al. 2021b). Hypoxia has been 
reported to contribute to the development of many differ-
ent cancers such as OC and resistance to platinum-based 
chemotherapy drugs (Selvendiran et al. 2009). Previous 
studies suggested that hypoxia conferred cisplatin resistance 
by interfering the expression of L1 cell adhesion molecule 
(L1-CAM), signal transducer and activator of transcrip-
tion 3 (STAT3), and P53 (Selvendiran et al. 2009; Stoeck 
et al. 2007; Graeber et al. 1996). In OC, the relationship 
between cisplatin resistance and hypoxia has been reported, 
and angiopoietin-like 4 (ANGPTL4) was identified to be a 
potential biomarker for OC targeting therapy site (McEvoy 
et al. 2015). However, the discovery of more treatment sites 
would be beneficial to improve OC treatment.

Here, we assessed 200 hypoxia-related genes expressed 
in OC and divided OC into two distinct molecular subtypes 
based on hypoxia-related genes associated with OC prog-
nosis. Kaplan–Meier survival analysis showed that the C1 
subtype had a favorable prognosis. We also compared in 
detail the immune profile and susceptibility to treatment 
among different subtypes. Moreover, seven hypoxia-related 
gene signatures were obtained to build an effective risk 
score model, including SNRPD1, KLF4, UQCRFS1, KRAS, 
HOXA5, ISG20, and GMPR.

Methods and materials

Data sources

The gene expression profiles of OC were downloaded from 
The Cancer Genome Atlas Program (TCGA) public data-
base (https:// www. cancer. gov/ about- nci/ organ izati on/ ccg/ 
resea rch/ struc tural- genom ics/ tcga). For TCGA cohort data, 
first samples without clinical information were removed, 
followed by those without survival state and survival time. 
Further, the filtering time was set to be shorter than 30 days 
and more than 10 years. Three hundred fifty-four cases of 
tumor samples were finally included in research. Moreover, 
we downloaded 153 samples in Gene Expression Omnibus 
(GEO) public database (Vathipadiekal et al. 2015). For GSE 
cohort data, first samples without clinical information were 
removed, and then samples where the survival state and lack 
of survival time also were removed. Next, ENSEMBL ID 
was converted to Gene Symbol.

Appraisal hypoxia‑related molecular subtype

The hypoxia-related genes were derived from the Molecu-
lar Signatures Database (MSigDB) database of the hypoxic 
channel “HAllMark_hypoxia,” with a total of 200 genes 
(Liberzon et al. 2011).

ConsensusClusterPlus (R Bioconductor/R package, 
v1.60.0) (Wilkerson and Hayes 2010) was used to perform 
consistency cluster analysis and identify unique molecular 
subtypes. Eighty percent samples were carried out 500 
bootstraps using km algorithm and distance of 1 Pearson 
correlation. The number of clusters (K) was 2 to 10. The 
optimal classification was determined by calculating the 
consistency matrix and cumulative distribution function 
(CDF) of the consistency, and molecular subtype of the 
samples was obtained.

Immune infiltration analysis

The Estimation of Stromal and Immune cells in Malig-
nant Tumors using Expression data (ESTIMATE) algo-
rithm was used to assess immune infiltration (Yoshihara 
et al. 2013), and microenvironment cell populations-coun-
ter (MCP-Counter) software and single sample gene set 
enrichment analysis (ssGSEA) function of GSEA software 
were selected to analyze the scores of 10 immune cells and 
28 immune cells, respectively (Charoentong et al. 2017).

Differential expression analysis

Limma (R Bioconductor/R package, v3.52.3) is selected 
for differentially expressed genes (DEGs) screening and 
we set |log2 FoldChange|> 2 and p-value < 0.05 as the 
threshold (Smyth 2005).

Function enrichment analysis

DEGs were performed with Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis by using GSEA software (Reimand et al. 2019). The 
background gene set was c2.cp.kegg.v7.0.symbols.gmt. 
p-value < 0.05 was considered as significant enrichment.

Hypoxia‑related risk model (HYRS) construction

The condition of screening prognostically signifi-
cantly gene associated with hypoxia-related phenotypes 
was determined using univariate Cox analysis under 
p-value < 0.05. Next, least absolute shrinkage and selec-
tion operator (LASSO) regression analyses were used to 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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reduce the candidate genes. The risk score for each patient 
was calculated using the following formula:

i refers to the expression level of key genes in the prog-
nosis of hypoxia-related phenotype, and β is the Cox regres-
sion coefficient of the corresponding gene. According to the 
threshold of “0,” the patients were divided into high and low 
risk groups of HYRS. The survival curve was drawn by the 
Kaplan–Meier method for prognostic analysis, and the log-
rank test was used to determine the significant difference.

Tumor mutation analysis

Genomic variation information is from previous study 
(Thorsson et al. 2018). MutationalPatterns (R package) was 
used to analyze mutation signatures (Blokzijl et al. 2018). 
Aneuploidy score and homologous recombination between 
different HYRS groups were compared. In addition, muta-
tional signatures of tumor genes were displayed using water-
fall plots.

Predicting response to immunotherapy

The TIDE algorithm was used to validate the effect of HYRS 
in predicting clinical responsiveness to immune checkpoint 
inhibitors (ICI) (Jiang et al. 2018). The TIDE algorithm 
evaluates three cell types that limit T cell infiltration into 
tumors, including tumor-associated macrophages (TAMs), 
myeloid-derived suppressor cells (MDSCs), the M2 subtype 
of tumor-associated fibroblasts (CAFs), and two different 
mechanistic tumor immune escape scores, including immu-
nosuppressive factor rejection of CTLs score and tumor-
infiltrating cytotoxic T lymphocytes (CTLs) dysfunction 
score (dysfunction).

HYRS improvement and survival prediction

To quantify risk assessment and survival possibility in OC 
patients, we combined HYRS and other clinicopathological 
features to develop a nomogram by using forsetplot (R pack-
age, v3.1.0) (https:// gforge. se/ packa ges/). Next, calibration 
curve was selected to evaluate the accuracy of the model. In 
addition, decision curve was used to evaluate the reliability 
of the model.

Statistical analysis

R (4.0.2) software was used for statistical analysis. Wilcoxon 
nonparametric rank sum test was used to analyze the differ-
ences. p < 0.05 was considered to be statistically significant. 
Sangerbox was used for analysis (Shen et al. 2022).

HYRS = Σ�i × Expi

Results

Identification of molecular subtypes associated 
with hypoxia prognosis

A total of 200 genes related to hypoxia were subjected to 
univariate regression Cox analysis in the TCGA dataset, 
and 14 genes related to prognosis were finally obtained 
(p-value < 0.05, Table S1). Next, 14 hypoxia-signature 
genes were used to perform consensus clustering analysis. 
According to the CDF to determine the optimal number 
of clusters, and the CDF Delta area curve showed that 
when Cluster was selected as 2, the clustering result was 
relatively stable (Fig. 1A and B). Two hypoxia-related 
molecular subtypes were shown in a heat map (Fig. 1C). 
Kaplan–Meier survival analysis in the TCGA and GSE 
cohorts demonstrated that the C1 subtype had a better 
prognosis, while the C2 subtype had a poorer prognosis 
(Fig. 1D and E). Hypoxia scores suggested that the C2 
subtype had higher hypoxia scores both in the TCGA and 
GSE cohorts (Fig. 1F and G). Moreover, previous study 
classified OC into four categories based on gene expres-
sion profiles, which were compared with the two molecular 
subtypes of this study. And the results suggested that the 
previously reported mesenchymal subtype with the worst 
prognosis had the largest proportion of the C2 subtype 
(Fig. 1H and I).

Immune signatures in C1 and C2 subtypes

Differences in the tumor immune microenvironment 
(TIME) are critical to tumor progression, especially in 
tumor prognosis and metastasis. The ESTIMATE algo-
rithm was used to assess immune cell infiltration, and 
the results demonstrated that the C2 subtype had a sig-
nificantly higher immune score, Stromal score, and ESTI-
MATE score (Fig. 2A). The immune scores of different 
types of immune cells showed that the immune scores of 
most cells were higher in the C2 subtype, such as endothe-
lial cells and fibroblasts, T cells, monocytic lineage, NK 
cells, neutrophils, and myeloid dendritic cells (Fig. 2B). 
The ssGSEA algorithm was used to assess the infiltration 
of 28 immune cells, and the degree of immune infiltra-
tion of most cells was higher in the C2 subtype, such as 
central memory CD4 T cells (Fig. 2C). Abnormal expres-
sion of cellular immune checkpoints can promote tumor 
progression. Differential expression analysis of 47 immune 
checkpoint-related genes demonstrated that the expression 
of 23 immune checkpoint-related genes was significantly 
higher in C2 than in C1 subtype (Fig. 2D). The results 
of the TIDE algorithm examining the response of two 

https://gforge.se/packages/
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subtypes to immunotherapy showed that the TIDE score, 
exclusion score, and dysfunction score of the C2 subtype 
were higher than the C1 subtype, while MDSC score was 
lower in C2 (Fig. 2E).

Identification of DEGs in different 
hypoxia‑associated molecular subtypes

Different gene transcriptional states tend to be associated 
with different cellular states; therefore, we performed gene 
differential expression analysis. In the TCGA cohort, we 
obtained 4880 DEGs, of which 520 genes were up-regulated 
in C1 and 4360 genes were down-regulated in C1 (Fig. 3A). 
In the GSE cohort, 2243 DEGs were obtained, of which 
1585 genes were up-regulated expression in C1 subtype, 
and 658 genes were down-regulated in C1 (Fig. 3B). Fur-
ther intersecting the DEGs between the two cohorts filtered 

211 shared up-regulated DEGs and 524 shared down-reg-
ulated DEGs. We also compared the total DEGs and found 
786 DEGs in common between the two cohorts (Figs. 3C). 
The top 10 KEGG pathway demonstrated that the shared 
up-regulated DEGs were involved in regulating oxidative 
phosphorylation (Fig.  3D). The down-regulated DEGs 
were involved in regulating PI3K-Akt signaling pathway 
(Fig. 3E).

Establishment of a hypoxia‑related risk score model 
(HYRS)

Univariate Cox regression analysis of 786 shared DEGs 
determined 59 survival-related genes, including 47 “Risk” 
genes and 12 “Protective” genes (Fig. 4A). LASSO regres-
sion analysis was used to further identify key prognostic 
genes, and then tenfold cross-validation was used for model 

Fig. 1  Identification of hypoxia-
related ovarian cancer subtypes. 
A The cumulative distribution 
function (CDF) curve in TCGA 
cohort. B The CDF Delta area 
curve in TCGA cohort. C Heat 
map of sample clusters when 
consensus k = 2 in the TCGA 
cohort. D C1 had longer overall 
survival (OS) than that in C2 in 
the TCGA cohort. E C1 had a 
better survival outcome in the 
GSE cohort. F Differences in 
hypoxia scores among subtypes 
in the TCGA cohort. G Differ-
ences in hypoxia scores among 
subtypes in the GSE cohort. H 
Molecular subtype comparison 
information. I Survival curves 
of reported molecular sub-
types. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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construction. It was found that the model was optimal 
when lambda = 0.0372 (Fig. 4B and C). Finally, 7 genes 
were obtained as key genes affecting prognosis, including 
UQCRFS1, KRAS, KLF4, HOXA5, GMPR, ISG20, and 
SNRPD1 (Fig. 4D). Hypoxia-related risk models were fur-
ther developed as follows: HYRS = (− 0.35*SNRPD1) + 0
.117*KLF4 + 0.235*UQCRFS1 + 0.158*KRAS + 0.09*H
OXA5 + (− 0.217*ISG20) + (− 0.103*GMPR). In TCGA 

cohort, ROC curve analysis demonstrated that HYRS 
had effective prediction efficiency (5 years AUC = 0.71) 
(Fig. 4E). Kaplan–Meier survival analysis showed that the 
low HYRS score group had a better prognosis (Fig. 4F). 
In GSE cohort, ROC curve showed the 5-year AUC = 0.75 
(Fig. 4G). As expected, the Kaplan–Meier survival analysis 
indicated that the low HYRS score group had also a better 
prognosis (Fig. 4H).

Fig. 2  Immune signatures in 
different molecular subtypes. A 
Differences in immune infiltra-
tion among molecular subtypes 
in the TCGA cohort. B Score 
differences of 10 immune cells 
among molecular subtypes were 
analyzed by MCP-Counter. C 
ssGSEA analysis of 28 immune 
cells scores among molecu-
lar subtypes. D Differences 
in immune checkpoint gene 
expression between C1 and C2 
subtypes in the TCGA cohort. 
E Differences in TIDE scores 
between C1 and C2 subtypes 
in the TCGA cohort. *p < 0.05, 
**p < 0.01, ***p < 0.001, 
****p < 0.0001
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Fig. 3  Identification of dif-
ferentially expressed genes 
between C1 and C2 subtypes. A 
Volcano plot showed differen-
tial expressed genes (DEGs) 
between C1 and C2 subtypes in 
the TCGA cohort. B Volcano 
plot showed DEGs between 
C1 and C2 subtypes in the 
GSE cohort. C Venn diagram 
of DEGs of the intersection 
of TCGA and GSE26712. D 
KEGG pathways of up-regu-
lated DEGs. E KEGG pathways 
of down-regulated DEGs

Fig. 4  Establishment of a hypoxia-related risk scoring model. A 
Volcano plot showing candidate signature genes associated with OC 
prognosis. B Trajectories of candidate genes as lambda changes. C 
Confidence interval under lambda. D Distribution of LASSO coef-
ficients of the hypoxia-related gene signature. E Receiver operating 

characteristic (ROC) curve of HYRS in TCGA cohort. F Survival 
curve of the high HYRS and low HYRS groups in TCGA cohort. G 
ROC curve of HYRS in GSE cohort. H Survival curve of the high 
HYRS and low HYRS groups in GSE cohort
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Clinical characteristics among different HYRS groups

Analysis of HYRS scores for different clinical features 
showed no differences, including stage, grade, and age 
(Fig. 5A). However, the dead samples had higher HYPS 
in comparison to alive samples. High HYRS scores were 
mostly dead. Moreover, C2 subtypes had a higher HYRS 
score (Fig.  5A). OC samples with clinical characteris-
tics, including stages III–IV, age < 60, age ≥ 60, and grade 
3 + grade 4, were divided into two HYRS groups, and 
Kaplan–Meier survival analysis showed that the low HYRS 
groups had a better survival outcome in comparison to the 
high HYRS group. Specifically, among the different clinical 
feature groups, the low HYRS group had a better prognosis 
(Fig. 5B).

Mutation characteristics in the high HYRS and low 
HYRS groups

As gene mutations could increase the risk of carcinogen-
esis, we analyze differences in genomic alterations between 
the high HYRS and low HYRS groups. The mutation 

characteristics of TCGA cohorts showed that the high HYRS 
groups had high aneuploidy score and homologous recombi-
nation defects; however, the fraction altered, number of seg-
ments, and nonsilent mutation rate showed no significance 
(Fig. 6A). Gene mutation analysis of the high HYRS and 
low HYRS groups demonstrated the gene mutation of TP53, 
TTN, and CSMD3 was higher in the high HYRS groups 
(Fig. 6B).

Pathway differences in the high HYRS and low HYRS 
groups

Differences in expression of gene pathways in cancer 
may be the key leading to different prognoses. GSEA 
results suggested that in the TCGA cohort, compared 
with the low HYRS group, 20 pathways were activated 
in the high group, such as HEDGEHOG_SIGNALING 
and WNT_BETA_CATENIN_SIGNALING (Fig.  7A); 
in the GSE26712 cohort, 17 pathways were activated, 
like EPITHELIAL_MESENCHYMAL_TANSTION and 
TNFA_SIGNALING_VIA_NFKB (Fig. 7B). Moreover, 
TNFA_SIGNALING_VIA_NFKB, P53_PATHWAY, and 

Fig. 5  Clinical characteristics in different HRYS groups. A Differ-
ences in HYRS between different clinicopathological groups in the 
TCGA cohort, following by stage, grade, age, status, and cluster. B 

Survival curves between the high and low HYRS groups, which were 
divided based on clinicopathological patients in the TCGA cohort
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TGF_BETA_SIGNALING were activated both in TCGA 
and GSE cohorts (Fig. 7C).

Efficacy assessment of HYRS in immunotherapy

The development of immunotherapy has brought hope to 
OC patients; therefore, we evaluated the effectiveness of 
HRYS in the prognosis of immunotherapy by comparing 
with the TIDE algorithm. In IMvigor210 cohorts, the low 
HRYS groups had better prognosis and a 5-year AUC = 0.64 
were observed (Fig. 8A); however, there was no significant 
difference in prognosis among different groups of TIDE 
and 5-year AUC = 0.49 (Fig. 8B). The AUC of HYRS and 
TIDE for immunotherapy effect showed the AUC of HYRS 
was higher (Fig. 8C). To avoid test results, we selected the 

GSE91061 cohort for further validation, and found that 
the low HRYS groups had better prognosis and 5-year 
AUC = 0.78 (Fig. 8D). Similarly, the TIDE groups were 
still not significantly different (p-value = 0.19) (Fig. 8E). The 
AUC of HYRS and TIDE for immunotherapy effect showed 
similar results compared to IMvigor210 cohorts (Fig. 8F).

HYRS combines clinicopathological features 
to further improve prognostic models and survival 
prediction

Univariate and multivariate Cox regression analysis of 
HYRS and clinicopathological features revealed that age and 
HYRS were independent prognostic factors (Fig. 9A and B). 
To quantify the risk assessment and survival probability of 

Fig. 6  Genomic mutations in 
different HYRS subgroups in 
the TCGA cohort. A Compari-
son of homologous recombina-
tion defects, aneuploidy score, 
fraction altered, number of seg-
ments, and nonsilent mutation 
rate in the high group and low 
group (Wilcoxon test, *p < 0.05; 
**p < 0.01; ***p < 0.001; and 
****p < 0.0001). B Somatic 
mutation in the high group and 
low group
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OC patients, we combined HYRS and age to build a nomo-
gram. From the model results, the assembled nomogram had 
the greatest impact on predicting prognosis (Fig. 9C). The 
calibration curve was used to evaluate the prediction accu-
racy of the model. The results showed that the predicted 
calibration curve for the three calibration points at 1, 3, and 
5 years nearly overlapped with the standard curve (Fig. 9D). 
The decision curve was used to assess the reliability of the 
model, and the results showed that both HYRS and nomo-
gram had significantly higher benefits than the extreme 
curves, and that both the two showed the strongest survival 
predictors compared with other clinicopathological features 
(Fig. 9E).

Discussion

OC is the third most malignant cancer of the female repro-
ductive system and the eighth most lethal of all female 
cancers (Bray et al. 2018). OC treatment options have been 
improved significantly over the decades with advances in 

surgical techniques, at the same time, the advent of new 
and effective drugs can extend patients’ life expectancy; 
however, metastasis and recurrence are the leading causes 
of death (O’Malley. 2019). The use of age and pathologi-
cal staging to predict the prognosis of OC has been used 
in clinical practice, but the accuracy is low due to the large 
variability of individual patient factors. The rise of immuno-
therapy has brought new insights into OC therapy (Kandalaft 
and Odunsi 2020). The hypoxia signature in TIME plays 
a crucial role in immunotherapy and cancer development 
(Brahimi-Horn and Chiche 2007). Therefore, biomarkers 
related to hypoxia should be studied urgently. Here, in this 
study, the OC data in the TCGA and GSE databases were 
accurately classified according to hypoxia-related genes, and 
further survival analysis, clinical feature analysis, construc-
tion of HYRS model, mutation analysis, immune feature 
analysis, etc. were used to confirm the OC-related hypoxia 
characteristics.

Hypoxia is an important feature in the local microenvi-
ronment of tumor tissue. Reduced availability of oxygen 
greatly increases patient resistance to therapy and favors 

Fig. 7  Pathway differences 
in different HRYS groups. A 
KEGG pathway in the high vs 
low HYRS group in TCGA 
cohort. B KEGG pathway in 
the high vs low HYRS group 
in GSE cohort. C Comparative 
analysis of metabolic pathway 
differences in TCGA and GSE 
cohorts
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tumor progression. Moreover, hypoxia induces the expres-
sion of many genes responsible for increased tumor invasion 
and metastasis, resulting in deranged gene expression (Chan 
et al. 2007; Wang et al. 2021a). Univariate Cox regression 
analysis obtained 14 hypoxia-signature genes associated 

with the prognosis of OC, and then based on the expres-
sion profiles of hypoxia-signature genes, we segmented OC 
into two distinct molecular subtypes (C1 and C2 subtypes) 
using ConsensusClusterPlus. A previous study reported four 
molecular subtypes in OC according to all gene expression 

Fig. 8  Efficiency of HYRS model. A Survival and ROC curves of 
the high HYRS and low HYRS groups in the IMvigor210 cohort. B 
Survival and ROC curves of the high TIDE and low TIDE groups 
in the IMvigor210 cohort. C ROC curve of the HRYS group and 
TIDE group in IMvigor210 cohort. D Survival and ROC curves of 

the high HYRS and low HYRS groups in the GSE91061 cohort. E 
Survival and ROC curves of the high TIDE and low TIDE groups 
in the GSE91061 cohort. F ROC curve of the HRYS group and 
TIDE group. D ROC curve of the HRYS group and TIDE group in 
GSE91061 cohort

Fig. 9  Improvements in 
prognostic models and survival 
prediction. A Univariate Cox 
regression analysis of HYRS 
and clinicopathological features. 
B Multivariate Cox regres-
sion analysis of HYRS and 
clinicopathological features. C 
Nomogram model combined 
by HYRS and age. D 1-, 3-, 
and 5-year calibration curves of 
the nomogram. E The decision 
curve of the nomogram
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levels (Thorsson et al. 2018). Comparative analysis showed 
that the mesenchymal subtype with the worst prognosis 
in the previous study accounted for the largest proportion 
of the C2 subtypes obtained by our clustering, and the 
Kaplan–Meier survival analysis showed that the C2 subtype 
had a worse prognosis than the C1 subtype, suggesting that 
our hypoxia-related molecular subtype had a better indica-
tion. The main difference was that we identified molecular 
subtypes based on hypoxia-related genes and confirmed sig-
nificant differences among subtypes from multiple dimen-
sions, which can be considered as a classification for clinical 
patients and then for precision treatment.

Immune cell infiltration is closely related to cancer 
development and prognosis, specifically, accumulation of 
tumor-infiltrating lymphocytes predicts increased survival, 
while increases in immunosuppressive regulatory T cells 
are associated with poor prognosis (Santoiemma 2015). As 
expected, T cells, NK cells, etc. were significantly increased 
in C2 subtypes, as shown by ssGSEA and MCP-Counter. 
The TIDE algorithm was used to evaluate the efficiency of 
immunotherapy (Jiang et al. 2018). The higher score was 
observed in C2 subtype, suggesting that the C2 subtype had 
a greater possibility of immune escape and the possibility 
of benefiting from immunotherapy.

Difference analysis comparing C2 subtypes with C1 
subtypes filtered a total of 786 shared differential genes 
in the TCGA and GSE cohorts. Further univariate Cox 
and LASSO regression analysis identified seven hypoxia-
related signature genes, including UQCRFS1, KRAS, KLF4, 
HOXA5, GMPR, ISG20, and SNRPD1. Next, HYRS model 
was built to predict the prognosis of OC. The UQCRFS1 
protein belongs to complex III of the mitochondrial respira-
tory chain, and was reported to participate in regulating OC 
development (Kaneko et al. 2003). Ha et al. showed that the 
expression level of UQCRFS1 was significantly increased 
in advanced OC, indicating that high levels of UQCRFS1 
predict poorer prognosis (Ha et al. 2021). In contrast, KLF4 
is down-regulated in OC (Ma et al. 2019). Up-regulation 
of KLF4 can enhance the therapeutic effect of chemothera-
peutic drugs on OC by affecting cancer cell proliferation 
(Ma et al. 2019 ). KRAS transmits signals from the extra-
cellular to the nucleus. KRAS is a member of the RAS/
MAPK signaling pathway, and its main role is to participate 
in the regulation of cell proliferation and differentiation 
(McCormick 2015). In OC, KRAS served as a biomarker 
and potential therapeutic targets have been reported (Ratner 
et al. 2010; Ratner et al. 2010). Notably, KAS is a proto-
oncogene (Siddiqui-Jain et al. 2002). KLF4 was a tumor sup-
pressor in ovarian cancer cells by inhibiting the epithelial to 
mesenchymal transition (Wang et al. 2017b). Yu et al. have 
constructed a five glycolysis‐related genes signature, includ-
ing ISG20, for patients with OC (Yu et al. 2021). Lower 
SNRPD1 expression indicated poorer outcome of OV (Bao 

et al. 2020). Above findings suggested the efficiency of our 
HYRS model. Pathway analysis showed the hypoxia path-
way was activated in the high HYRS group both in TCGA 
and GSE cohorts. Hypoxia is closely associated with tumor 
progression, which appears to be one of the reasons for the 
lower survival in the high HYRS group (Jing et al. 2019). 
This study performed molecular subtyping of OC according 
to the hypoxia gene expression signature and developed a 
HYRS model with excellent predictive efficiency, but the 
pathogenesis of OC still requires further validation due to 
the complexity of the actual situation.

Moreover, we compared the HYRS model with the TIDE 
algorithm to evaluate the effectiveness of the HYRS model 
in predicting prognosis. The results showed that HYRS had 
a high predictive efficiency.

There were some limitations in this study. Firstly, it was 
necessary to verify the significance of hub genes in cancer 
tissues through experiments, such as RT-qPCR, IHC, and 
Western blot. Secondly, although our results showed a strong 
predictive potential and clinical value of the prognostic sig-
nature, prospective studies were needed to demonstrate the 
clinical application and prognostic value of the model in 
patients.

Conclusion

In short, OC was classified into two molecular subtypes 
based on hypoxia-related gene expression signatures. Fur-
ther, seven hypoxia-related OC prognosis-related signa-
ture genes, including UQCRFS1, KRAS, KLF4, HOXA5, 
GMPR, ISG20, and SNRPD1, were obtained as a whole new 
combination. Significantly, the HYRS model could predict 
OC prognosis effectively.
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