
A super-Gaussian Poisson–Boltzmann model for electrostatic 
free energy calculation: smooth dielectric distribution for protein 
cavities and in both water and vacuum states

Tania Hazra1, Sheik Ahmed Ullah2, Siwen Wang2, Emil Alexov3, Shan Zhao2

1Department of Mathematics, Misericordia University, Dallas, PA 18612, USA

2Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA

3Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA

Abstract

Calculations of electrostatic potential and solvation free energy of macromolecules are essential 

for understanding the mechanism of many biological processes. In the classical implicit solvent 

Poisson–Boltzmann (PB) model, the macromolecule and water are modeled as two-dielectric 

media with a sharp border. However, the dielectric property of interior cavities and ion-channels is 

difficult to model realistically in a two-dielectric setting. In fact, the detection of water molecules 

in a protein cavity remains to be an experimental challenge. This introduces an uncertainty, 

which affects the subsequent solvation free energy calculation. In order to compensate this 

uncertainty, a novel super-Gaussian dielectric PB model is introduced in this work, which devices 

an inhomogeneous dielectric distribution to represent the compactness of atoms and characterizes 

empty cavities via a gap dielectric value. Moreover, the minimal molecular surface level set 

function is adopted so that the dielectric profile remains to be smooth when the protein is 

transferred from water phase to vacuum. An important feature of this new model is that as 

the order of super-Gaussian function approaches the infinity, the dielectric distribution reduces 

to a piecewise constant of the two-dielectric model. Mathematically, an effective dielectric 

constant analysis is introduced in this work to benchmark the dielectric model and select optimal 

parameter values. Computationally, a pseudo-time alternative direction implicit (ADI) algorithm 

is utilized for solving the super-Gaussian PB equation, which is found to be unconditionally 

stable in a smooth dielectric setting. Solvation free energy calculation of a Kirkwood sphere 

and various proteins is carried out to validate the super-Gaussian model and ADI algorithm. 

One macromolecule with both water filled and empty cavities is employed to demonstrate 

how the cavity uncertainty in protein structure can be bypassed through dielectric modeling in 

biomolecular electrostatic analysis.
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1 Introduction

Calculations of electrostatic potential and solvation free energy of macromolecules 

are essential for understanding the mechanism of biological processes. However, these 

calculations cannot be done analytically for irregularly shaped objects, and so computational 

methods must be applied. There are two major approaches for solvation free energy analysis, 

i.e., explicit models and implicit models (Li et al. 2015). Explicit models treat water as 

individual molecules; on the contrary, implicit models consider solvent phase as continuum 

media (Che et al. 2008; Baker et al. 2001; Li et al. 2013a). Compared to explicit models, 

implicit models are more efficient; therefore they can handle much larger systems (Baker et 

al. 2001; Li et al. 2012), however, it comes with the price of losing some atomic information 

and having the ambiguity of how to describe the dielectric properties of the system, the 

solute, and the water phases.

As a partial differential equation (PDE) model for electrostatics of biomolecules, the 

Poisson–Boltzmann (PB) equation is a widely used implicit solvent method (Baker et al. 

2001). Traditionally, a two-dielectric approach is employed in the PB model to describe 

the dielectric properties: a biomolecule is assigned a low dielectric constant while the 

surrounding water phase is considered as a high dielectric constant medium. A dielectric 

interface is assumed at the macromolecule-water boundary, which is usually modeled as 

a molecular surface. The most commonly used definitions of the macromolecule-water 

boundary are the Van der Waals (VDW) surface (Pang and Zhou 2013), the solvent 

accessible surface (SAS) (Lee and Richards 1973), and the solvent excluded surface (SES) 

(Richards 1977; Connolly 1983). However, these “hard sphere” molecular surface models 

are known to admit geometric singularities, such as cusps and self-intersecting surfaces 

(Bates et al. 2008).

To avoid geometric singularities associated with “hard sphere” definitions of the molecular 

surface, “soft sphere” models have been developed (Blinn 1982; Duncan and Olson 1993; 

Grant and Pickup 1995), where each atom is outlined by a Gaussian density distribution 

function. While dealing with multiple atoms, the summation of these Gaussian soft clouds 

forms a density map which generates Gaussian molecular surfaces at appropriate isosurfaces 

or level sets to approximate the VDW surface, SAS, or SES. The density maps based on 

volumes can also be generated by other smoothly decaying functions (Chen and Lu 2011) 

or by maximizing the Gaussian functions and then post-processing using a low-pass filtering 

(Giard and Macq 2010). The models based on Gaussian surfaces are particularly useful for 

fast and robust molecular surface mesh generations (Chen and Lu 2011; Zhang et al. 2006; 

Yu et al. 2008).

In most studies of Gaussian surfaces, the PB equation is still solved in a two-dielectric 

setting by generating an iso-surface as the dielectric boundary. Across such a sharp interface, 

the PB solution loses its regularity. In order to avoid accuracy reduction in numerical 

discretization near the interface, sophisticated interface algorithms have to be adopted for 

handling the dielectric jump in solving the PB equation. With rigorous interface treatments, 

the matched interface and boundary (MIB) method (Zhou et al. 2006; Chen et al. 2011) 

and the immersed interface method (IIM) (Qiao et al. 2006) can improve the accuracy 
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significantly, but they develop complexity in the algorithm to a certain extent which reduces 

the computational efficiency.

Instead of using a sharp molecular surface definition, smooth or smeared molecular surfaces 

have also been introduced in the literature (Bates et al. 2008, 2009; Cheng et al. 2007; Zhao 

et al. 2013; Dai et al. 2018), in which a smooth transition is assumed in between solute 

and solvent domains. For instance, by using the Euler–Lagrange variation of the free energy 

minimization, (Bates et al. 2008, 2009) introduced a variational PDE model for molecular 

surface generation. Neglecting other solute-solvent interactions, this model is simplified to 

be the surface area minimization, and gives rise to the minimal molecular surface (MMS). 

Cheng et al. (2007) have employed the level set approach to minimize a free energy 

functional for coupling the polar-nonpolar interaction at the solvent-solute interface, and the 

corresponding PDE model involves contributions from electrostatic effects, pressure, Gauss 

and mean curvatures, and others. A phase-field variational approach has been developed in 

Zhao et al. (2013) to represent the solute-solvent interface via a double-well potential in the 

free energy functional. The convergence of the phase field free energy functionals and forces 

to their sharp interface limits has been rigorously proved (Dai et al. 2018). By using these 

smooth molecular surfaces, simple numerical methods can be employed for solving the PB 

equation, and complicated interface treatments are unnecessary.

Besides the free energy variational approach, another physical way to describe the solute-

solvent boundary as a smooth transition layer has also been introduced in (Abrashkin et 

al. 2007; Koehl et al. 2009; Mengistu et al. 2009; Bohinc et al. 2017). This is achieved 

by incorporating the structures of water dipoles and ions into mean field modeling of 

the electric double layer. This introduces additional terms in the PB equation to account 

for interacting Langevin dipoles (Mengistu et al. 2009) or non-electrostatic type Yukawa 

interactions (Koehl et al. 2009). Mathematically, the generalized PB equations in these 

studies could be rewritten into a standard PB equation with an effective field-dependent 

dielectric function, which is then smoothly variant in the solvent domain (Abrashkin et al. 

2007).

Besides the above mentioned PB models with two homogeneous media away from the 

solute-solvent boundary, heterogeneous dielectric models have also been introduced in 

the literature (Alexov and Gunner 1997, 1999; Nymeyer and Zhou 2008; Song 2002; 

Voges and Karshikoff 1998; Hu and Wei 2012; Li et al. 2013b, 2014; Chakravorty et al. 

2018b), in which the dielectric function ϵ is not uniform and varies within the structure 

of the molecule. Physically, such an inhomogeneity, reflecting different polarizability and 

flexibility, is well-documented for the amino acids (Hammel 2012; Kokkinidis et al. 2012). 

Mathematically, the heterogeneous dielectric distribution provides an alternative means to 

mimic the effect of conformation changes of the macromolecule on the solvation free 

energy, because dielectric distributions reflect the structure-energy relations via screening of 

the electrostatic interactions within the solute and between the solute and solvent (Warshel 

and Russell 1984; Warshel et al. 2006).

This study will pay particular attention to the Gaussian dielectric PB model (Li et al. 2013b, 

2014), which was developed with an aim to provide a “correct” description of the dielectric 
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property of the macromolecule, i.e., beginning with macromolecule interior and moving 

toward the macromolecular surface and further into the water phase, the ability of the 

corresponding medium to respond to local electrostatic field constantly increases (Simonson 

and Perahia 1995). This dielectric model has been found to outperform the traditional 

two dielectric model in many biological applications, including a better agreement with 

experimentally measured solvation free energy of small molecules (Li et al. 2013b, 2014) 

and a better prediction of the pKa’s of ionizable groups against thousand experimentally 

measured pKa’s in various proteins (Wang et al. 2015a, b). The Gaussian dielectric model 

has also demonstrated the feasibility of approximating ensemble average polar solvation free 

energy by calculating a single macromolecular structure and without resorting to expensive 

molecular dynamics or Monte Carlo simulations (Chakravorty et al. 2018a).

This paper aims to extend the Gaussian PB model (Li et al. 2013b, 2014) by modeling 

the dielectric property of protein cavities explicitly. Cavities and channels are frequently 

encountered in biomolecules. The determination of dielectric values for cavities is still in its 

infancy for inhomogeneous models (Ng et al. 2008), because such cavity regions could be 

empty or filled with water molecules. Nevertheless, the detection of water molecules in a 

cavity remains to be an experimental challenge. This introduces an uncertainty for implicit 

solvent modeling. Physically, how to compensate such an uncertainty in inhomogeneous 

dielectric models has not been studied before. What we know are several simple principles. 

For example, trapped water molecules tend to interact with the surrounding atoms via either 

hydrogen bonds or VDW forces, and thus lose their flexibility. Consequently, the dielectric 

value of cavity water should be smaller in comparison with that of bulky water, while 

it is still larger than that of amino acids. Moreover, the size or volume of cavity plays 

an important role here, because it affects the rotational polarizability of confined water 

molecules in response to the local electrostatic field. In the Gaussian dielectric model (Li et 

al. 2013b, 2014), the cavity region may be characterized through the compactness of atoms. 

However, the dielectric value of such gap region or the maximal dielectric value ϵmax of 

the macromolecule is not directly controllable, instead it is inflated by the external water 

dielectric value (usually taken as ϵ = 80). In order to model the dielectric property of protein 

cavities explicitly, we propose a super-Gaussian dielectric model in this work, in which a 

new parameter ϵgap for the cavity regions is introduced. The selection of ϵgap or ϵmax could 

depend on cavity size and any additional information available to biologists. Moreover, the 

maximal dielectric value ϵmax remains unchanged in both water or vacuum phases. Finally, 

this parameter also allows us to compensate the uncertainty of whether a cavity is empty or 

filled with water molecules in free energy calculations.

As another extension, the super-Gaussian PB model will maintain the smoothness of 

dielectric functions in both water and vacuum states in calculating free energies. In the 

Gaussian dielectric model (Li et al. 2013b, 2014), the inhomogeneous dielectric profile of 

the macromolecule is generated based on the water state first. Then a surface cut with 

an empirical iso-value is conducted to preserve the same inhomogeneous profile for the 

vacuum state. Consequently, the ϵ function becomes discontinuous, because outside the 

surface cut, ϵ = 1 is simply used for the vacuum. A modified surface cut technique has been 

reported recently (Chakravorty et al. 2018a), which results in a C0 but not C1 continuous 

dielectric function in vacuum state, even though it is C∞ continuous in water state. In the 
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proposed model, the minimal molecular surface (MMS) (Bates et al. 2008; Tian and Zhao 

2014) will be employed to represent solute and solvent regions. The main purpose of such 

representation is not defining a molecular surface. Instead, the MMS allows us to represent 

both water and vacuum states in one equation, by simply changing the exterior dielectric 

value to be 80 or 1. The interior dielectric profile for proteins keeps unchanged in this 

process. With these extensions, the new Gaussian model guarantees the dielectric functions 

being C∞ continuous in both water and vacuum states.

Besides the above mentioned two extensions, there are several other differences between the 

Gaussian and super-Gaussian dielectric models. First, a super-Gaussian density function is 

employed in the new model as a “soft sphere” representation for each atom, which includes 

the Gaussian function as a special issue with the order m = 1. An important feature of this 

function is that it approaches piecewise dielectric constants of the two-dielectric model in 

the limit of order m going to infinity. Theoretically, the proposed super-Gaussian dielectric 

model bridges the gap between Gaussian and two-dielectric PB models. In practice, m = 3 

or 4 achieves a good trade-off in our modeling and simulations. Second, the Gaussian model 

is a surface-free dielectric model (Li et al. 2013b, 2014; Chakravorty et al. 2018b), while 

the MMS hypersurface function is required in constructing the super-Gaussian dielectric 

distribution. Hence, without requiring any molecular surface definition, the Gaussian model 

has the potential to be applied to more general applications. Also, the super-Gaussian 

dielectric function needs additional computation time for setting up the MMS level set 

function. Fortunately, a fast algorithm is available for generating the MMS (Tian and Zhao 

2014), which scales as O(N) for N being the spatial degree of freedoms. Third, the ion 

distribution is treated differently in both models. In the classical two-dielectric PB model, 

the presence of mobile ions is realized through the Debye–Huckel parameter or Debye 

length κ. One normally defines κ as a piecewise constant with a vanishing value in the solute 

region and a nonzero constant (say κ) in the solvent region. In the super-Gaussian model, 

κ it will be defined in the same manner as the dielectric function ϵ, by using the MMS 

characteristic function for both solute and solvent domains. Consequently, κ will change 

smoothly and monotonically from zero to κ. A more physical approach is proposed in the 

Gaussian model (Jia et al. 2017; Chakravorty et al. 2018b), in which a desolvation penalty 

term is introduced into the Boltzmann distribution of mobile ions. In the resulted modified 

PB equation, the coefficient of the nonlinear hyperbolic term will change smoothly from 

zero to κ in a non-monotonic manner, because the Born equation definition of desolvation 

penalty depends on the inhomogeneous ϵ function.

In this work, a pseudo-time alternating direction implicit (ADI) algorithm (Geng and Zhao 

2013; Zhao 2014; Wilson and Zhao 2016) will be employed to solve the nonlinear PB 

equation of the super-Gaussian dielectric model. We note a numerical issue here relating 

to the smooth definition of the Debye length κ, resulting from ion distribution treatments 

of either Gaussian or super-Gaussian models. In particular, κ could be nonzero in certain 

places which belong to the solute region in the two-dielectric model, but are now in the 

transition layer between solute and solvent media (Zhao 2014). Therefore, the hyperbolic 

nonlinear term of the PB equation could take huge values at such places, so that numerical 

methods could be unstable (Zhao 2014). To suppress the nonlinear instability, a pseudo-time 
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continuation approach with analytical integration of the nonlinear term has been proposed 

in the literature (Geng and Zhao 2013; Zhao 2014; Wilson and Zhao 2016). Based on 

finite difference spacial discretization, efficient alternating direction implicit (ADI) schemes 

have been developed for pseudo-time integration (Geng and Zhao 2013; Zhao 2014; Wilson 

and Zhao 2016). However, such ADI schemes could not achieve unconditional stability in 

treating two-dielectric PB equations. For the present super-Gaussian dielectric model and 

well filtered MMS representation, the pseudo-time ADI algorithm will be unconditionally 

stable for solving the nonlinear PB equation.

The proposed super-Gaussian dielectric PB model carries several parameters. In order to 

benchmark the new model and select optimal parameter values, two approaches will be 

considered in this paper. Mathematically, an effective dielectric constant (EDC) analysis 

is introduced as a simple means to assess different dielectric models. This is purely 

a geometrical approach that computes an averaged EDC over the entire domain either 

analytically or numerically, and it allows us to explore the impact of each parameter 

to the total dielectric function. In the other approach, comparison in electrostatic free 

energy is carried out for two-dielectric and super Gaussian models. We note that with a 

different dielectric setting, our super Gaussian results will not converge to the two-dielectric 

ones. However, it is useful to adjust parameters so that the new dielectric model could 

numerically produce energy values that are comparable to the two-dielectric model. This is 

particularly convenient if one wants to replace an existing two-dielectric PB solver by the 

proposed one in a software package. We note that the optimal parameter values produced 

by two approaches have some minor difference. Alternatively, the model validation could be 

conducted by comparing with explicit solvent molecular dynamics (MD) simulations, which, 

however, are quite time consuming.

The rest of the paper is organized as follows. Section 2 introduces the super-Gaussian 

dielectric PB model with a few parameters. An EDC analysis is proposed for determining 

the best fitting parameters, and the role of hypersurface function generated from MMS 

is discussed. In Sect. 3, the super-Gaussian PB equation is discretized by using a pseudo-

time ADI algorithm. Model validation and convergence, accuracy, and stability of the ADI 

algorithm are experimented by calculating solvation free energy for a single atom system in 

Sect. 4. The proposed model and algorithm are further verified in Sect. 5, by considering 

various proteins. Particular attention will be paid on studying a real protein with both 

water-filled and empty cavities. This article ends with a brief conclusion.

2 Mathematical modeling

In this section, we will first briefly describe the existing models, including the two-dielectric 

Poisson–Boltzmann (PB) model and Gaussian dielectric PB model. Then, a super-Gaussian 

dielectric PB model will be introduced. A geometrical analysis will be employed to 

systematically study the influence of the adjustable parameters of the new model in various 

settings.
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2.1 Two-dielectric Poisson–Boltzmann model

Consider a macromolecule, for example, a protein being immersed into an aqueous solvent. 

Define a large enough cubic domain Ω in ℝ3 for this three dimensional (3D) solute-solvent 

system. In the classical two-dielectric PB model, the domain Ω is divided by a molecule 

surface Γ into two parts, namely the inner solute domain Ωm and the outer solvent domain 

Ωs such that Ω = Ωm ∪ Ωs and Ωm ∩ Ωs = Γ. Denote the boundary of Ω as ∂Ω. For r ∈ ℝ3, 

the electrostatic potential u of this system is governed by the nonlinear Poisson–Boltzmann 

equation and its most commonly used dimensionless form (Lu et al. 2008; Geng and Zhao 

2013) is given as

− ∇ · ϵ r ∇u r + κ2sinh u r = ρm r , (1)

where the singular source term is

ρm r = 4π ec2

kBT j = 1

Nm
qjδ r − r j . (2)

On the outer boundary ∂Ω, a Dirichlet boundary condition can be assumed

u r = ec2

kBT j = 1

Nm qj
ϵs r − r j

e − r − r j
κ2
ϵs . (3)

In the two-dielectric PB model, the dielectric function ϵ r  is assumed to be a piecewise 

constant

ϵ r =
ϵm, r ∈ Ωm

ϵs, r ∈ Ωs .
(4)

In the present study, we will take ϵm = 1 for the protein and ϵs = 80 for the water. Similarly, 

the modified Debye–Hückel parameter κ is a piecewise constant. It vanishes in Ωm, i.e., κ = 

0, while in Ωs κ = κ, where κ2 = 8.486902807A∘ −2Is and Is is the ionic strength of the solvent. 

Here, kB is the Boltzmann constant with kBT = 0.5921830 kcal/mol at T = 298 K, and ec is 

the fundamental charge and qj is the partial charge for the jth atom in the solute, centered at 

r j. Moreover, ec and qj have the same units and ec2 = 33.206364 kcal/mol. The total number of 

atoms present in the solute macromolecule is denoted by Nm.

The energy released when the solute macromolecule is dissolved in solvent is known as the 

free energy of solvation. The polar component of solvation free energy can be calculated 

in the PB model by computing the difference between total electrostatic free energy of the 

macromolecule in the solvent and in the vacuum. In particular, for the two-dielectric PB 

model, the solvation free energy is defined as
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ΔG = Gs − G0 = 1
2 Ω

ρm u r − u0 r d r (5)

where u r  is the solution of the PB equation (1), while u0 r  is the electrostatic potential 

of the macromolecule in the vacuum. The vacuum state is obtained by taking ϵ r = 1
throughout and setting the ionic strength Is = 0. Consequently, κ = 0 in the PB equation 

(1) and κ = 0 in the boundary condition (3). Thus, u0 r  is in fact the solution of a Poisson 

equation

−Δu0 = ρm, (6)

with the same singular source (2).

2.2 Gaussian dielectric PB model

In order to overcome some inherent difficulties associated with the two-dielectric PB model, 

a Gaussian dielectric PB model has been proposed in Li et al. (2013b, 2014) to provide 

a “correct” description of the dielectric property of the macromolecule. Physically, at the 

atomistic level of detail, any system in molecular biophysics is made up of macromolecules 

immersed in water, and can be considered as a multitude of atoms: atoms of water molecules 

and amino acids (nucleic acids). It thus makes sense to study a smooth dielectric PB 

model, in which one avoids to define a solute-solvent boundary or molecular surface. 

Instead, an appropriate definition of the dielectric function ϵ r  is assumed in the entire 

domain Ω. Moreover, it is known that beginning with the macromolecule interior and 

moving toward the macromolecular surface and further into the water phase, the ability of 

the corresponding medium to respond to the local electrostatic field constantly increases 

(Simonson and Perahia 1995). Hence, one should expect that ϵ r  in the water state 

increases smoothly from the solute region to the solvent region. Finally, allowing ϵ r  to be 

inhomogeneous gives us flexibility in modeling different polarizability of the amino acids 

(Hammel 2012; Kokkinidis et al. 2012), and mimicking the effect of conformation changes 

of the macromolecule on the solvation free energy (Warshel and Russell 1984; Warshel et al. 

2006; Chakravorty et al. 2018a).

A “soft sphere” approach by introducing a density function for each atom seems to be a 

natural model to fulfill all of the above considerations. This motivated the development of 

the Gaussian dielectric PB model (Li et al. 2013b, 2014) in the water state. Suppose the 

density at the position r  for the ith atom is given by Grant and Pickup (1995); Grant et al. 

(2001); Im et al. (1998)

gi r = exp
− r − ri

2

σ2Ri
2 (7)
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where r i is the center of the ith atom, Ri is the Van der Waals radius of the ith atom and σ is 

the relative variance. Once the density for each atom is generated, the total density function 

for the atoms and overlapped area covered by multiple atoms is given by

g0 r = 1 −
i = 1

Nm
1 − gi r (8)

where the cross term such as gigj accounts for the density of the overlap region due to the ith 

and jth atoms. Also the total density function ensures that the overlap region has a density 

higher than that generated by a single atom. The range of the function g0 is [0, 1]. Finally, 

the dielectric distribution is derived as a weighted convex combination

ϵG r = g0 r ϵm + 1 − g0 r ϵs (9)

where ϵm and ϵs are the dielectric constants in the molecule and water respectively. Similar 

to the two-dielectric model, we will take ϵm = 1 and ϵs = 80 in the present study. By simply 

replacing ϵ r  in the PB equation (1) by ϵG r , the Gaussian PB model has achieved a great 

success in various biophysical applications (Li et al. 2013b, 2014).

In electrostatic free energy calculations, a surface cut of ϵG r  at an iso-value 20 is 

conducted to introduce a sharp boundary Γ (Li et al. 2013b, 2014). Inside Γ, the dielectric 

function of the vacuum state is the same as that in the water state, i.e., ϵG r = ϵG r , while 

outside Γ, ϵG r = 1. One then solves the Poisson equation

− ∇ · ϵG∇u0 r = ρm, (10)

for the electrostatic potential u0 in vacuum, and then computes the solvation free energy 

by (5). Note that ϵG is discontinuous in (10) so that various difficulties associated with the 

two-dielectric PB equation may not be avoided. Recently, a further modification to ϵG has 

been introduced in Chakravorty et al. (2018a), which results in a C0 but not C1 continuous 

function.

2.3 Super-Gaussian dielectric PB model

In this paper, we propose to define the density of the ith atom as a super Gaussian function

gis r = exp −
r − r i

2

σ2Ri
2

m

. (11)

Note that with the order m = 1, gis r  becomes the original Gaussian density function gi r . 

To illustrate the idea, we first consider the dielectric distribution defined by (8), and (9) 

and simply replace gi r  by gis r . A virtual comparison of the corresponding Gaussian 

and super Gaussian distributions for a single atom system is depicted in Fig. 1. It can be 
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seen that the super-Gaussian function or higher order Gaussian has a flat-top density and 

a rapid while smooth transition at the solute-solvent border area. As m goes to infinity, 

gis r  approaches to a step function that equals one inside the Van der Waals (VDW) 

sphere with the center r i and radius Ri and equals zero outside the sphere. Consequently, 

the dielectric distribution shown in Fig. 1c will converge to the piecewise constant of the 

two-dielectric model, i.e., Eq. (4). A mathematical proof of this statement is provided in 

the “Appendix”. Therefore, the super Gaussian density includes both Gaussian density and 

piecewise constant as special cases. In practice, we will consider an order m in the range 

of {1, 2, …, 8}, which maintains enough smoothness when the function is sampled on a 

discrete grid. In Fig. 2, we depict the super Gaussian dielectric distributions for a one-atom 

system by using different order m and relative variance σ. The optimal selection of these 

parameter values will be discussed later.

In order to explicitly model the dielectric properties of protein cavities, we introduce 

a parameter ϵgap to represent the maximum dielectric value of the macromolecule. In 

particular, we similarly define the total density function as

g0
s r = 1 −

i = 1

Nm
1 − gis r . (12)

A new dielectric distribution is proposed within a protein region

ϵin r = ϵmg0
s r + ϵgap 1 − g0

s r , (13)

where the constants ϵm and ϵgap are defined as the reference dielectric values at the atom 

centers and in a gap region, respectively, with ϵgap > ϵm. By substituting (12) into (13), we 

have an equivalent form of ϵin

ϵin r = ϵm + ϵgap − ϵm
i = 1

Nm
1 − gis r . (14)

It is then clear that ϵm and ϵgap are, respectively, the minimal and maximal dielectric values 

of the protein, independent of the outside medium.

The physical idea underlying (13) or (14) is that the permittivity at a loosely packed region 

of a protein shall be higher than that in a densely packed region, because the former region 

has a higher polarization or allows a larger conformational change. In a densely packed 

region, the charged atoms and amino acid chains are harder to shift from their average 

equilibrium positions when an electric field is placed, so that the polarization or density of 

induced electric dipole moments is weaker. Moreover, cavities have to be taken into account 

in an inhomogeneous dielectric model. Crystallographic waters may be trapped inside some 

large cavities. The polarization of water molecules inside cavities is smaller than the bulky 

water molecules in a solvent due to their restricted degree of freedom, but it is still much 

higher than that of protein. This suggests that ϵm < ϵgap ≤ ϵs. An appropriate value for ϵgap 
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depends on the real protein system and will be determined through analytical and numerical 

means in this work. Also, we will take ϵm = 1 and ϵs = 80 as in the other models.

In the super-Gaussian PB model, we propose to provide certain description of the solute 

and solvent domain on top of the dielectric distribution, which will eliminate the need of 

a surface cut operation for the vacuum state. We note that traditional molecular surfaces, 

including the VDW surface (Pang and Zhou 2013), the solvent accessible surface (SAS) 

(Lee and Richards 1973), and the solvent excluded surface (SES) (Richards 1977; Connolly 

1983), could not fulfill our goal here, because the smoothness still cannot be maintained 

across a sharp solute-solvent interface. Instead, we propose to employ the minimal 

molecular surface (MMS) (Bates et al. 2008, 2009), which is defined as the unique surface 

that is of the smallest area and encloses all VdW balls. Physically, the MMS model is 

attained through the surface free energy minimization. Mathematically, the Euler–Lagrange 

variation of the free energy leads to a mean curvature flow partial differential equation 

(PDE), which can be solved by a fast algorithm developed in Tian and Zhao (2014). The 

numerical solution provides not only the MMS, but also a level set function or hypersurface 

function S r  defining the solute and solvent regions in a smooth manner, see Fig. 3a for an 

illustration.

The hypersurface function S r  of the MMS model (Bates et al. 2008, 2009; Tian and Zhao 

2014) was originally used for representing the protein region, with S = 1 inside all VDW 

balls and S = 0 outside the SAS (based on a probe radius 1.5 Å). A smooth transition from 

one to zero is obtained through numerical PDE solution. In the proposed super Gaussian PB 

model, we will make use of (1 − S) to present the exterior region so that both water and 

vacuum phases could be modeled in one equation

ϵsG r = S r ϵin r + 1 − S r ϵout, (15)

where the constant ϵout determines the dielectric value far away from the protein. Note 

that S = 1 inside the VDW region so that inhomogeneity of the super Gaussian dielectric 

distribution is retained. By setting ϵout to be 1 or 80, one simply switches from vacuum 

phase to water phase.

In the proposed super Gaussian dielectric model, the PB equation is modified as

− ∇ · ϵsG∇u + 1 − S κ2sinh u = Sρm, (16)

where we have similarly inserted the hypersurface function S r  for both the source and 

nonlinear terms. Note that κ is a constant, not a piecewise constant in our notation. The 

switch off of the nonlinear term relies on (1 − S), which has some impact numerically (Zhao 

2014). Similarly, the electrostatic potential u0 in vacuum is calculated by neglecting the 

nonlinear term

− ∇ · ϵsG∇u0 = Sρm, (17)
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because κ = 0 now. Of course, in this Poisson equation, we shall take ϵout = 1 for defining 

ϵsG r  in (15). One can then compute the solvation free energy by (5).

In the super Gaussian model, the dielectric function ϵsG r  remains C∞ continuous in both 

water and vacuum states. This is illustrated by considering a two-atoms system in Fig. 3b, 

in which m = 3, σ = 1.3, and ϵgap = 20. It can be observed that inside the solute region, 

ϵsG r  is identical for both water and vacuum phases. Near the solute-solvent boundary, the 

dielectric value produces a smooth bump, because ϵgap = 20 allows a large ϵ away from 

the center of the atom. Further away from atoms, the hypersurface function S r  plays 

a dominant role so that ϵ decays to ϵout = 1 smoothly. For a comparison, the dielectric 

functions ϵG r  and ϵG r  of the Gaussian model, for water and vacuum phase respectively, 

are depicted in Fig. 3c. In the water phase, the maximal value of ϵG r  is determined by ϵs 

= 80, so that it is higher than that of ϵsG r . In the vacuum phase, by conducting a surface 

cut at 20, ϵG r = ϵG r  inside two atoms. Nevertheless, ϵG r  is discontinuous at atom 

boundaries.

2.4 Effective dielectric constant analysis

In the proposed super Gaussian dielectric model, there are three adjustable parameters, i.e., 

the order m, the relative variance σ which determines the window width of super Gaussian 

distribution, and ϵgap which controls the maximal dielectric value of the solute. In this 

subsection, we will explore the impact of these parameters on the final heterogeneous 

dielectric function ϵ r  and find certain means for selecting suitable values of these 

parameters for real applications. We are also interested in a comparison among three 

dielectric models, i.e., the classical two-dielectric function (4), the Gaussian dielectric 

distribution (9), and the super Gaussian one (15), which will be referred to as Model I, 

II, and III, respectively, in this subsection.

In principal, the solvation free energy calculation is an ideal means for validating dielectric 

PB models and calibrating parameters. For example, the solvation energies produced by the 

Gaussian dielectric model have been compared with experimental results for some organic 

small molecules (Li et al. 2013b). For large macromolecules, measurement of solvation 

energies is still an experimental challenge. Thus, to assess the Gaussian dielectric model 

for proteins, explicit solvent molecular dynamics (MD) simulations have been conducted to 

generate referencing solvation energies to compare with the PB results (Li et al. 2013b). We 

note that MD simulations are usually time consuming.

In this paper, we propose an effective dielectric constant (EDC) analysis as a simple means 

to assess different dielectric models. Consider some simple systems with a few atoms 

immersed in the water. We first generate the dielectric function ϵ r  by a model over a 

certain domain Ω. We then define the effective dielectric constant as
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ϵ = Ωϵ r d r

Ωd r
, (18)

which measures, in an average sense, the resistance encountered when forming an electric 

field in this solute-solvent system. The EDC can be calculated either analytically or 

numerically, and enables us to investigate the role of each parameter in the super Gaussian 

distribution.

To select suitable parameter values, we will benchmark the EDC of the super Gaussian 

model against that of the two-dielectric model, and report the relative difference between 

them in our studies. Note that this does not mean that we treat the two-dielectric PB model 

as the “correct” model to compare with. In fact, the original purpose of Gaussian type 

models is to improve the two-dielectric PB model. However, in practice, the two-dielectric 

function is still the most widely used setting for the PB equation. It thus makes sense that a 

new dielectric model should not deviate from the two-dielectric model too much. With the 

EDC analysis, we can ensure the super Gaussian model agrees with the two-dielectric model 

in a mean field sense. This could potentially persuade more biologists to use the new model, 

because more freedom is available now for modeling purpose. However, we also note that 

with similar EDC values, the electrostatic solvation energies produced by the two-dielectric 

and the super Gaussian models could still be significantly different.

In the super Gaussian model, the minimal molecular surface (MMS) is calculated by using 

the fast algorithm developed in Tian and Zhao (2014). Through the EDC analysis, we 

will choose the relative variance for the Gaussian dielectric model around the value 1, 

namely, σ ∈ {0.8, 0.9, …, 1.3}. When we upgrade the density function from Gaussian to 

super-Gaussian, the corresponding relative variance will be changed and depends on the 

choice of m ∈ {1, 2, …, 8}. Finally, as we consider the super-Gaussian dielectric model 

(ϵsG) for the inhomogeneous macromolecule interior, we need to decide the preference 

of ϵgap ∈ {2, 4, …, 8, 10, 20, 40, 80} for different solute-solvent system. This selection 

depends on the cavity inside the solute. In the two-dielectric model, the solvent excluded 

surface (SES) is chosen as the molecular surface defining the solute-solvent boundary, and 

will be calculated by using the MSMS package (Sanner et al. 1996). We refer to Bates et al. 

(2008) for a detailed comparison between MMS and MSMS.

2.4.1 Effective dielectric constant analysis with one atom—We first conduct the 

effective dielectric constant (EDC) analysis for a single atom solute-solvent system in the 

water phase. Consider a sphere with radius R0 = 2 Å and center at the original. A large 

enough domain Ω = [−a, a]3 is chosen with a = 8 Å. See Fig. 1a for an illustration. By taking 

ϵs = 80 and ϵm = 1, three dielectric models are studied in this paper. By comparing the EDCs 

of three models, we can find the optimal values of parameter σ and m for the one atom 

system.

Model I: In the two-dielectric model, ϵ2 r  is defined as a piecewise constant as in Eq. (4). 

The EDC can be calculated analytically in this case
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ϵ2 = Ωϵ2d r

Ωd r
=

ϵs 2a 3 − ϵs − ϵm
4
3πR0

3

2a 3 = 79.3537. (19)

Model II: In the Gaussian dielectric model, ϵG r  is calculated by (9). The EDC ϵG for ϵG 

is calculated through numerical integration:

ϵG = ΩϵGd r

Ωd r
= Ω ϵmg0 + ϵs 1 − g0 d r

2a 3 , (20)

where g0 is given by the equation (8), and ϵG only depends on the relative variance σ. 

By taking σ = {0.8, 0.9, 1.0, 1.1, 1.2, 1.3}, the EDC results are reported in Fig. 4. It 

can be seen from Fig. 4a that out of the six discrete numbers being considered, σ = 0.9 

obviously provides the best fit to ϵ2. This is in excellent agreement with the existing study, 

in which the optimal value obtained through molecular dynamics simulations is σ = 0.93 

(Chakravorty et al. 2018a). The slice plot of ϵG r  is given in Fig. 4b for several σ values. 

Physically, the relative variance controls the upper half window-width of the function ϵG. 

As σ increases, the window becomes wider at the upper half section of ϵG which belongs to 

the solvent region, while has less impact to the bottom half section. Due to this broadening 

effect of σ, the EDC decreases as σ increases, as can be seen in Fig. 4a.

Model III: For a comparison, we will also consider the super Gaussian function for the 

one-atom system. Nevertheless, we note that with only one atom, there is no cavity or 

gap region in the solute. Consequently, ϵgap is physically undefined in this system. For 

this reason, we will not study the actual super Gaussian dielectric model. Instead, in the 

Gaussian dielectric model (9), we simply replace g0 r  by the super-Gaussian density 

function g0
s r  defined by Eq. (12). Let us denote the corresponding dielectric model as 

ϵG
s . This enables us to investigate the roles of the order m and relative variance σ in the 

one-atom system. Numerical integration is carried out to calculate the EDC similarly

ϵG
s = ΩϵG

s d r

Ωd r
= Ω ϵmg0

s + ϵs 1 − g0
s d r

2a 3 . (21)

We first vary σ without changing m. Similarly to the previous case, it is found that ϵG
s

decreases as σ increases for a fixed m, see Fig. 5a for the case m = 3. Moreover, for a 

larger m, the optimal σ value becomes larger. For example, for m = 3, the optimal σ value 

is larger than 1 now. Next, by fixing σ, the effect of changing m is shown in Fig. 5b. It can 

be seen that the EDC increases quickly when m changes from 1 to 2, achieves a maximum 

around m = 3 or m = 4, and then declines slowly. Asymptotically, for σ = 1, the EDC of the 

super Gaussian density should approach to that of the two-dielectric model as m → ∞, i.e., 

limm ∞ϵG
s = ϵ2. This confirms that the super Gaussian dielectric function approaches to the 
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two-dielectric function when m goes to infinity. For σ = 1.1, the EDC curve is simply a shift 

of that of σ = 1.0 downwardly with the optimal orders being m = 3 or m = 4. For the other σ 
values, we have seen the same pattern that the EDC values for m > 4 are quite close to those 

of m = 3 or m = 4. Thus, in our numerical computations, we usually choose m = 3 or m = 4 

with an optimized σ.

Since the EDC values change significantly for 1 ≤ m ≤ 3, it is interesting to further 

compare the difference among them from a different perspective. In Fig. 5c–e, we plot 

the compensated dielectric curves, i.e., ϵG
s r − ϵ2 r , over the cross section plane y = 0. 

As can be seen from these figures, the compensated curves are positive inside the atom, 

because ϵG
s ≥ 1 and ϵ2 = 1. Right outside the atom boundary, ϵ2 becomes 80, so that the 

compensated curves immediately drops to negative numbers. As the radius keeps increasing, 

ϵG
s  approaches 80 so that the compensated curves vanish at both ends. We note that due to 

the symmetry of this system, the net area obtained by integrating each compensated curve 

in such a two-dimensional (2D) setup essentially captures the volume difference between the 

EDC values for the super Gaussian and two-dielectric models. For each σ, when m becomes 

larger, the areas for both positive and negative regions shrink significantly. This is essentially 

why the EDC lines change dramatically for 1 ≤ m ≤ 3 in Fig. 5b. Comparing with the 

different σ values, it seems that σ = 1.1 produces more balanced net areas.

2.4.2 Effective dielectric constant analysis with four atoms—We next study a 

four-atom system immersed in water so that a cavity region can be formed. This enables 

us to explore the role of ϵgap in the super Gaussian model for the water phase. To this 

end, consider a regular tetrahedron with all sides having the same length D. Four atoms are 

defined by using the vertices of the tetrahedron as centers and with a radius 2 Å. By fixing 

the center of this tetrahedron as the origin of the coordinate, we will vary D from 4 to 7 

Å. The illustrations of four atoms with D = 4 Å and D = 7 Å are shown in Figs. 7a, 8a, 

respectively. A large enough domain Ω = [−a, a]3 is chosen with a = 11 Å. By taking ϵs = 

80 and ϵm = 1, the effective dielectric constant (EDC) in Eq. (18) is computed via numerical 

integration in all cases.

For the Gaussian dielectric model (9), ϵG r  in the water phase is mainly determined by the 

positions and the radii of four atoms. For the two-dielectric model (4) and super Gaussian 

model (15), the dielectric function is greatly influenced by the underlying molecular 

surfaces. In particular, in the two-dielectric model, ϵ2 r = 1 inside the solvent excluded 

surface (SES) and ϵ2 r = 80 outside. The SES is generated by the MSMS package (Sanner 

et al. 1996) in the present study, see Fig. 6 for MSMS with different D values. It is seen that 

the solute domain initially becomes larger as D increases. However, as D keeps increasing, 

the reentry region in between the four atoms becomes smaller and smaller. Self-intersecting 

singularities are developed for D = 6 Å and D = 6.5 Å. When D = 7 Å, the system becomes 

four isolated balls, because with a probe radius 1.5, the probe sphere can freely pass the 

gaps between atoms. For the super Gaussian model, ϵsG r  is calculated based on the 

hypersurface function S r  of the minimal molecular surface (MMS) (Tian and Zhao 2014). 

For a comparison, the MMS iso-surfaces with S = 0.9 at different D values are also shown 
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in Fig. 6. A similar pattern as in the MSMS can be seen, i.e., the solute domain increases 

initially and then shrinks as D increases. Nevertheless, the MMS gives isolated atoms at an 

earlier D value, and never runs into geometrical singularities (Bates et al. 2008).

We first study the super Gaussian model with fixed D and ϵgap values. Since the 

hypersurface function S r  plays an additional role in calculating dielectric distributions, 

the optimal m and σ results could be different from those of the one-atom system, because 

our previous study did not involve S r . We consider two extreme cases, D = 4 Å and D = 7 

Å, for studying m and σ.

With D = 4 Å and atomic radius 2 Å, four balls are touching each other, leaving little 

space in between them. We thus fix ϵgap = 2 in this scenario, and calculate the effective 

dielectric constant (EDC) ϵsG for σ ∈ {0.9, 1.0, …, 1.3} and m = 1, 2, …, 8, see Fig. 7b. 

As we have discussed for the one atom case before, with the increment of σ, the upper 

window part of super Gaussian function becomes wider and it reduces the EDC. We observe 

the same behavior in the 4-atom system too. Also, higher m values broaden the lower 

window-width too and it decreases the EDC ϵsG of the super-Gaussian dielectric model 

as well. As we record the EDC, we observe very small variations in ϵsG for different σ 
and m values, i.e., 78.626 < ϵsG < 78.634. This insensitiveness indicates that the dielectric 

distribution is essentially dominated by the MMS hypersurface function S r  and ϵgap = 2 

for the current case with no cavities. In particular, the choice of ϵgap = 2 does not let the 

dielectric distribution ϵsG bump up inside the small room in between four atoms, see Fig. 

7a. From the parameter selection point of view, we will still suggest to use m = 3 or m = 4, 

while any choice of σ does not make much difference for D = 4 Å.

When D = 7 Å, a probe with radius 1.5 Å can freely access the interior of the four atoms. 

Both MSMS and MMS give isolated spheres in Fig. 6. Physically, the internal region should 

be treated as solvent. Thus we take ϵgap = 80 in the super Gaussian model, and calculate the 

EDC ϵsG for σ ∈ {0.9, 1.0, …, 1.3} and m = 1, 2, …, 8. As can be shown in Fig. 8b, ϵsG
is also decaying when m or σ is large. But the range of EDC values is quite large now, i.e., 

from 78.3666 to 79.3623, due to ϵgap = 80. For a comparison, we consider the two-dielectric 

model whose EDC value for the present setting is calculated as ϵ2 = 79.0171. If we choose 

σ = 1.0, it can be seen that ϵsG could approach ϵ2 when m → ∞. Again, this justifies our 

theory that the two-dielectric model is a limiting case of the proposed super Gaussian model 

as m goes to infinity. For practical computations, a finite m shall be used. For the parameter 

combinations shown in Fig. 8b, ϵsG produces a good approximation to ϵ2 when (σ, m) = 

(1.2, 1), (1.1, 2) or (1.1, 3). Nevertheless, for m = 1, the dielectric function actually does 

not reach 80 in the interior region, see Fig. 8c. Instead, associated with σ = 1.1, m = 2 or 3 

would be a better choice.

Next, we study the super Gaussian model with varying D and ϵgap values. As shown in the 

previous studies, with the presence of the hypersurface function S r , the changes of m and 

σ do not alter the EDC ϵsG too much, especially for compactly packed regions. Hence, we 

will simply fix σ = 1.1 and m = 3 in the following, which are optimal values for D = 7 Å. By 
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considering ϵgap = {2, 20, 40, 60, 80}, the EDC curves of ϵsG with respect to D are depicted 

in Fig. 9. For a comparison, the EDC results of the two-dielectric and Gaussian models are 

also shown in Fig. 9. Here the Gaussian results are generated with the optimal σ = 0.9.

Model I: In the two dielectric model, we have ϵ2 = 1 within the four atoms and inside 

the MSMS surface in between the atoms, and ϵ2 = 80 otherwise. The EDC ϵ2 is actually 

determined by the total volume of the solute domain. Therefore, the change of ϵ2 in Fig. 

9 can be related to the volume change in Fig. 6a. In particular, as D increases from 4 to 5 

Å, ϵ2 becomes smaller initially and achieves a minimum around D = 5 Å. This is because 

the volume of solute domain becomes larger in this period. Note that the volume increment 

is simply because the dimension of the system is larger, while the torus surface actually 

becomes thinner and thinner. Thus, the volume becomes smaller later, despite of the further 

increment of the dimension D. Consequently, ϵ2 bounces up, and reaches a constant level for 

D = 6.5 Å and D = 7 Å, for which the volumes are almost the same.

Model II: In the Gaussian model, the dielectric function ϵG defined in (9) only depends on 

the position and radii of the atoms, and there is no molecular surface behind it. Thus, as one 

can see in Fig. 9, when D increases, the EDC ϵG is monotonically and slowly decreasing. To 

gain an in-depth understanding, we plot ϵG along a line passing two atom centers, see Fig. 

10. With fixed radii, the Gaussian distributions for two atoms are unchanged as D increases. 

Hence, the increment of D only affects the dielectric value in between two atoms, which is 

higher and higher. This is why the EDC ϵG behaves monotonically. For a very large D value, 

the Gaussian distribution is very close to the one for the one-atom system, for which σ = 0.9 

is known to be the optimal value. Consequently, for D = 6.5 Å and D = 7 Å, ϵG is quite close 

to ϵ2.

Model III: The EDC ϵsG of the super Gaussian model displays a similar pattern as ϵ2 of 

the two-dielectric model for most ϵgap values except the limiting case ϵgap = 80. However, 

the pattern of ϵsG is not solely determined by the volume inside the MMS isosurface, 

because ϵsG is a function of space—changing in between the minimal value ϵm = 1 and the 

maximal value ϵgap inside the solute domain. As Fig. 6b shows that the MMS generated 

isosurfaces are connected for D = 4, 4.5 and 5 (in Å). Then from D = 5.5 Å, the surfaces are 

disconnected and the four atoms are just isolated balls. Due to this topological change in the 

4-atom system, there is a significant change in ϵsG from D = 5 Å to D = 5.5 Å. Before 5.5 Å, 

as D increases from 4 to 5 Å, the volume of solute domain enclosed by the MMS isosurface 

increases, while the connecting surfaces along the edges of the tetrahedron shrink inward. 

This volume increment induces the decrement of ϵsG. It is interesting to note that ϵsG keeps 

decreasing from D = 5 Å to D = 5.5 Å. This does not necessarily mean the isolated balls 

at D = 5.5 Å have larger volumes than the connected MMS region at D = 5 Å. In fact, the 

volume at D = 5.5 Å is still large, because four balls are much fatter than those for a bigger 

D value. Moreover, with a fat enough ball, ϵsG has the potential to approximately reach its 

maximum, i.e. ϵgap. The combining effect of volume and ϵsG distribution determines the 

minimum of ϵsG in Fig. 9 for most ϵgap values. As D becomes even bigger, the radii of MMS 
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balls decreases so that ϵsG becomes larger. Also, for all ϵgap values, the EDC ϵsG is almost 

the same for both D = 6.5 Å and D = 7 Å. For the limiting case ϵgap = 80, it turns out that 

particular MMS shape does not affect ϵsG, because ϵgap = ϵs = 80. Basically, ϵsG just takes 

two values, one for a connected region and another for isolated balls.

In comparison of the EDC results of three models, we found that the Gaussian model is 

significantly different from the other two, because it is a surface free model. Two-dielectric 

and super Gaussian models share similar physics: the volume of solvent accessible region 

is determined by the size of the cavity in a convex manner, so that the dependence of the 

EDC on the cavity size is concave. Moreover, besides the MMS hypersurface function S r , 

the ϵsG is also affected by the adjustable parameters m, σ, and ϵgap. If one changes m or σ, 

the EDC lines of ϵsG in Fig. 9 will be shifted up or down, and the concave feature shall be 

the same. If one wishes to match ϵsG with ϵ2, Fig. 9 suggests that a larger ϵgap should be 

employed for a larger D. In other words, the optimal ϵgap depends on the size of the cavity.

2.4.3. Effective dielectric constant analysis in both water and vacuum 
phases—In our last EDC analysis, we consider both water and vacuum states in the 

solvent region. As we know, the electrostatic solvation free energy is calculated as the 

energy difference of the macromolecule in between the water and vacuum. Physically, 

the homogeneous or inhomogeneous dielectric distribution of the protein should remain 

unchanged in both states so that the energy difference makes sense. Consequently, the 

difference of ϵ r  should not depend on a particular dielectric model for the solute, but 

relates to the solvent domain and property.

For the following experiments, we calculate the EDC values in both water and vacuum 

phases. For this purpose, we need to explicitly specify the dependence of ϵ on the solvent 

dielectric constant for the three models. In both two-dielectric and Gaussian models, we thus 

have ϵ2 r , ϵs  and ϵG r , ϵs , respectively, while the super Gaussian model takes the form 

ϵsG r , ϵout . The EDC difference is defined as

Δϵ = Ω ϵ r , 80 − ϵ r , 1 d r

Ωd r
= Ωϵ r , 80 d r

Ωd r
− Ωϵ r , 1 d r

Ωd r
, (22)

where ϵ ∈ {ϵ2, ϵG, ϵsG}. We note that because one solves different PDEs, i.e., the PB 

equation in water phase and the Poisson equation in vacuum phase, the EDC difference may 

not have directly influence the electrostatic solvation free energy. Nevertheless, Δϵ  is still a 

useful quantity for investigating different dielectric models.

In Fig. 11, illustrations of three models in both states are depicted. For the two-dielectric 

model, ϵ2 r , 80  is discontinuous, while ϵ2 r , 1  is continuous because ϵm = 1 in the present 

study. If ϵm > 1, ϵ2 r , 1  is discontinuous too in the vacuum. For the Gaussian dielectric 

model, ϵG r , 80  is continuous in the water phase, but it is discontinuous in the vacuum 

phase, due to a surface-cut. In the proposed super Gaussian model, both ϵsG r , 80  and 
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ϵsG r , 1  are continuous, respectively, in the water and vacuum states. Another thing that can 

be observed in Fig. 11 is that inhomogeneous solute dielectric models will impact solvent 

region nearby. In particular, for the Gaussian model, the dielectric values near the protein are 

influenced by the parameter σ in the water phase. In the super Gaussian model, such values 

are affected by both m and σ for both water and vacuum phases.

We will consider the same four atom system of the previous study. For simplicity, we test 

only one case with D = 7 Å for computing Δϵ .

Model I: In the two-dielectric model, the molecular surface is generated by the MSMS 

package. Since ϵ2 r , 1 = 1 throughout the domain Ω, we have simply

Δ ϵ 2 = Ω ϵ2 r , 80 − 1 d r

Ωd r
= Ωϵ2 r , 80 d r

Ωd r
− 1 = ϵ2 − 1. (23)

For D = 7 Å, we have Δϵ2 = 78.0171 numerically, which is exactly one unit less than the 

EDC ϵ2 studied in the previous study.

Model II: For the Gaussian model, we consider several σ values, i.e., σ = 0.7, …, 1.3. 

According to (22), the EDC difference could be calculated by considering the water and 

vacuum phases separately. In the water phase, based on ϵG r  given in (9), the EDC value 

is within (77.13635, 79.54655). In the vacuum phase, when ϵG r  exceeds 20, a surface-cut 

is conducted to set dielectric constant as zero (Li et al. 2013b), see Fig. 11b. The EDC for 

the vacuum case is within (1.00738, 1.04756). By taking the difference, ΔϵG is within the 

range of (76.08879, 78.53918). Moreover, ΔϵG depends on σ significantly, see Fig. 12b. In 

the same figure, Δϵ2 = 78.0171 is shown as a constant line. From the parameter selection 

point of view, this figure shows again σ = 0.9 is an optimal value for the Gaussian model. 

This is because with D = 7 Å, four atoms are completely separated, so that the present result 

is consistent with a single atom study. However, from a different perspective, the dependence 

of ΔϵG on σ indicates that the Gaussian model negatively impacts on the dielectric value in 

the solvent region. The inhomogeneous model here is designed for the protein and should be 

confined within the solute. Unfortunately, this is not the case for the Gaussian model.

Model III: In the super Gaussian model, we also fix ϵgap = 80 for D = 7 Å. Different 

parameter values are tested for m ∈ {1, 2, …, 8} and σ ∈ {0.7, 0.8, …, 1.3}. By taking ϵout 

= 80 in the water and ϵout = 1 in the vacuum, we note that in Eq. (15), S r ϵin r  is simply 

canceled out when computing the EDC difference:

ΔϵsG = Ω ϵsG r , 80 − ϵsG r , 1 d r

Ωd r
= Ω79 1 − S r d r

Ωd r
. (24)

This is confirmed numerically. In Fig. 12a, ΔϵsG is plotted against σ for different m values. 

The vertical values change from 77.2054392274750 to 77.2054392279961, for which the 
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difference takes place at the tenth decimal place. Thus, the EDC difference is solely 

dominated by the MMS hypersurface function S r . With S r , the impact of the super 

Gaussian model is confined within the solute, as shown by the present EDC analysis.

Both the two-dielectric and the super Gaussian models yield a constant Δϵ . But this does 

not mean that the change of parameter values will have no impact on electrostatic solvation 

free energy in the super Gaussian model. For example, a different choice of (m, σ) pair will 

produce a different “bump” in the vacuum case in Fig. 11c. Such a bump near solute-solvent 

boundary is driven by a combined mechanism: away from atom centers ϵin becomes larger, 

while away from the protein, it will damp out ϵ to one. Because ϵin depends on (m, σ) the 

height and width of the bump depend on (m, σ) too. Moreover, since different PDEs will be 

solved in water and vacuum phases, the electrostatic solvation free energy will rely on (m, σ) 

in practice.

2.4.4 Discussions—In this subsection, we have carried out an effective dielectric 

constant (EDC) analysis for three cases, which helps us to understand the role of each 

parameter, including m, σ, and ϵgap, in the super Gaussian dielectric function ϵsG r . For 

the EDC difference studied in the third case, it is independent of these parameters, and just 

relies on the MMS hypersurface function S r . For the first case without involving S r , 

the impact of m and σ on the EDC ϵsG has been identified. A comprehensive EDC analysis 

has been conducted for the second case, which tells us more about parameters. Basically, 

with a fixed ϵgap, optimal m and σ can be established. Moreover, due to the influence of 

S r , the super Gaussian model behaves robustly with respect to m and σ, in the sense that 

the EDC will not change too much for different m and σ values. Furthermore, our analysis 

indicates that ϵgap, which determines the maximum of ϵsG r  inside the solute, should be 

larger when the size or volume of the cavity increases. For proteins without cavities, we 

usually recommend a small value, such as ϵgap = 2, which does not deviate too much from 

ϵm = 1 of the two-dielectric model. On the other hand, the selection of ϵgap for proteins with 

cavities is not an easy task in practical computations. In our opinion, physical considerations 

have to be taken into account, so that the super Gaussian PB model can capture as many 

atomic details as possible in the continuum electrostatics modeling.

For proteins containing cavities and channels, one critical issue on selecting ϵgap is whether 

a cavity is empty or filled with water molecules. Trapped water molecules tend to interact 

with the protein via either hydrogen bonds or Van der Walls forces. As a consequence of 

these interactions, the water molecules are considered to lose their flexibility. Thus, the 

cavity water could have a smaller dielectric constant in comparison to the bulk water, but 

it is still larger than that of the amino acids. Moreover, the size or volume of the cavity is 

also important. Depending on the cavity size, confined water molecules exhibit a different 

ability to reorient in response to the local electrostatic field which affects their rotational 

polarizability. This further alters the dielectric value. Furthermore, the situation becomes 

more complicated in the ion channel modeling, in which the Poisson equation is used to 

calculate the force encountered by permanent ions. In this scenario, besides dielectric values 

for the protein and bulky water, one also needs to specify ϵ for water in the pore even 
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in classical models. Physically, the dielectric value in the ion-channel shall be higher than 

that in regular cavities, owing to the mobility of ions. Therefore, the optimal ϵgap has to be 

determined based on a particular macromolecule, and varies for different systems. Ideally, 

in-depth physical investigation or biological simulation shall be carried out for selecting a 

proper dielectric value for cavities and pores. For instance, Brownian dynamics simulations 

have been conducted in Ng et al. (2008) to decide ϵ values for protein channels to be used in 

solving the PB equation.

3 Numerical algorithms

In this section, we discuss how to discretize the PB equation (16) and Poisson equation 

(17) in the proposed super Gaussian model. In solving the two-dielectric PB equation (1), 

special interface treatments (Zhou et al. 2006; Chen et al. 2011;Qiaoetal. 2006) are required 

for high order spatial discretizations, in order to handle the non-smoothness of the solution 

across the dielectric interface. Such a difficulty is simply bypassed in the smooth PB 

equation (16), because the solution now is C∞ continuous throughout the domain. However, 

the nonlinearity term 1 − S κ2sinh u  in (16) introduces additional challenges numerically. 

In particular, near the solute-solution boundaries, the MMS characteristic function S is 

changing from one for solute to zero for solvent (see Fig. 3a for an illustration). Thus (1 − 

S) is not completely zero at some places for which the two-dielectric model will treat them 

as solute domain. If such a place happens to be close to an atom center, the magnitude of 

the potential u is not small then. Consequently, sinh(u) will be exponentially large. Even 

though (1 − S) is very close to zero, sinh(u) could still be dominant in many cases. This 

yields the so-called nonlinear instability, which has been observed in other smooth PB 

models before (Zhao 2011, 2014). In present study, we will employ the analytical treatment 

introduced in Zhao (2014), Geng and Zhao (2013) to overcome the nonlinear instability 

within a pseudo-time framework.

Consider a uniform mesh in both space and time. Without the loss of generality, we 

assume the grid spacing h in all x, y, and z directions to be the same. Denote the time 

increment as Δt. For a function u at a grid point (xi, yj, zk) and time instant tn, we denote 

ui, j, k
n = u xi, yj, zk, tn .

3.1 Pseudo-time solution of the Poisson–Boltzmann equation

In the pseudo-time approach, a pseudo-time derivative will be added to the PB equation 

(Zhao 2011). Consequently, (16) becomes a time dependent PB equation

∂u
∂t = ∇ · ϵsG∇u − 1 − S κ2sinh u + Sρm, in Ω, (25)

with the same boundary condition (3). By using a trivial initial value u = 0, one numerically 

integrates (25) for a sufficiently long time period to stable state. The solution to the original 

nonlinear PB equation (16) is essentially recovered by the steady state solution of the 

pseudo-time dependent process (25).
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A first order time splitting scheme (Zhao 2014; Geng and Zhao 2013) will be employed for 

solving (25). The time stepping of (25) over the time interval [tn, tn+1] can be carried out in 

two stages

∂w
∂t = − 1 − S κ2sinh w , with wn = un (26)

∂v
∂t = ∇ · ϵsG∇v + Sρm, with vn = wn + 1 (27)

We then set un+1 = vn+1. The numerical solution un+1 differs from the direct solution of 

(25) by an error on the order one, i.e., O(Δt). A second order time splitting has also been 

developed in Zhao (2014), Geng and Zhao (2013), by dividing the process into three stages.

The nonlinear sub-system (26) is integrated analytically. For the region inside VdW balls 

with S r = 1, we do not need to solve this equation. We will just simply set wn+1 = wn. 

When S r < 1, the nonlinear term is calculated as (Zhao 2014)

wn + 1 = ln
cosh 1

2 1 − S κ2Δt + exp −wn sinh 1
2 1 − S κ2Δt

exp −wn cosh 1
2 1 − S κ2Δt + sinh 1

2 1 − S κ2Δt
. (28)

In the MMS generation, we have carefully filtered the results from the fast algorithm (Tian 

and Zhao 2014), so that the hypersurface function is strictly between 0 and 1, i.e., S ∈ [0, 

1]. Together with (28), this guarantees that the present PB algorithm is free of nonlinear 

instability.

3.2 Alternating direction implicit (ADI) scheme

A Douglas–Rachford type alternating direction implicit (ADI) scheme will be applied to 

solve the linear diffusion equation (27). To this end, an implicit Euler spatial-temporal 

discretization of (27) is formulated first

vi, j, k
n + 1 = vi, j, k

n + Δt δx
2 + δy

2 + δz
2 vi, j, k

n + 1 + ΔtSi, j, kQi, j, k (29)

where Qi,j,k is the fractional charge at grid point (xi, yj, zk), which is obtained by using the 

trilinear interpolation to distribute all charges in the charge density ρm. Here δx
2, δy

2 and δz
2 are 

the central difference operators along x,y and z directions respectively,

δx2vi, j, k
n = 1

ℎ2 ϵ xi + 1/2, yj, zk vi + 1, j, k
n − vi, j, k

n + ϵ xi − 1/2, yj, zk vi − 1, j, k
n − vi, j, k

n

δy2vi, j, k
n = 1

ℎ2 ϵ xi, yj + 1/2, zk vi, j + 1, k
n − vi, j, k

n + ϵ xi, yj − 1/2, zk vi, j − 1, k
n − vi, j, k

n
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δz2vi, j, k
n = 1

ℎ2 ϵ xi, yj, zk + 1/2 vi, j, k + 1
n − vi, j, k

n + ϵ xi, yj, zk − 1/2 vi, j, k − 1
n − vi, j, k

n

where we have dropped the subscript sG in the ϵ function for simplicity. In these finite 

difference discretizations, the dielectric function is needed on half grid nodes, such as 

ϵ(xi+1/2, yj, zk). Because the MMS hypersurface function is obtained numerically, we only 

know S function on grid nodes, i.e., Si,j,k = S(xi, yj, zk). In the present, we will first generate 

ϵsG on (xi, yj, zk) grid nodes. Then a linear interpolation at (xi, yj, zk) and (xi+1, yj, zk) is 

conducted for determining ϵ(xi+1/2, yj, zk).

In the ADI scheme, instead of solving a three-dimensional (3D) linear system, (29) is solved 

in x, y, and z directions alternatively

1 − Δtδx
2 vi, j, k

∗ = 1 + Δt δy
2 + δz

2 vi, j, k
n + ΔtSi, j, kQi, j, k

1 − Δtδy
2 vi, j, k

∗ ∗ = vi, j, k
∗ − Δtδy

2vi, j, k
n

1 − Δtδz
2 vi, j, k

n + 1 = vi, j, k
∗ ∗ − Δtδz

2vi, j, k
n

(30)

By eliminating the intermediate solutions v* and v**, one can show that the Douglas–

Rachford ADI Scheme (30) is a higher order perturbation of the implicit Euler scheme 

(29) (Zhao 2014). The overall temporal order is one, because both the time splitting and 

ADI schemes are first order accurate in time. For smooth solutions, the finite difference 

discretization has order two in space. Moreover, since only one-dimensional (1D) linear 

systems shall be solved in each stage of the ADI scheme (30) and such 1D systems are 

tridiagonal, the algebraic computation is very efficient based on the Thomas algorithm. The 

complexity of each time step is on the order of O(N), where N is the degree of freedom in all 

of x, y, and z directions.

We note that the same ADI scheme has been previously applied to solve the PB equation in a 

two-dielectric setting with a sharp interface (Geng and Zhao 2013) and in a coupled system 

(Zhao 2014), in which the MMS hypersurface S(x, y, z) is evolved in time as well. However, 

such an ADI scheme is conditionally stable for real proteins, even though the scheme is fully 

implicit. As to be illustrated in our numerical studies, with a C∞ dielectric setting, the ADI 

scheme now becomes unconditionally stable in protein studies.

3.3 Poisson equation in the vacuum phase

For the vacuum phase, ϵsG is calculated by (15) with ϵout = 1. With inhomogeneous 

dielectric values inside the protein, the Poisson equation (17) cannot be solved by the fast 

Poisson solver as in the two-dielectric PB model. Instead of solving the Poisson equation 

(17) as a boundary value problem, we will solve it via a pseudo-time approach too. This is 

motivated by the fact that there is usually a systematic error cancellation, when one applies 

the same algorithm for solving the PB equation in water phase and the Poisson equation in 

vacuum phase (Deng et al. 2018). Thus, we rewrite the Poisson equation (17) in the vacuum 

phase into a time dependent one
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∂u0
∂t = ∇ · ϵsG∇u0 + Sρm, in Ω. (31)

Then, the ADI discretization of (31) is exactly the same as that for Eq. (27).

However, we note that the convergence of the pseudo-time algorithm is much slower in 

the Poisson case in comparing with the PB case. This is probably because of the boundary 

condition (3). In the PB case, there is an exponential term in (3), which decays exponentially 

away from the protein. For the Poisson case, such decay is slow, because κ = 0 in (3) for the 

vacuum. Consequently, for the same domain size, the boundary data in the vacuum case is 

actually larger than that in the PB case. Hence, for the super-Gaussian studies with initial 

potential values being zero, the CPU time for solving the time dependent Poisson equation 

(31) is usually much larger than that for the time dependent PB equation (25).

3.4 Electrostatic free energy

After solving the time dependent PB and Poisson equations until the steady state, we denote 

the convergent solution, respectively, to be u(xi, yj, zk) and u0(xi, yj, zk), where (xi, yj, zk) is 

a grid node. To calculate the electrostatic free energy defined in (5), we first note that this 

definition is valid in super Gaussian model too, i.e.,

ΔG = 1
2

Ω
ρm u( r ) − u0( r ) d r = 1

2
Ω

Sρm u( r ) − u0( r ) d r . (32)

This is because the charge density ρm is nonzero only inside the VDW atoms, for which S 
always equals to one. In the present study, the electrostatic free energy is calculated based on 

grid node values

ΔG = 1
2 i j k

Qi, j, k u xi, yj, zk − u0 xi, yj, zk , (33)

where the summation is conducted for all (i, j, k) nodes for which Qi,j,k is nonzero, i.e., 

surrounding the singular charges in ρm. Moreover, electrostatic potentials u and u0 are 

usually rescaled by a constant 0.592183 corresponding to room temperature (298 K) so that 

they are in units of kcal/mol/ec.

4 Numerical validations

In this section, we will solve the PB equation on a sphere, for which an analytical solution 

of electrostatic free energy is available in a two-dielectric setting. This enables us to validate 

the proposed super Gaussian dielectric model and select model parameters, by an approach 

different from the EDC analysis. Numerically, we will also verify the convergence and 

stability of the pseudo-time ADI method.

4.1 Benchmark problem

Consider a single charge q at the center of a sphere with radius r0. Here we take q = 1ec 

and r0 = 2 Å, and assume the center being the origin of our coordinate system. An analytical 
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solution of electrostatic free energy ΔG is admissible if we assume a two-dielectric setting: ϵ 
= ϵm inside the sphere and ϵ = ϵs outside. By taking ϵm = 1 and ϵs = 80, we have

ΔG = − q2

2
1
ϵm

− 1
ϵs

1
r0

ec2/Å

= − q2

2
1
ϵm

− 1
ϵs

1
r0

× 332.06364 kCal/mol
= − 81.9782 kCal/mol

(34)

4.2 Modal validation and parameters

In the super Gaussian model, we take ϵout = 80 for the water phase. Then the ADI method 

is employed for solving the pseudo-time PB equation (25). The computational domain is 

taken as Ω = [−8, 8]3. On the boundary ∂Ω, the Dirichlet boundary condition (3) is assumed 

in a single charge setup. By using a initial condition u = 0, Eq. (25) will be numerically 

integrated until the steady state. Similarly, in the vacuum state with ϵout = 1, the pseudo-time 

Poisson equation (31) will be solved by the ADI method with the corresponding boundary 

condition. Then, the electrostatic free energy can be computed by (33). Numerically, the 

same spacing is used in all three directions h = Δx = Δy = Δz. We will take h = 0.5 as in most 

PB computations.

In the previous section, we have discussed about the choice of m, σ and ϵgap through the 

Effective Dielectric Constant (EDC) analysis. The availability of exact free energy value for 

a sphere in a two-dielectric setting provides another means to examine these parameters. 

We note that with a different dielectric setting, our super Gaussian results will not converge 

to the analytical value, which is based on a two-dielectric setting. However, it makes sense 

to adjust parameters so that the new dielectric model could produce energy values that are 

comparable to the two-dielectric model. This is particularly convenient if one wants to use 

it to replace an existing two-dielectric PB solver in a software package. For this reason, we 

will simply take ϵgap = 2, which gives the least difference in comparing with ϵm = 1 within 

the sphere.

By considering m ∈ {1, 2, …, 8} and σ ∈ {0.9, 1.0, …, 1.3} for the super Gaussian function 

ϵsG, the steady state energies are shown in Fig. 13. The exact value −81.9782 kCal/mol is 

also shown for a reference. A few pairs of (m, σ) are found to produce good approximations 

to the two dielectric model, i.e., (1.2, 5), (1.2, 6), (1.2, 7), (1.2, 8) and (1.3, 3). Among them, 

we will mainly focus on m = 3 and σ = 1.3 in the following free energy calculations, to 

avoid using a large m.

4.3 Numerical convergence and stability

By fixing m = 3, σ = 1.3, and ϵgap = 2, we investigate the performance of the pseudo-time 

ADI algorithm. By taking Δt = 0.01, we first examine the steady state convergence. The 

time history given in Fig. 14a shows that ΔG is increasing monotonically before the steady 

state is reached. The stopping criterion issue of the pseudo-time ADI algorithm has been 

discussed in Zhao (2014) for two-dielectric PB equation. The same stopping criteria will be 

adopted in the present study. In parciular, the computation will stop if either t ≥ Te or the 
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absolute energy difference in between two time steps is less than a tolerance TOL. For the 

present inhomogeneous dielectric medium, the steady state is reached fairly quick, around 

Te = 5, which is consistent with the existing pseudo-time PB studies based on two-dielectric 

media (Zhao 2014; Geng and Zhao 2013; Wilson and Zhao 2016). We will take Te = 10 and 

TOL=10−3 in the following studies, unless specified otherwise.

We next examine the temporal accuracy of the ADI algorithm. With Te = 10, free energies 

are generated by using different Δt, see Fig. 14b. Obviously, as Δt becomes smaller and 

smaller, the free energy approaches certain limiting value. The vertical range is actually 

quite small. In practice, Δt = 0.01 is enough to produce a reliable energy estimate.

We finally examine the stability of the pseudo-time ADI algorithm. We note that in a 

two-dielectric setting, this ADI algorithm does not achieve the unconditional stability, 

even though it is fully implicit (Geng and Zhao 2013). In particular, to fulfill the stability 

requirement, one has to choose Δt ≤ h2/20 in protein studies (Geng and Zhao 2013). Because 

Δt is small, the resulting algorithm could be inefficient, when Te is large. With the C∞ 

continuous ϵ function in both water and vacuum states, the pseudo-time ADI algorithm is 

unconditionally stable in the super Gaussian model. We demonstrate this by taking some 

large Δt values and conduct each computation with 10, 000 time steps. As can be seen in 

Fig. 14c, the free energy value with a large Δt could be slightly different. Nevertheless, the 

ADI algorithm remains stable for any large Δt.

5 Biological application

In this section, we further explore the performance of the super Gaussian PB model and ADI 

algorithm by studying free energies of protein systems. We first discuss how a real protein 

is implemented in the super Gaussian model. Then, we test different parameter values for a 

particular protein. With a reasonable choice of domain and parameters, we study solvation 

free energies for a set of proteins. We finally consider a protein with cavities to demonstrate 

how cavities can be represented via inhomogeneous dielectric distributions. In all studies, a 

large enough computational domain Ω is assumed and a uniform mesh with h = Δx = Δy = 

Δz = 0.5 is adopted.

5.1 Protein structure preparation and simulation setup

We have collected a set of proteins from the RCSB protein data bank (PDB). In this 

collection, the proteins consist of at least 500 atoms. Usually, we download the PDB 

format which is a standard representation for macromolecular structure data obtained from 

X-ray diffraction or NMR studies. This format preserves the details of water molecules, 

ions, nucleic acids, ligands etc. With the aid of the PDB2PQR program from the APBS 

package, we extract three important data for each atom involved in the protein, i.e., centers 

r i = xi, yi, zi , radius Ri, and partial charge qi, for i = 1, 2, … Nm. These data are stored in 

two files, one with extension .xyzr which contains numerical values for r i and Ri in four 

columns. Another file with extension .xyzq contains numerical values for r i and qi.
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The density function of the super-Gaussian model defined in (11) and (12) depends on 

the centers and radii of all atoms. It is time-consuming if one computes the density of 

every atom by using the entire domain Ω. In fact, the density of the ith atom gis r  decays 

quickly away from its center r i, so that one does not need to calculate this function in 

the far field. By carefully examining the numerical truncation so that it will not affect the 

subsequent computations, we have introduced an influence domain for each atom, which 

is defined as a cubic box with dimension [−d, d]3 and centered at r i. See Fig. 15 for an 

illustration. In particular, in our computations, we consider maximum relative variance σ 
as 1.3. The influence domain dimension depends on the radius Ri and the order of the super-

Gaussian function m. An empirical function is found to be satisfactory in our computations: 

d = 2Ri 1 + m
−m
2 , which takes its maximum d = 4Ri at m = 1. As a monotonically 

decreasing function, d will be very close to its asymptotic value lim
m ∞

2Ri 1 + m
−m
2 = 2Ri

when m is large. In other words, for m = 1 (in Gaussian density function), the dimension 

of the influence cube is four times of the atomic radius (Ri) and as m → ∞, the cube’s 

dimension shrinks down to double of the radius.

5.2 Solvation free energies of proteins

For studying our super Gaussian model on proteins, we first experiment the ADI algorithm 

with ϵsG on a sample protein, say 1ajj (PDB id) for different m and σ. Since 1ajj does not 

contain any cavity inside the molecular surface, we set ϵgap = 2. The performance of the 

pseudo-time ADI with ϵsG is recorded in Fig. 16. Here we considered Δt = 0.01 and Te = 30. 

The solvation free energy for 1ajj at different (m, σ) values ranges from [−1457.2, −1230.6]. 

For a fixed σ, the increment of m from 1 to 3 gives rise to a higher energy, while the energy 

declines slowly as m is even larger. Numerically, the energy difference between m = 3 and m 
> 3 is not significant, which justifies our usual choice of m = 3. Nevertheless, the choice of σ 
does have a strong impact on energies, as shown in Fig. 16. Without comparing with results 

from other computational models, we will continue to use σ = 1.3 for simplicity.

We next investigate the pseudo-time ADI algorithm by fixing m = 3, σ = 1.3 and ϵgap 

= 2. We first consider the steady state convergence by using Δt = 0.01. The time-lapse 

data is displayed in Fig. 17a. Here the stopping criteria of the numerical computation are 

the same as those described in Sect. 4.3. The solvation free energy for the protein 1ajj 

reaches the steady state after Te = 8. Next, for the temporal accuracy in protein 1ajj case, 

we consider Te = 30 and different time steps in Fig. 17b. As Δt decreases the solvation 

free energy clearly approaches certain limiting value. We also experiment the stability of 

the pseudo-time dependent ADI scheme with ϵsG for the protein 1ajj. For this purpose, we 

take Δt ∈ {0.1, 0.25, 0.5, 1, 2, 4, 8} and Te = 104 Δt to validate stability in Fig. 17c. The 

result shows that the super-Gaussian ADI scheme is unconditionally stable for the protein 

1ajj case. At last, we examine the spatial convergence in 17d for different h values. Again, 

the convergence is obvious under the limit of h goes to zero. The limiting value is of course 

different from the one at h = 0.5 as in other PB algorithms, but they are fairly close in the 

present study. So, we follow the convention in this field to choose a coarse mesh with h = 0.5 

to avoid a large computational cost.
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Another parameter which could affect the free energy calculations is the domain size (Hage 

et al. 2018). We considered different domain sizes in Table 1, in which the first one is 

generated automatically by our PB package. Apparently, the domain size does not affect the 

solvation free energy calculation for the PB model with appropriate boundary conditions. 

Here, a large enough Te = 30 is used so that the steady state solutions are reached in all three 

tested domain sizes.

We next study a set of 23 proteins with the size (number of atoms) ranging from 519 to 

2809. These proteins do not contain any cavity either. Therefore, we fix ϵgap = 2. Regarding 

the (m, σ) pair, we keep (3, 1.3) in ϵsG. The pseudo-time dependent ADI experiment is 

conducted with Δt = 0.01 and Te = 10. The free energies calculated by the super-Gaussian 

model are listed in Table 2. For a reference, we also show two literature results, i.e., the 

pseudo-time coupled nonlinear solvation (CNS) model (Zhao 2014) with Δt = ℎ2
18  and h = 

0.5 Å, and the two-component regularized PB (RPB) model (Geng and Zhao 2017) with h 
= 0.25 Å. In the CNS model (Zhao 2014), the solvation free energy including both polar 

and apolar parts is reported, while in the RPB model (Geng and Zhao 2017), electrostatic 

free energy of the two-dielectric PB equation is reported. Thus, these energy results are not 

necessarily close to the present ones. For example, for larger protein size, if the number of 

atoms exceed 2000 then the absolute energy difference between the super-Gaussian and RPB 

exceeds 350kcal/mol. Nevertheless, as can be observed from Fig. 18, the energies of three 

models are quite consistent with each other. We also note that in Fig. 18, one protein behaves 

significantly different from other proteins of the similar size, i.e., 1fxd. This is because this 

protein has the lowest total partial charge, as shown in Table 2.

5.3 Protein with cavities

In this section, we investigate a protein with interior cavities and discuss how ϵgap should be 

adjusted to compensate the cavity impact on the electrostatic free energy. It is known in the 

literature that the cavities in protein could be filled with water molecules. Experimentally, 

it is very challenging to identify the water molecules inside the protein cavities with the 

crystallographic analysis. Computationally, these cavity water molecules play very important 

roles in solvation analysis. It is thus of great interest to numerically test the impact of cavity 

water molecules on electrostatic free energy in the present super Gaussian PB model.

In our numerical experiment, we focus on a protein IL-1β (PDB ID 2nvh), whose cavity 

structure has been well studied in the literature. It has been confirmed by using the electron 

density experiments that water molecules are present in several cavities of IL-1β (Quillin 

et al. 2006). In particular, there are a few cavities with volumes in the range of 16–45 Å3 

containing a total of 6 water molecules (Quillin et al. 2006). Moreover, there is a cavity with 

volume 39 Å3, for which electron density could not determine if water molecules exist in 

this cavity or not.

To study cavities with and without water molecules, we will process the protein IL-1β as 

illustrated in Fig. 19. We first note that in the protein preparation procedure discussed above, 

all water molecules will be removed in the final files, i.e., in .xyzr and .xyzq files, while all 

water molecules are included in the .pqr file produced by the PDB2PQR web server http://

Hazra et al. Page 28

J Math Biol. Author manuscript; available in PMC 2023 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1/


nbcr-222.ucsd.edu/pdb2pqr_2.1.1/. Furthermore, the atom IDs of six cavity water molecules 

are reported in David (2015). This enables us to identify these six molecules in the .pqr 

file and insert the corresponding hydrogen and oxygen atoms (located in the cavities) into 

2nvh.xyzr and 2nvh.xyzq. These modified files will be called 2nvh-w.xyzr and 2nvh-w.xyzq. 

Computationally, we have generated two sets of workable files: one without water in cavities 

(2nvh) and another with 6 water molecules in some cavities (2nvh-w).

After adding water molecules, we note that one cavity with volume 39 Å3 is still empty. To 

see this, we compare the super-Gaussian dielectric function ϵsG of 2nvh and 2nvh-w in Fig. 

20. Here we take ϵgap = 7. By choosing a zoomed x-y cross section, we are able to capture 

three cavities of 2nvh in one contour plot (left figure). After adding water molecules, two of 

three cavities are filled so that ϵ values are reduced in these two locations (right figure). The 

cavity in the center remains unchanged in both 2nvh and 2nvh-w cases, which is the only 

one visible for 2nvh-w.

We then study the energy difference between two structures 2nvh and 2nvh-w based on the 

super-Gaussian PB model. A methodical mutation analysis (Takano et al. 2003) indicates 

that inserting one water molecule into cavities generally produces 1–2 kcal/mol energy gain. 

This helps us to quantitatively examine our inhomogeneous dielectric model with cavity 

modeling. By using the same parameter pair (m, σ) = (3, 1.3), we first take ϵgap = 2. The 

energy gain of 2nvh-w over 2nvh is around 6 kcal/mol for inserting six water molecules, 

which agrees with the theoretical estimate very well.

We have further studied the energy difference for ϵgap = 2, 3, …, 8. Because the energy gain 

is on the order of a few kcal/mol, a large stopping time is chosen in the ADI algorithm so 

that numerical precision will not influence the present conclusion. In particular, we take Te 

= 100, Δt = 0.01, and TOL = 10−3. Table 3 shows the energy gains of 2nvh and 2nvh-w 

in kcal/mol for different ϵgap. The idea behind this study is that we can compensate the 

absence of water molecules in cavities by raising the dielectric value ϵgap of the cavity water 

in the super Gaussian model. Consequently, one can represent the water molecules without 

physically adding them by just using a larger ϵgap value in the dielectric model. Indeed, as 

can be shown in Table 3, the energy gain becomes smaller and smaller as ϵgap is increased. 

At round ϵgap = 7, the difference between the solvation free energies of 2nvh and 2nvh-w is 

almost zero, i.e., around 0.1 kcal/mol. Our recommendation is that for proteins with cavities 

but one does not know if there are water molecules inside or not (such as the one shown 

in Fig. 20), one can model water molecules computationally by setting ϵgap = 7 or higher. 

We also believe that the magic number ϵgap = 7 for this example relates to the cavity size or 

volume. This parameter setup works well if the volume of the cavities is approximately less 

than or equal to 40 Å3. If we have large volume cavities, we may need to increase the value 

of ϵgap.

For a comparison, the classical two-dielectric PB model is employed to solve 2nvh and 

2nvh-w as well. The energy gain by using ϵm = 1 and ϵs = 80 is found to be 3.06 in Table 

3. We note that the two-dielectric model does not have a modeling power to alter the energy 

gain for cavities. The use of a different ϵm value will affect all atoms, not just the cavity 

regions. This is different from the case of the super Gaussian dielectric model. In the super 

Hazra et al. Page 29

J Math Biol. Author manuscript; available in PMC 2023 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1/


Gaussian case, we can change ϵgap for cavities without affect dielectric values of other atoms 

too much. This is an advantage of the super Gaussian model over the traditional PB models.

The computational costs of the super Gaussian and two-dielectric models are reported in 

Table 4. Here we report the CPU time for solving time-dependent Poisson equation in 

vacuum phase and time-dependent nonlinear PB equation in water phase, as well as the total 

CPU time. In general, the two-dielectric PB model is faster than the super-Gaussian model, 

and a few remarks are in order. First, the same pseudo-time ADI algorithm is employed in 

the both models for simplicity. For the super Gaussian computation, we set h = 0.5, TOL = 

10−3, Te = 100, and Δt = 0.01. However, for the two-dielectric setting, the ADI algorithm 

is conditionally stable so that a smaller Δt = 0.0025 has to be chosen. Consequently, for 

solving the PB equation only, the CPU time of the two-dielectric model is larger than that 

of the super Gaussian model. Second, we note that for the super Gaussian model, because 

of the smooth dielectric profile, a nonlinear instability could be experienced (Zhao 2014). 

That is why the pseudo-time ADI algorithm is used in the present study, which treats the 

nonlinear term analytically. However, a different numerical algorithm can be utilized for the 

two-dielectric model. In that case, the two-dielectric model could be much more efficient 

than super Gaussian model. Third, for the super Gaussian dielectric model, more CPU 

time is spend on the vacuum phase than on the water phase. As discussed previously, this 

should be because of the boundary condition (3). In the water phase, the potential decays 

exponentially away from the protein, while in the vacuum phase, such decay is much slower. 

Thus, it takes a long time to converge in the vacuum phase for the super Gaussian model. 

For two-dielectric model with ϵm = 1, we have ϵ = 1 throughout the domain Ω so that 

the FFT based fast Poisson solver can be applied. The corresponding computational cost is 

negligible.

6 Conclusion

In this paper, a super-Gaussian dielectric model is proposed for the electrostatic solvation 

free energy calculation. As an extension of the existing Gaussian dielectric Poisson–

Boltzmann (PB) model, the dielectric property of protein cavity regions is modeled 

explicitly. Moreover, the super-Gaussian dielectric distributions are kept to be smooth when 

the protein is transferred from water state to vacuum state. A geometrical analysis based on 

the effective dielectric constant (EDC) theory is conducted to study the parameters of the 

super-Gaussian PB model, and compare the new model with two-dielectric and Gaussian 

dielectric models. Free energy calculations of a one-atom system and various proteins are 

carried out to validate the new model. Particular attention is paid on a protein system with 

multiple cavities.

Comparing with the existing models, one advantage of the super-Gaussian dielectric model 

is that it guarantees the ϵ function to be C∞ continuous in both water and vacuum states 

in free energy computation. Computationally, a pseudo-time alternating direction implicit 

(ADI) algorithm is employed for solving the nonlinear PB equation of the super-Gaussian 

model. This ADI algorithm is fully implicit, but was found to be conditionally stable in 

dealing with two-dielectric media (Geng and Zhao 2013). Thanks to the smooth dielectric 

Hazra et al. Page 30

J Math Biol. Author manuscript; available in PMC 2023 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distributions of the super-Gaussian model, the same ADI algorithm is unconditionally stable 

in the present study.

Another advantage of the super-Gaussian model is an explicit definition of ϵgap, which 

opens new avenues to study proteins with internal cavities. An appropriate ϵgap mimics 

water molecules in empty cavities, because the corresponding energy will be the same as the 

one obtained by putting actual water molecules inside cavities. This compensate the cavity 

uncertainty which is commonly faced in experiments, i.e., to detect whether a particular 

cavity is empty or filled will water. In future studies, we plan to investigate more cavity 

proteins and study even large cavity size, e.g. 64–108 Å3. With these studies, we hope to 

provide a better range of cavity water dielectric constant. Also, it is desired to establish a 

relation between the volume of the interior cavities and maximal dielectric constant for the 

cavity water molecules.
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Appendix

Theorem The density function for the ith atom is defined by

gis( r ) = exp −
r − ri

2

σ2Ri2

m

where ri and Ri are the center and radius of the ith atom, respectively. Also, here r  is the 
position vector, σ is the relative variance and m is the power of super-Gaussian function. 
Suppose σ = 1 for simplicity. Next, the total density function of a biomolecular system is 

defined as g0
s = 1 − 1 − gis( r )  and the dielectric function of that system is modeled as

ϵG
s = ϵmg0

s + ϵs 1 − g0
s .

Here ϵm and ϵs are the dielectric constants of the solute and solvent respectively. Then we 

have that lim
m ∞

ϵG
s = ϵ2 at the solute and solvent regions where ϵ2 is the dielectric function of 

the classical two-dielectric model.

Proof Let us consider three cases where the position vector is either inside or outside the 

solute, or on the Van der Walls (VDW) molecular surface.

•
Case I: There exists an atom (say ith atom) such that r − ri < Ri or, 

r − ri
Ri

< 1. 

In this case lim
m ∞

r − ri
Ri

2m
= 0. Hence lim

m ∞
exp −

r − ri
Ri

2m
= 1, which 
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means gis r = 1 and g0
s r = 1. Therefore, if r − ri < Ri for some i (inside the 

VDW surface), ϵG
s = ϵm.

•
Case II: For all atoms, we have r − ri > Ri or 

r − ri
Ri

> 1 for any i. In this 

case lim
m ∞

r − ri
Ri

2m
= ∞. So, lim

m ∞
exp −

r − ri
Ri

2m
= 0, which means that 

gis( r ) = 0 for all i. Hence g0
s( r ) = 0. Therefore, if r − ri > Ri for all i (outside 

the VDW surface), ϵG
s = ϵs.

• Case III: In the last case, the position vector r  has to be located on the 

VDW surface. Without the loss of generality, we assume that r  is on the 

sphere boundary of the ith atom and does not locate inside any other atoms. 

So, we have r − ri = Ri or 
r − ri

Ri
= 1. And, for any j ≠ i, r − rj > Rj. 

In this case lim
m ∞

exp −
r − ri

Ri

2m
= 1

e , which means gis( r ) = 1
e . For any j 

≠ i, gjs( r ) = 0. Hence, g0
s( r ) = 1

e . Therefore, on the VDW surface, we have 

ϵG
s = ϵmg0

s + ϵs 1 − g0
s = ϵm

1
e + ϵs 1 − 1

e = 50.9375 for ϵm = 1 and ϵs = 80.

In all cases, the new dielectric model converges to a two-dielectric model based on the VDW 

surface

lim
m ∞

ϵG
s ( r ) = ϵ2( r ) =

ϵm, r is inside the VDW surface
ϵm/e + ϵS(e − 1)/e, r is on the VDW surface
ϵs, r is outside the VDW surface.

(35)
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Fig. 1. 
a A single atom is immersed into water, b density function of one atom for m = 1 

(Gaussian), m = 4 (super-Gaussian of order 4) and c dielectric distribution of the single 

atom system calculated by Eq. (9) for Gaussian and super-Gaussian (order 4) densities
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Fig. 2. 
The dielectric distributions generated by the super Gaussian functions for a one-atom 

system. In all figures, the red line represents the piecewise constant of the two dielectric 

model
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Fig. 3. 
a The hypersurface functions S and (1 − S) of the solute-solvent region along a straight 

line. b The blue and red curves depict the dielectric function ϵsG r  of the super Gaussian 

model in the water and vacuum phases respectively. c The blue and red curves depict the 

dielectric functions ϵsG r  and ϵG r  of the Gaussian model in the water and vacuum 

phases respectively
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Fig. 4. 
Comparison of effective dielectric constant of Gaussian dielectric model with different σ
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Fig. 5. 
a The EDC of the super-Gaussian density function with power m = 3, b the EDC for σ = 1.0 

and σ = 1.1, c–e Comparison of area differences between the compensated dielectric curves 

ϵG
s r − ϵ2 r  for σ = 1.0, 1.1, 1.2 and m = 1, 2, 3
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Fig. 6. 
a The solvent excluded surface (SES) generated by the MSMS package for D=4, 4.5, …, 7 

Å. b The minimal molecular surface (MMS) for D=4, 4.5, …, 7 Å
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Fig. 7. 
a Four-atom system in water solvent, where each atom-center is placed at the vertex of a 

regular tetrahedron of side D = 4 Å. b Effective Dielectric Constant ϵsG for different m and 

σ with ϵgap = 2
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Fig. 8. 
a Four-atom system in water solvent, where each atom-center is placed at the vertex of a 

regular tetrahedron of side D = 7 Å. b Effective Dielectric Constant ϵsG for different m and 

σ with ϵgap = 80. c Cross-section of ϵsG for the model 8(a) which contains only two atoms
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Fig. 9. 
Comparison of EDC curves for ϵsG (super Gaussian model based on MMS), ϵ2 (two-

dielectric model based on MSMS) and ϵG (Gaussian model)
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Fig. 10. 
Gaussian dielectric model ϵG with σ = 0.9 for 4-atom cross section which consists of two 

atoms only. D varies from 4 to 7 Å
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Fig. 11. 
Dielectric models a ϵ2: discontinuous in water phase and continuous in vacuum phase, b 
ϵG: continuous in water phase and discontinuous in vacuum phase (“surface-cut”), c ϵsG: 

continuous in both water and vacuum states
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Fig. 12. 
a EDC difference ΔϵsG for different m ∈ {1, 2, …, 8} and σ ∈ {0.7, 0.8, …, 1.3}, b ΔϵG for 

different σ and Δϵ2. In both the cases, D = 7 Å
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Fig. 13. 
Solvation free energy (in KCal/mol) for σ ∈ {0.9, 1.0, …, 1.3} and m ∈ {1, 2, …, 8} with h 
= 0.5 Å
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Fig. 14. 
Pseudo-time ADI algorithm for one atom system. a Steady state convergence; b Temporal 

accuracy; c Stability. The unit of solvation free energy is KCal/mol
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Fig. 15. 
Influence domain
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Fig. 16. 
Solvation free energy (in KCal/mol) for protein 1ajj, m ∈ {1, 2, …, 8} and σ ∈ {0.9, 1.0, …, 

1.3}
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Fig. 17. 
Pseudo-time ADI algorithm for the protein 1ajj. a Steady state convergence; b Temporal 

accuracy; c Stability; d Spatial convergence. The unit of solvation free energy is KCal/mol
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Fig. 18. 
Comparing the super-Gaussian results with coupled nonlinear solvation (CNS) and 

regularized PB (RPB) models. Along x-axis, the proteins are listed according to the order of 

Table 2 and along y-axis the solvation free energies (in KCal/mol) are plotted
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Fig. 19. 
Inserting 6 water molecules in the protein IL-1β (PDB ID 2nvh)
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Fig. 20. 
The super-Gaussian dielectric distribution with ϵgap = 7. a 2nvh, b 2nvh-w
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Table 1

Impact of domain-size to free energy computation for the protein 1ajj

Size of domain Δx Δt ΔG in KCal/mol

[−9, 28] × [−13.5, 26] × [−19, 24] 0.5 0.01 −1428.66

[−11, 30] × [−15.5, 28] × [−21, 26] 0.5 0.01 −1428.49

[−13, 32] × [−17.5, 30] × [−23, 28] 0.5 0.01 −1428.33
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Table 2

Solvation free energy for proteins in kCal/mol

No. of atoms PDB ID   Total partial charge   Ref. Zhao (2014)   Ref. Geng and Zhao (2017)   Present

519 1ajj   −5 −1260.6 −1139.48 −1428.66

573 2erl   −6   −919.8   −952.36 −1013.59

576 1bbl  1   −977.2   −988.40 −1186.34

596 1vii  2   −893.6   −902.31 −1031.52

648 1cbn  0   −255.5   −303.33   −398.27

667 2pde  3   −881.6   −820.97   −992.62

702 1sh1  0   −819.2   −753.99   −962.02

729 1fca   −7 −1221.8 −1204.44 −1337.86

795 1ptq  3   −869.6   −873.32 −1057.50

809 1uxc  4 −1151.7 −1139.25 −1363.33

824 1fxd   −15 −3347.0 −3321.39 −3073.39

832 1bor   −3   −928.8   −853.47 −1120.57

858 1hpt   −1   −790.4   −811.56 −1019.58

898 1bpi  6 −1283.4 −1304.37 −1450.90

903 1mbg  6 −1328.7 −1353.31 −1501.26

997 1r69  4 −1048.2 −1088.62 −1225.83

1187 1neq  4 −1710.3 −1731.71 −1991.43

1216 451c   −1   −978.5 −1025.66 −1219.22

1272 1a2s   −9 −1842.5 −1921.20 −1951.26

1435 1svr   −2 −1750.6 −1711.11 −2039.08

1478 1frd   −11 −2881.3 −2862.50 −2867.16

2065 1a63   −1 −2423.9 −2374.41 −2881.10

2809 1a7m  7 −2141.3 −2160.34 −2527.79
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Table 3

Energy gain in 2nvh-w in kcal/mol

  ΔG for 2nvh   ΔG for 2nvh-w Energy gain

Super-Gaussian

ϵgap = 2 −2718.29 −2712.59   5.70

ϵgap = 3 −2571.37 −2568.22   3.15

ϵgap = 4 −2451.26 −2448.38   2.88

ϵgap = 5 −2347.51 −2345.69   1.82

ϵgap = 6 −2256.74 −2255.82   0.92

ϵgap = 7 −2176.10 −2175.96   0.14

ϵgap = 8 −2103.60 −2104.16 −0.56

2-dielectric −2960.40 −2957.34   3.06
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Table 4

CPU time (in hours) in free energy calculation of 2nvh and 2nvh-w

2nvh 2nvh-w

Poisson PB Total Poisson PB Total

Super-Gaussian

ϵgap = 2 1.70 0.38 2.08 1.67 0.22 1.89

ϵgap = 3 1.66 0.22 1.88 1.71 0.22 1.93

ϵgap = 4 1.72 0.23 1.95 1.74 0.23 1.97

ϵgap = 5 1.79 0.22 2.01 1.68 0.24 1.92

ϵgap = 6 1.79 0.23 2.02 1.67 0.24 1.91

ϵgap = 7 1.72 0.22 1.94 1.68 0.23 1.91

ϵgap = 8 1.93 0.24 2.17 1.71 0.23 1.94

2-dielectric 0.05 1.70 1.75 0.03 1.85 1.88
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