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Acute lung injury (ALI) describes the injury to endothelial cells in the lungs and associated vessels due to various factors.
Furthermore, ALI accompanied by inflammation and thrombosis has been reported as a common complication of SARS-COV-2
infection. It is widely accepted that inflammation and the cytokine storm are main causes of ALI. Two classical anti-inflammatory cell
types, regulatory T cells (Tregs) and M2 macrophages, are theoretically capable of resisting uncontrolled inflammation. Recent
studies have indicated possible crosstalk between Tregs and macrophages involving their mutual activation. In this review, we
discuss the current findings related to ALI pathogenesis and the role of Tregs and macrophages. In particular, we review the
molecular mechanisms underlying the crosstalk between Tregs and macrophages in ALI pathogenesis. Understanding the role of
Tregs and macrophages will provide the potential targets for treating ALI.
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FACTS

● Regulatory T cells (Tregs) and macrophages are responsible for
acute lung injury (ALI) progression through pro-/anti-inflam-
matory cell balance.

● Tregs and macrophages influence each other to potentiate
their roles in ALI.

● Based on the mutual interaction, new application of conven-
tional drugs and novel insights of ALI treatment are
generated.

OPEN QUESTIONS

● The specific Treg–macrophage crosslink in different stage of
ALI needs more investigations.

● The curative effects of application of conventional drugs and
new immunological therapy should be performed in precise
clinical verifications.

● The proper control of Treg or M2 macrophage expansion in
ALI treatment expects further studies.

INTRODUCTION
Acute lung injury (ALI) is a common pulmonary injury character-
ized by dyspnea and cyanosis due to insufficient oxygenation [1].
Diffuse alveolar damage (DAD) is one of the most common
manifestations of ALI, as well as in COVID-19 [2, 3]. From
histological observation, it can be divided into three stages
according to the pathological process: the acute or exudative

stage, the organizing or proliferative stage and the late or fibrotic
stage. The first stage involves an acute inflammatory response.
Increased blood flow and vascular permeability cause ischemia
and even hemorrhage of alveolar vessels. Diapedesis and
chemotaxis of blood cells, as well as the transcytosis of proteins,
can decrease the colloid osmotic pressure of blood, resulting in
edema [4]. Emigrating cells and proteins begin to form a hyaline
membrane, which is a characteristic of this stage [5, 6]. After that
the membrane grows and develops into granulation tissue in the
organizing stage, due to the proliferation of fibroblasts in the
pulmonary interstitium [7]. In the last stage, fibrosis of granulation
tissue is accompanied by deposition of extracellular matrix
proteins. Then, reorganization of connective tissue and vessels
leads to the scar formation [7–9]. Nowadays ALI is widely regarded
to associate with COVID-19. In the disease, SARS-COV-2 infects the
lung by attaching to angiotensin-converting enzyme and causes a
series of related symptoms, including alveolar injury, abnormal
vasculature, and pulmonary edema, as verified through post-
mortem examination [10].
At the cellular level, several immune cells play a role throughout

the pathological process of ALI. Macrophages and regulatory
T cells (Tregs) are two typical immune cell types. As the first cell to
detect stimuli, macrophages are essential for the initiation of
immune cascades, which can either contribute to or inhibit the
development of ALI [11, 12]. In addition, Tregs, which attenuate
excessive responses, have been reported to prevent the progres-
sion of the disease by acting on type II alveolar cells [13, 14]. These
findings confirm the involvement of these two cell types in ALI
pathogenesis. Therefore, it can also be assumed that they
mutually interact with each other. In this review, we briefly
discuss the roles of macrophages and Tregs in ALI. Furthermore,
we discuss and summarize the crosstalk between macrophages
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and Tregs in ALI and potential clinical treatments related to their
interaction, including new therapies in COVID-19.

TREGS AND THEIR FUNCTION IN ALI
Tregs are specific T cells that work for immunosuppression to
prevent self-reactivity. According to their origin, they can be
divided into natural Tregs (nTregs) and induced Tregs (iTregs),
which are derived from the thymus and naïve T helper cells,
respectively [15].
nTregs are more common. They possess more regulatory

functions than iTregs and express CD4+ CD25+ Foxp3+ surface
biomarkers [16, 17]. For production, CD4+ T cells receive a
relatively weak T cell receptor (TCR) signal, allowing the
generation of CD25 and Foxp3. Then, specific cytokines, such as
IL-2, stimulate the maturation of nTregs [18, 19]. nTreg differentia-
tion is also controlled by other factors, like TGF-β. Recent findings
have revealed that TGF-β helps the oriented differentiation to
Tregs but not effector T cells, through regulation of several
transcription factors [19–22]. Foxp3 gene is critical and character-
istic for the function of nTregs because it acts as a regulator of
Treg immunosuppression by upregulating the expression of other
surface molecules, including CD25 and CTLA-4. It also aids in
inhibiting the transcription of several key immune factors, such as
IFN-γ [19, 23, 24]. Several clinical trials suggest that patients with
Foxp3 mutations are more likely to develop inflammatory
disorders, while restoration of Foxp3 function can compensate
for the loss of Foxp3 function [25–27].
iTregs play a relatively small role in ALI. They have two main

types, Tr1 and Th3 cells (both are Foxp3−). Rather than Foxp3,
CD49b and LAG-3 are characteristic biomarkers of Tr1 cells [28].
Tr1 cells perform their function mainly by secreting IL-10 or TGF-β,
both of which are potent inhibitors of inflammation [28–30].
Research on Th3 cells starts from oral tolerance [31, 32]. Current
investigations are still relatively limited. However, some evidence
indicates that LAP is a Th3 cell biomarker, induced by TGF-β [33].
Another distinct type of iTregs resemble Tregs, with CD4, CD25
and Foxp3, but they are still generated from peripheral
CD4+ T cells [34]. Their reproduction is often induced by TGF-β
and IL-2 in response to normal stimulation, such as the binding of
microbiome metabolites or food antigens to Toll-like receptors
(TLRs) [34–36].
In ALI, Tregs often cooperate with Th17 cells, and a proper

Th17/Treg balance is important for this collaboration. When
STAT3-RORγt dominates in CD4+ T cells, more Th17 cells are
differentiated and inflammation will be promoted [37, 38]. In this
condition, the level of IL-17 secreted by Th17 cells is higher than
the level of IL-35, a marker of Tregs [39]. IL-17 binds to specific
receptors on the alveolar epithelium, resulting in the release of
chemokines such as CXCL8. Neutrophils respond to these
cytokines and are recruited to the injury site [40]. In addition, IL-
17 acts directly on monocytes to facilitate their maturation and
extravasation, leading to macrophage recruitment [41]. As a result,
several immune cells infiltrate into the lesion. IL-17 also assists in
oxidative free radical production, which causes further damage to
alveolar epithelial cells and microvessel endothelial cells [42].
Finally, detrimental changes that occur in the exudative phase of
ALI, i.e., increased blood flow, immune cell infiltration and edema,
are exacerbated [43]. In contrast, if the Th17/Treg ratio is
decreased due to higher transcription of STAT5-Foxp3, multi-
faceted compensatory mechanisms are initiated [37, 38]. First,
Tregs work against Th17 cells by producing IL-13 when IL-33 is
released from the injured epithelium. IL-13 can inhibit the
inflammatory effects of monocytes by preventing macrophage
differentiation and infiltration [44]. In addition, Tregs inhibit
neutrophil function and promote tissue regeneration via a vital
mechanism. They secrete TGF-β, which induces neutrophil
apoptosis to decrease the number of neutrophils and create a

favorable environment for tissue repair [45–47]. Tregs also directly
activate type II alveolar cells, leading to their proliferation and
differentiation into type I alveolar cells to achieve regeneration of
the alveolar epithelium [13].
When the Th17/Treg ratio is balanced, Tregs are also modulated

by other mediators, such as an important enzyme, protein kinase
B (PKB/Akt). This enzyme has a dual effect in ALI. In the early stage
of ALI, infection decreases Akt phosphorylation in pulmonary
vascular endothelial cells, leading to elevation of FoxO1/3a level.
The increase in FoxO1/3a expression diminishes cell‒cell junction
protein level, leading to leakage of pulmonary vessels and edema,
which aggravate ALI [48]. However, inactivation of Akt elevates
Foxp3 expression and the number of Tregs bursts. Finally, Tregs
perform their function to inhibit neutrophil infiltration and achieve
alveolar injury resolution to ameliorate ALI [49]. Therefore,
inhibitors of Akt, such as phosphatase and tensin homolog
deleted on chromosome 10 (PTEN), effectively ameliorate ALI by
activating Tregs in the final stage [50].
In short, Tregs play a significant role in alleviating self-reactivity

in ALI by regulating immune reactions and preventing auto-
immune disorders, and in vivo cellular factors and drugs that
impact these cells can be used to treat ALI. Th17/Treg balance is
dominant in the process, which is influenced by extracellular
cytokines and intracellular enzymes [37, 38, 48]. Th17 cells, which
are proinflammatory, produce IL-17 to activate immune cells
through transcriptional regulation, ultimately inducing excessive
recruitment of immune cells and lung injury [51]. In contrast, Tregs
secrete TGF-β and subsequently promote resolution either directly
or indirectly through neutrophil deregulation or type II alveolar
cell stimulation [13, 45, 47] (Fig. 1).

MACROPHAGES AND THEIR FUNCTION IN ALI
Macrophages are myeloid cells that are essential for innate
immunity. According to their location in lung, they are classified
to two types, i.e., alveolar macrophage and interstitial macro-
phage [52]. The former is present on the inner surface of alveoli
and exposed to the outer environment directly, playing a major
role in the first line of defense in immune reactions [53]. The
latter is often associated with airway, nerves and vessels, but
there is still lack of relevant research [54–56]. Originally,
monocytes circulate in the blood, where they mature and
undergo chemotaxis [49]. Upon recognition of damage-
associated molecular patterns (DAMPs) or pathogen-associated
molecular patterns (PAMPs) by TLRs/NOD-like receptors (NLRs),
macrophages become polarized and produce several cytokines,
which perform different functions in inflammation [57, 58].
Macrophages are polarized towards the M1 or M2 phenotype
under different conditions, and M1 and M2 macrophages
produce different cytokines [59]. The polarization of M1
macrophages, which express the surface molecules CD80,
CD86 and CD16/32, can be triggered by IFN-γ or lipopolysac-
charide, which promote antigen elimination. Once activated, M1
macrophages secrete proinflammatory cytokines such as TNF-α
or IL-6 [60]. In terms of inflammation energetics, M1 macro-
phages increase glycolysis and promote the pentose phosphate
pathway, resulting in rapid production of ATP for immune
reactions [61, 62]. Considering inflammatory mediators, promo-
tion of the pentose phosphate pathway also results in the
production of more NADPH, which facilitates the production of
nitrogen intermediates and ROS [63]. This process also inhibits
the tricarboxylic acid (TCA) cycle by downregulating the
expression of isocitrate dehydrogenase and increasing the level
of lipid metabolites such as leukotriene and IL-1β, which are also
important pro-inflammatory factors [64]. M2 macrophages,
which are activated by IL-4 and IL-13, are responsible for
inflammation resistance and tissue repair [60]. M2 macrophages
produce anti-inflammatory cytokines, such as TGF-β or IL-10,
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which can also induce Treg differentiation. M2 macrophages
depend more on persistent energy generation by oxidative
phosphorylation and fatty acid oxidation, which are important
for inflammation resolution [65]. Unlike M1 macrophages, TCA
cycle is intact in M2 macrophages, preventing the accumulation
of TCA intermediates and the overexpression of proinflamma-
tory factors [64, 66].
Differentiation of macrophages depends on the progression of

ALI. In the early acute phase, upon recognition of microbial
products, M1 macrophages are activated to initiate inflammation
by secreting abundant inflammatory substances, including IL-1
and TNFα [67]. These two cytokines help to recruit neutrophils to
the lesion through MyD88 and NF-κB activation [68, 69]. Influx of
neutrophils potentiates antigen elimination and self-protection,
but these cells also attack normal tissue. For example, they secrete
many types of proteinases and ROS, which injure alveolar
epithelial cells and reduce the levels of surface proteins. Both of
them are important for gas exchange [70]. They also cause blood
vessel damages by impairing vessel permeability. Therefore, more
fluid flows into the alveoli and lung interstitium and leads to
edema [71, 72]. Polarization towards the proinflammatory M1
phenotype is regulated by many factors. Studies have demon-
strated the important roles of suppressor of cytokine signaling 3
(SOCS3), NF-κB and so on in this process [70, 73]. In addition, c-Jun
N-terminal kinase (JNK) is interesting because it has a dual effect
on the polarization of macrophages. While JNK can promote the
development of ALI along with the activation of p38 mitogen-
activated protein kinase (MAPK), the expression of JNK and
transcription of c-Myc are important for M2 polarization [74, 75]. In
the organizing and fibrotic stages, M2 macrophages dominate. M2
macrophages influence injury resolution in two ways. First, M2
macrophages promote alveolar fibrosis by secreting specific
cytokines, such as IL-1 and TGF-β. IL-1 attracts fibrocytes, while

TGF-β induces the conversion of fibroblasts to myofibroblasts. M2
macrophages also produce and cause the deposition of collagen,
resulting in the formation of fibers that cover the lesion on the
alveolar epithelium [76–78]. Second, M2 macrophages induce
alveolar regeneration directly. They can act on type II alveolar cells
to promote type I cell differentiation and surfactant secretion [79].
Overall, both M2 and M1 macrophages are essential for the
progression of ALI.
Therefore, alveolar and interstitial macrophages are tightly

controlled during ALI progression and recovery. First, cytokines
produced by T helper 1 cells, such as IFN-γ, aid the polarization of
macrophages towards the M1 phenotype, and M1 macrophages
secrete cytokines, such as IL-1 and TNFα, for transcriptional
regulation [68]. These two cytokines promote neutrophil recruit-
ment and cause damage to alveoli and pulmonary microvessels
[69]. When recovery is initiated, anti-inflammatory functions are
induced. T helper 2 cells participate in this process and secrete IL-4
and IL-13. They promote the polarization of macrophages towards
the M2 phenotype [60]. M2 macrophages can secrete TGFβ and IL-
10. These two cytokines promote granulation tissue formation and
subsequent fibrosis by acting on fibrocytes and fibroblasts on the
alveolar wall. On the other hand, M2 macrophages directly induce
type II cell proliferation and tissue regeneration [79]. As a result,
cooperation between normal and abnormal repair processes leads
to disease recovery (Fig. 2).

CROSSTALK BETWEEN TREGS AND MACROPHAGES IN ALI
Extracellular factors act on Tregs to influence cytokine
secretion, affecting macrophage cell fate in ALI
As an essential contributor to inflammation inhibition, Tregs are
involved in inflammation resolution and repair of lung tissue and
therefore prevent ALI progression. Firstly, they prevent disease

Fig. 1 Role of T cells in ALI. Under the effects of various cytokines, CD4+ T cells differentiate into different cell types. IL-2 initiates the
transcription of STAT5 and Foxp3 to induce Treg conversion, while IL-6 is necessary for the activation of Th17 cell-specific transcription factors.
In addition, PKB/Akt acts intracellularly to prevent Treg differentiation. Tregs secrete TGF-β, inducing neutrophil death or preventing
neutrophil extravasation. Tregs also stimulate the proliferation and differentiation of type II alveolar cells (AECII) to achieve direct repair of the
alveolar epithelium. In contrast, Th17 cells produce IL-17 and exacerbate inflammation by inducing neutrophil infiltration and monocyte
maturation. The role of monocytes in ALI is also inhibited by Tregs. IL interleukin, TGF tissue growth factor, STAT signal transducer and
activator of transcription, RORγt retinoid-related orphan nuclear receptor γt, Foxp3 forkhead box protein 3.
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progression by controlling inflammatory cell fate. For example,
IL-33, which is produced by the lung epithelium after injury,
could prevent the progression of ALI by promoting the
proliferation of Tregs. Specifically, IL-33 binds to ST2 receptor
on the surface of Tregs and stimulates secretion of IL-13 by them
[44]. One study reported the possible mechanisms by which IL-
13 regulates ALI progression. First, Tregs secrete IL-13, which
consequently stimulates the production of IL-10 by macro-
phages. Autocrine release of IL-10 by macrophages induces the
activation of Rac1, which is important for cytoskeleton remodel-
ing and cell engulfment. Vav1 is a type of GTP-exchange factor
that is essential for normal Rac1 function. It has also been
reported that knockout of Vav1 in macrophages diminishes the
effect of IL-10, revealing that Vav1 mediates IL-10-induced
apoptosis and internalization by regulating Rac1. In conclusion,
an IL-13-IL-10-Vav1-Rac1 axis might exist in ALI and may inhibit
ALI progression [80]. Secondly, in addition to promoting macro-
phage elimination, Tregs also influence the direction of macro-
phage polarization. Studies have found that when Tregs and
monocytes are cultured together, the level of proinflammatory
cytokines released by M1macrophages decreases, while the level of
some biomarkers of M2 macrophages increases. These changes are
regulated by multiple cytokines secreted by Tregs [81]. One major
mechanism underlying these changes is the regulation of IL-10
expression. IL-10 expression is correlated with the phosphorylation
of GSK3β and PTEN, which are both mediators of macrophage
polarization [82, 83]. Evidence shows that Tregs reverse the
decrease in pGSK3β, GSK3β and pPTEN levels, while an IL-10
antibody eliminates this effect. Specifically, knockdown of GSK3β
blocks PTEN phosphorylation. Therefore, it is concluded that IL-10
produced by Tregs acts on macrophages by promoting the
phosphorylation of GSK3β and the subsequent phosphorylation
of PTEN, polarizing macrophages towards the M2 phenotype [83].

Tregs also block the transformation of macrophages to the M1
phenotype. During this process, Tregs affect the function of
CD8+ T cells and inhibit their production of IFN-γ, which is a
modulator of M1 polarization. As a result, the inhibition of sterol
regulatory element binding protein 1 (SREBP1) by IFN-γ is relieved,
and fatty acid synthesis is restored. Consequently, normal fatty acid
oxidation is maintained, and metabolic pathways in M2 macro-
phages are promoted [84].
The regulation of macrophages by Tregs also needs contribution

of several factors. Kynurenine, an amino acid generated by IDO-
mediated tryptophan decomposition, activates aryl hydrocarbon
receptors (AHRs) on Tregs and stimulates immunosuppression by
macrophages [85]. Evidence has shown that upon stimulation,
dendritic cells produce IDO, which initiates kynurenine synthesis in
these cells [86]. It is also known that specific amino acids induce
immunosuppression through the AHR pathway. In recent studies,
AHR was knocked out in Tregs, and the results revealed that the
number of M2 macrophages decreased, judged from the levels of
surface markers. The results demonstrate that IDO-kynurenine-AHR
signaling may regulate Treg-mediated macrophage activation [85].
The possible mechanism may involve transcriptional regulation of
Akt and p-GSK3β and consequent IL-8 release [87]. Another factor
is netrin-1, produced by neuroepithelial cells. It was found to
regulate inflammation, including by acting on Tregs, in recent
years. The reduction in the netrin-1 level is a characteristic of ALI
and further exacerbates the disease [88]. Furthermore, netrin-1
binds to the A2b receptor and increases IL-10 content to induce
the polarization of macrophages towards the M2 phenotype, as
mentioned above [88]. Studies in mice have also found that
administration of netrin-1 rescues tissue necrosis and leukocyte
infiltration by activating and increasing the number of Tregs; thus
its effect in controlling macrophage polarization may be achieved
by increasing the number of Tregs [89].

Fig. 2 Role of macrophages in ALI. The progression of ALI is influenced by alveolar and interstitial macrophage polarization. T helper
1-mediated production of IFNγ induces M1 polarization, with increased transcription of NF-κB, SOCS3, JNK and MAPK. M1 macrophages
promote neutrophil recruitment either through phagocytosis and subsequent cell damage or through cytokine secretion and transcription
factor activation. IL-4 and IL-13 polarize alveolar macrophages towards the M2 phenotype by regulating the transcription of JNK and c-Myc.
M2 macrophages secrete cytokines that induce fibrosis or stimulate new cell regeneration. Both processes promote tissue repair. IFN
interferon, TNF tissue necrosis factor, MyD88 myeloid differentiation primary response 88, NF-κB nuclear factor-kappaB, JNK c-Jun N-terminal
kinase, AECII type II alveolar epithelial cell.

T. Guan et al.

4

Cell Death Discovery             (2023) 9:9 



In conclusion, several factors are responsible for the regulatory
effect of Tregs on macrophage polarization by binding to specific
receptors on Tregs. After binding, transcriptional alterations in
Tregs lead to the secretion of cytokines, which act on alveolar
macrophages to cause cell death or M2 phenotype transformation
[80, 83, 87]. Besides, through another pathway that regulates the
direction of polarization, Tregs suppress the ability of CD8+ T cells
to secrete IFNγ, which is an inhibitor of M2 polarization [84]. When
the number of M2 macrophages increases, pulmonary repair is
strongly affected. On the one hand, cytokines induce myofibro-
blast activation [76]. On the other hand, type II alveolar cell
stimulation leads to epithelial regeneration [79]. In addition to
type II alveolar cells, M2 macrophages are also responsible for
endothelial cell restoration and pulmonary angiogenesis. Through
regulation of ion channels, excessive fluid in alveoli and
interstitium is released to relieve edema of the lungs [90] (Fig. 3).

Th17/Treg balance is regulated by many factors secreted
directly or controlled by M2 macrophages in ALI
Conversely, macrophages also alter the activation of Tregs by
releasing special proteins. Two of them are TGFβ and retinal
dehydrogenase (RALDH). High level of TGF-β has been detected in
lung tissue macrophages, and its antibody can block Foxp3
expression in T cells [91]. Although this finding suggests that TGF-
β promotes Treg differentiation, the detailed mechanism remains
to be explored. It is currently known that TGF-β promotes Foxp3
expression by preventing the translocation of DNA methyltrans-
ferase I, which methylates the Foxp3 gene and downregulates its
expression under normal conditions. Moreover, TGF-β targets
conserved noncoding sequence-1 (CNS1), an enhancer of the
Foxp3 gene, to elevate Foxp3 gene expression [91, 92]. RALDH is

now considered as a synergist of TGF-β [91]. It is responsible for
the synthesis of retinoic acid, which also acts on CNS1 by binding
to related receptors. Retinoic acid has other anti-inflammatory
roles. For example, it decreases RORγt level to control the
differentiation of CD4+ T cells or increases the production of
arginase 1 from dendritic cells. Both mechanisms ultimately
promote Treg generation [91, 93–96]. Another pivotal protein is
maresin1, which is the oxidative metabolite of docosahexaenoic
acid (DHA), in macrophages. It regulates M2 macrophage
polarization in ALI by relieving the downregulation of PPARγ
[97]. However, a recent study proposed a new function for
maresin1. The results showed that maresin1 treatment decreased
the Th17/Treg ratio in ALI and increased the levels of anti-
inflammatory cytokines [98]. Based on these findings, it can be
assumed that maresin1 also regulates the differentiation of naïve T
helper cells into Tregs and then promotes M2 macrophage
polarization.
Tregs can also have the opposite regulatory effect on

macrophages. The most typical example is high-mobility group
box-1 protein (HMGB1), a significant contributor to inflammation
secreted by macrophages [99]. Experiments in animal models
have proved that HMGB1 exerts lethal effects by increasing
proinflammatory cytokine content and pulmonary epithelium
permeability to allow inflammatory cell infiltration [100]. HMGB1
not only directly interferes with the expression of Foxp3 and CTLA-
4 on the Treg surface or avoids the release of Treg-mediated
cytokines [100], but also acts on macrophage and promotes
inhibiting its function on Treg differentiation. Loss of HMGB1
causes inactivation of phosphatase and tensin homolog (PTEN)
and recruitment of β-catenin to the nuclei of macrophages,
initiating a kinase cascade in which activated PI3K phosphorylates

Fig. 3 Regulation of macrophage polarization by Tregs. This regulatory effect is controlled by many factors. For example, IL-33 binds to ST
receptors on the Treg surface to promote IL-13 secretion, which subsequently induces apoptosis of alveolar macrophages and prevents
further inflammation. On the other hand, netrin 1 and kynurenine both promote M2 macrophage polarization. Netrin 1 binds to A2b receptors
on Tregs to induce IL-10 secretion. Kynurenine binds to AHRs and modulates transcription in Tregs, increasing the production of IL-8.
Furthermore, the production of IFNγ, which inhibits M2 polarization, is inhibited by Tregs. As a result, Tregs can both prevent injury and
promote tissue repair by regulating macrophage function. Kyn kynurenine, IFNγ interferon γ, IL interleukin, SREBP1 sterol regulatory element
binding protein 1.

T. Guan et al.

5

Cell Death Discovery             (2023) 9:9 



PDK1 and subsequently Akt to promote TGF-β release [101]. This
process ultimately leads to the production of more Tregs. The
HMGB1-PTEN axis is considered as an important pathway for
immunosuppression.
In summary, M2 macrophages determine the fate of

CD4+ T cells directly through molecular signaling or indirectly
through regulating the function of dendritic cells. However, the
common mechanism among all related pathways is upregulation
of RORγ and Foxp3, which is important for Treg differentiation
[98]. As a result, Tregs initiate alveolar epithelium regeneration by
activating proliferative type II alveolar cells. Tregs also inhibit
pulmonary damages caused by neutrophils, creating a suitable
niche for resolution [13, 45]. A recent study also indicated that
Tregs repaired the pulmonary microcirculation through endothe-
lial cell restoration [102]. Conversely, other factors like HMGB1
repress the anti-inflammatory effects of M2 macrophages and
induce the production of more Th17 cells. This cell type attracts
neutrophils to aggravate epithelial and endothelial injury in the
lungs [103, 104]. The shift in the Th17/Treg balance is dependent
on the stage of ALI (Fig. 4).

Treatments for ALI related to Treg-macrophage crosstalk
The prevention and treatment of ALI, a common complication in
clinic, is a focus of the medical community. Recently, some new
drugs have been studied, with a deeper demonstration about the
relationship between the two cells:

1. An antibiotic, Houttuynia cordata polysaccharides (HCP), can
protect the lung from acute inflammation or injury by
affecting cell production, proliferation and migration from

Peyer’s patch to the lung. It alters the transcriptional factors
in CD4+ T helper cells to control its differentiation
orientation. STAT3-RORγt is inhibited, while STAT5-Foxp3 is
elevated. More Tregs are produced. The antibiotic also helps
the specific migration of Tregs in gut mucosa to lung [105].

2. Preclinical experiments have proven the effectiveness of
some drugs in ALI treatment, especially via regulation of Treg-
macrophage crosstalk. For instance, luteolin, curcumin, and
progranulin all could promote Treg differentiation and further
control macrophage polarization [106–108]. In ALI mouse
models, administration of these drugs increased the percen-
tage of Tregs and the level of IL-10, resulting in domination of
M2 macrophages. As a result, diffused lung inflammation in
ALI was alleviated, indicating that these three anti-
inflammatory drugs exerted therapeutic effects by ameliorat-
ing cell infiltration and cytokine secretion [106–108].

3. Another potential therapeutic target is maresin1, which has a
dual effect on cell crosstalk. On the one hand, maresin1
prevents PPARγ inhibition caused by infection and induces
M2 macrophage polarization, which might be beneficial for
Treg production [97]. Moreover, maresin1 can promote Foxp3
expression while inhibiting RORγt expression in CD4+ T cells
[98]. In this case, transcriptional regulation promotes Treg
differentiation, which is affected by M2 polarization. In fact,
studies have also shown that maresin1 application can
successfully alleviate lung inflammation in ALI [98].

DISCUSSION
ALI, which results from exacerbation of lung inflammation, is the
major cause of clinical respiratory failure. Although Tregs and M2
macrophages both exist in its pathogenesis, several factors hinder
their function. For example, during ALI, there are several micro
vesicles in lung epithelium, which contain specific caspases or
miRNAs. They are responsible for stimulating pro-inflammatory M1
macrophages, not M2 type [109, 110]. Considering T cell
differentiation, once stimulated by pathogens or inflammatory
cytokines, macrophages would release HMGB1. This protein can
not only act on macrophage itself and prevent its assistance in
Treg differentiation, but also directly impair Treg induction
[101, 111]. Moreover, recent study has found a much higher IL-
17 level than Foxp3, revealing a serious imbalance between Th17
and Treg [39, 112, 113]. Therefore, it is confirmed that pro-
inflammatory Th17 cells still dominate despite of Treg existence. In
all, in most time of ALI, neither M2 macrophages nor Tregs
could burst.
ALI is also a cause of death in COVID-19, indicating its

seriousness. Because our understanding of ALI pathogenesis is
limited and poor hemoperfusion accompanied by insufficient
tissue oxygenation is the most fatal consequence of this disease,
current treatments aim to restore oxygen delivery to the vascular
system [114, 115]. For example, the conventional treatment for
COVID-19 involves increasing respiratory efficiency, including
improving ventilation and promoting vasodilation of pulmonary
micro vessels in lesions [116, 117]. With further research, some
new treatment methods target the underlying inflammatory
process. The most common of them for COVID-19-induced ALI is
the administration of corticosteroids, such as dexamethasone,
which has been proven to decrease interleukin release and
neutrophil activation [118, 119]. Recently, the role of Tregs and
macrophages and appropriate therapies have been explored. On
the one hand, Th17/Treg balance also exists in COVID-19 infection,
modulating the disease. Th17-type reaction is initiated by IL-17.
Once it is released from Th17 cell, it attracts neutrophils and
macrophages and starts a pro-inflammatory cytokine cascade
[44, 120]. On the other hand, studies have revealed the
significance of Treg immunosuppression in COVID-19 cases

Fig. 4 Regulation of T cell differentiation by M2 macrophages. M2
macrophages produce various factors and modulate the transcrip-
tion of genes, including Foxp3, whose expression is increased, and
RORγt, whose expression is decreased. These alterations ultimately
lead to Treg differentiation. One important factor, retinoic acid (RA),
also activates arginase in dendritic cells and achieves synergism.
Other inhibitory factors include HMGB1, which prevents Treg
polarization by interfering with induction by M2 macrophage or
directly decreases the levels of Treg-related transcription factors.
HMGB1 high-mobility group box-1 protein, Akt/PKB protein kinase
B, Mar1 maresin 1, DNMT DNA methyltransferase, CTLA4 cytotoxic T-
lymphocyte-associated protein 4, CNS1 conserved noncoding
sequence-1, RA retinoic acid, TGF tissue growth factor, p-PTEN
phosphorylated phosphatase and tensin homolog deleted on
chromosome 10, PI3K phosphatidylinositol 3-kinase.
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[121]. About macrophages, postmortem examination found that
the cells that were invaded by SARS-COV-2 virus expressed a high
level of IL-6 [121]. IL-6 cooperates with TGF-β to induce
differentiation of CD4+ T cells to Th17 type, instead of Tregs
[122, 123]. Other discoveries reveal the possible mechanism of
COVID-19 pathogenesis involving Tregs and macrophages. A
recent study has found that in COVID-19-induced ALI, Tregs
express more Notch4, which is an inhibitor of tissue repair-related
cytokines and proteins [124]. In addition, after infected by SARS-
COV-2, over-activated JAK-STAT pathway would promote infiltra-
tion of inflammatory macrophages and suppress recruitment of
Tregs [125]. In the new epidemic, some novel immunotherapies
targeting Treg/macrophage might be more appropriate than
conventional drug therapy.
Stem cell transplantation is a new thinking for Treg or M2

macrophage restoration. The mechanism is to harness the
pluripotency of stem cells to induce more Tregs or macrophages.
Now the role of placenta-derived mesenchymal stem cell (pcMSC)
and human pluripotent stem cell (hPSC) has been claimed. They
can be used to generate more Tregs and M2 macrophages,
respectively [126, 127].
However, the novel therapies also need cautiousness. Treat-

ment of ALI must notice a “balance” between Tregs and M2
macrophages. As a routine in immune reaction, spatial or
temporal burst of anti-inflammatory cells are both detrimental.
Excessive expansion of Tregs and M2 macrophages induce violent
immunosuppression, which is common in cancer. Now it has been
known that too many Tregs inhibit IFN-γ and subsequently
produce more M2 macrophages [84]. In this case, they can
enhance immune evasion, allowing progression of cancer
metastasis. Therefore, they also provide the potential for pathogen
invasion, with an extremely weak immune elimination. From
another aspect, too many induced M2 macrophages would
potentiate tissue fibrosis, causing the loss of normal organ
function [128]. In terms of time, a long persistence of Tregs or
M2 macrophages also counteracts. If Tregs maintain a large
number until injury resolution, they would initiate a cascade in
macrophages and lead to their apoptosis, so both M1 and M2
macrophages are unable to be generated [80]. The result is that
the injured tissue cannot be repaired normally, with a high risk of
new pathogen invasion. Another study shows that normal
physiological roles of macrophages are deprived when they
survive until tissue resolution. What’s more, they also lose their
surface markers, which characterize them as M1 or M2 type [129].
That means, long-lived macrophages would become “anergic.”
Unfortunately, there is no definitive way to control immuno-

suppression accurately, but some factors may provide some
evidence. Firstly, IL-18 has the capacity to reduce the ability of
Tregs, by decreasing the level of Foxp3 transcriptionally and
inhibiting the ubiquitination of the protein. It has proved that the
cytokine could impede the anti-inflammatory effects of Tregs in
ALI [130]. Therefore, application of human recombinant IL-18 has
the potential to reverse the negative aspects of overactive
immunosuppression. Moreover, therapy of IL-18 should also
notice other factors, which symbolize low immunity. No clear
indicators have been suggested, but some proteins like arginase-1
and IDO may be suitable due to their implication of immunosup-
pression [131]. It is assumed that, if the number of specific
proteins is higher than normal, IL-18 should be used earlier to
avoid the impact of low immunity, and vice versa. However,
because of lack of clinical evidence, an accurate guide of arginase-
1/IDO level is still unknown, which needs more investigations.
In another dimension, “anergy” of Tregs and M2 macrophages

should also be handled. Research found that IL-10 played an
important role in Treg-induced macrophage suicide, so applica-
tion of IL-10 antibody may be appropriate to avoid the effect [80].
Besides, a protein called signal regulatory protein α (SIRPα) is
responsible for alveolar macrophage paralysis. It would exert the

function through modulating macrophage microenvironment and
subsequent intrinsic gene expression [129, 132–134]. In this way,
blockage of SIRPα is necessary to keep ability of macrophages.
However, there are also no clear indicators which imply initiation
of therapy. IL-10 or SIRPα themselves may act as indicators, but
more studies should be planned.
Or in another way, controlling the time and dose of treatment

strictly could also avoid low immunity-related side effects. For
instance, about pcMSC transplantation, a clinical study showed
that if COVID-19 patients received (200 ± 20) × 105 stem cells on
Day 0 and Day 4 in a course of treatment, the symptoms
associated with ALI was greatly alleviated, including much lower
mortality, higher PaO2/FiO2 ratio and lower lactate dehydrogenase
(LDH) and C-reactive protein (CRP) level. All of them indicate that
this administration schedule may be suitable [127].

CONCLUSION
ALI, a common respiratory complication in clinic, results in the
exacerbation of primary diseases such as COVID-19. However,
clinicians have not yet identified truly effective measures for
preventing ALI. In recent years, studies on the role of immune
dysfunction in the pathogenesis of ALI have provided some new
insights. Two important participants in ALI are Tregs and
macrophages, whose roles in ALI progression and mitigation have
been fully elucidated in many studies. In this paper, we summarize
findings considering the mutual interaction between these two
immune cell types to propose new therapeutic approaches for ALI.

1. Basically, the dominant Tregs in ALI are peripheral
CD4+ CD25+ Foxp3+ Tregs. Their major role is to secrete
various cytokines that affect related gene transcription in
M0 macrophages to induce M2 polarization. M2 macro-
phages exert anti-inflammatory effects.

2. The Th17/Treg balance is involved in the whole course of
ALI. A higher Th17/Treg ratio promotes injury, while tissue
repair is often associated with a lower Th17/Treg ratio.
Factors produced by M2 macrophages promote the Treg
fate, which skews the balance in favor of repair.

3. Some plant extracts or intracellular substances have been
proven to exert anti-inflammatory effects in ALI through
regulation of the Treg-macrophage interaction. Moreover,
new specific immunological methods are being explored
and are expected to lead to novel therapeutic strategies to
ALI in COVID-19.

4. In treatment targeting ALI, the extent of anti-inflammatory
cell expansion is also important to control the degree of
immunosuppression. Although current studies are relatively
insufficient, we summarize existing results and suggest
some possible ways to avoid excessive expansion of Tregs
and M2 macrophages.

However, some questions still exist in the field. For example, we
just build a general framework about interaction between Tregs
and macrophages based on current research, which is not
accurate enough. To provide more details about the relationship,
more exploration about specific Treg-macrophage crosslink in
every stage of ALI is necessary, for a better understanding of
immune mechanism underlying the disease. For development of
new therapy, on the one hand, the effectiveness and potential
side effects of new drugs are still uncertain, so clinical trials in
different phases are necessary. In the same way, immunological
therapy using stem cells needs more investigations, to define an
actually proper therapeutic regime for ALI. On the other hand, the
level of Tregs and M2 macrophages should be regulated
accurately to avoid adverse consequences which are due to
excessive immunosuppression. To achieve this goal, more studies
are also required.
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Overall, this review includes a comprehensive discussion about
the roles of Tregs and macrophages in ALI pathogenesis. We
retrospectively review previous research on the potential link
between Tregs and macrophages and determine the mode and
function of their interaction. This review is of great significance for
further exploration of methods to prevent or treat ALI from the
aspect of immunosuppression, which will help to reduce the
incidence and mortality of ALI in clinic. Crucially, it will also benefit
the discovery of drugs for the treatment of lung injury associated
with COVID-19.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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