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Abstract

Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain’s 

white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion 

imaging methods as a function of data quantity and analysis method, using both simulations 

and highly sampled individual-specific data (927–1442 diffusion weighted images [DWIs] per 

individual). Diffusion imaging methods that allow for crossing fibers (FSL’s BedpostX [BPX], 

DSI Studio’s Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3’s Constrained Spherical 

Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when 

the data did not match the model priors. To reduce such overfitting, we developed a novel 

Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-

stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting 

and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts 

of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance 

precision diffusion imaging. For potential clinical applications of diffusion imaging, such as 

neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to 

achieve diffusion imaging reliability are lower than those needed for functional MRI

1. Introduction

Brain function is critically dependent on white matter tracts for interlobe communication 

(Laughlin and Sejnowski, 2003). Studies of white matter connecting distant regions of the 

brain have greatly advanced our understanding of systems-level brain organization (Mori et 

al., 2005). Damage to white matter via dysmyelination, demyelination, stroke, or trauma, 
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is a key component of many neurological disorders (Corbetta et al., 2015; Lassmann et al., 

2007; Mac Donald et al., 2011; Rizzo et al., 2012).

Diffusion imaging is an MRI technique that provides information about water diffusion, 

which can in turn be used to probe white matter organization. Classic diffusion tensor 

imaging (DTI) entails acquisition of multiple diffusion weighted images (DWI), each of 

which is sensitized to water diffusion in a particular direction. At least six orthogonally 

oriented DWIs are required to estimate a single diffusion tensor representing the orientation 

of white matter fibers at a given location in the brain (Basser et al., 1994a, Basser et 

al., 1994b; Pierpaoli et al., 1996). Several shape and orientation characteristics may be 

extracted from the estimated diffusion tensor: fractional anisotropy (FA), radial diffusivity 

(RD), axial diffusivity (AD), mean diffusivity (MD), and orientation angles θ and ϕ. While 

a model describing a single tensor is theoretically adequate for simple fiber pathways, the 

single-tensor model does not adequately describe the complex geometry of multiple crossing 

fibers. More complex models potentially can account for multiple diffusion compartments 

and thus resolve crossing fibers (Behrens et al., 2003; Ferizi et al., 2014; Jbabdi et al., 

2012; Jensen et al., 2005; Tournier et al., 2013, 2019; Tuch, 2004; Zhang et al., 2012). 

Microstructure models using specialized imaging sequences have attempted to further probe 

tissue characteristics even further (Fan et al., 2021; Palombo et al., 2020; Wang et al., 2014, 

2015; Zong et al., 2021).

Early diffusion imaging studies acquired the minimum requirement of six orthogonal DWIs 

for computing a single diffusion tensor (Pierpaoli et al., 1996). With improvements in MRI 

hardware and software and the demand for more complex diffusion models, acquisition 

schemes have increased in complexity. Clinical diffusion imaging studies typically acquire 

12–30 DWIs per patient while research studies typically acquire 30–60 DWIs per participant 

(Jones and Cercignani, 2010). Recent large sample studies such as the Human Connectome 

Project (HCP, (Van Essen et al., 2012)) and the Adolescent Brain Cognitive Development 

(ABCD, (Casey et al., 2018)) study, collected 297 and 103 DWIs per participant, 

respectively. Collecting even more data per individual, through repeated sampling has been 

informative for functional MRI (precision functional mapping [PFM]) (Braga and Buckner, 

2017; Gordon et al., 2017; Laumann et al., 2015), revealing previously undetected individual 

variants in functional network architecture (Gordon et al., 2021; Gratton et al., 2018; Greene 

et al., 2020; Marek et al., 2018; Newbold et al., 2020; Sylvester et al., 2020; Zheng et al., 

2021). By analogy, intensive acquisition of DWIs in individuals could be similarly fruitful 

in the study of structural brain connectivity. Prior studies have examined the reliability and 

accuracy of diffusion imaging using less than 60 diffusion directions (Hasan et al., 2001; 

Jones, 2004). Evaluated measures have included mean FA (Jones and Cercignani, 2010; 

Lebel et al., 2012; Ni et al., 2006), tractaveraged FA (Gordon et al., 2018; Luque Laguna 

et al., 2020), and capacity to resolve crossing-fiber models (Rokem et al., 2015; Tournier et 

al., 2013). Model reliability has also been evaluated using histological validation (Jones et 

al., 2020; Kuo et al., 2008; Panagiotaki et al., 2012; Schilling et al., 2018), in various tissue 

types (Alexander et al., 2001, 2019). However, it is unclear what degree of within-individual 

reliability may be achieved by collecting much larger quantities of DWI data.
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Therefore, we acquired repeated DWI scans over multiple sessions. Three individuals 

were scanned on multiple days using the ABCD study sequence (Casey et al., 2018). 

This sequence includes 103 DWIs (96 diffusion encoding directions; 4 b-value shells; 

~6.5 min). A total of 9 - 14 complete DWI datasets were acquired per individual. 

Differences in the head position across scans contributes additional variability in angular 

sampling for each subject. Thus, repeated scanning with the same sequence increases both 

angular sampling and SNR. These repeated sampling data were used to study how DWI 

data quantity and analysis methods impact reliability and accuracy. We pseudo-randomly 

sampled DWI encodings in a manner that maintained approximately constant angular 

coverage (see Methods; Figure S1), to systematically evaluate how reliability depends on 

angular sampling. Although earlier work has suggested that 30 spatially distributed DWIs 

could be sufficient to estimate a diffusion tensor (Jones, 2004), more complex models have 

not been similarly tested.

Four crossing-fiber estimation methods were compared: FSL’s BedpostX (BPX) (Behrens 

et al., 2003; Jbabdi et al., 2012; Sotiropoulos et al., 2016) uses the ball-and-sticks model 

and Automatic Relevance Determination (ARD) to select the number of fiber directions. 

The ball-and-sticks model was separately estimated using a novel Bayesian model selection 

developed in our laboratory which we term Bayesian Multi-Tensor Model selection 

(BaMM). The third and fourth crossing-fiber estimation methods tested here were DSI 

Studio’s Constant Solid Angle Q-ball Imaging (CSA-QBI; (Aganj et al., 2010; Tuch, 2004), 

and MRtrix3’s Constrained Spherical Deconvolution (CSD, (Tournier et al., 2013, 2019), 

two of the currently most widely used diffusion processing packages. As a control, we also 

tested two single-tensor estimation methods: linear least squares (LLS) and single-tensor 

Bayesian (STB) (Basser et al., 1994a, Basser et al., 1994b; Lee et al., 2010). These six 

diffusion modeling methods were selected as examples of differing approaches to diffusion 

imaging (Behrens et al., 2007; Jbabdi et al., 2012; Jensen et al., 2005; Tournier et al., 

2013, 2019; Tuch, 2004; Wang et al., 2014, 2015; Zhang et al., 2012), but are not an 

exhaustive representation. Pertinent model estimation differences may be summarized as 

follows: BaMM and BPX both use a partial volume model assuming a variable number of 

radially symmetric fiber compartments. BaMM incorporates a model selection approach to 

estimate the number of fiber compartments. BPX uses automatic relevance determination 

(ARD) to down-weight unnecessary fiber compartments. CSA-QBI is a method derived 

from Q-ball numerical approximation of the water diffusion orientation distribution function 

(dODF) (Aganj et al., 2010; Callaghan et al., 1988; Tuch, 2004). The CSD method use 

a constrained spherical deconvolution to estimate the fiber orientation distribution (FOD) 

(Dell’Acqua and Tournier, 2019; Jeurissen et al., 2014). The accuracy and reliability of these 

methods was evaluated as a function of data quantity in both real and simulated data.

2. Methods

The organization of the present analyses is summarized in Table 1.
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2.1. Voxelwise parameter estimation

We evaluated five parameter estimation methods: two methods (Bayesian Multi-Tensor 

Model-Selection [BaMM] and FSL’s BedpostX [BPX]) used the ball and sticks model 

(Behrens et al., 2003); the third crossing fiber method (Constant Solid Angle Q-Ball 

Imaging [QBI]) used spherical harmonics (Aganj et al., 2010); and two methods (Linear 

Least Squares [LLS] and Single Tensor Bayesian [STB]) used the classic single tensor 

model (Basser et al., 1994a).

2.1.1. Bayesian multi-tensor model-selection (BaMM) modeling ball and 
sticks—We adapted a Bayesian model selection algorithm followed by parameter 

estimation of the winning model (modified from (Lee et al., 2010)). BaMM evaluated 

several competing models derived from the ball and sticks model (aka one ball vs. one ball 

and one stick; see Eq. (1)). Model selection and parameter estimation used a Markov-Chain 

Monte Carlo (MCMC), with Metropolis-Hastings sampling, and simulated annealing. The 

model selection penalty was scaled based on the input data size. Additional details on the 

implementation of this model are in the Supplemental Material.

2.1.2. FSL’s BedpostX (BPX)—The ball and stick model, developed by FSL (Behrens 

et al., 2003), is an alternative to the single diffusion tensor model (Behrens et al., 2003; 

Jbabdi et al., 2012). BPX is a multi-compartment model, in which the first compartment 

models the diffusion of free water as isotropic (ball), and the rest of the k compartments 

model diffusion along several axial fiber directions with zero diffusion in the radial direction 

(sticks). The predicted diffusion signal is:

μi = S0 (1 − Σkfk)exp( − bid) + Σkfkexp −bid giTxk
2

(1)

where i indexes encoding direction and k indexes compartment. S0 is the signal with no 

diffusion weighting and μi is the signal with a diffusion gradient applied along the unit 

vector gi with b-value bi on diffusion signal d. The fk are volume fractions for each fiber 

compartment. Each fiber compartment is modeled as a stick-like tensor oriented along 

xk. We employed FSL’s BedpostX 6.0.0 to evaluate BPX (Sotiropoulos et al., 2016). The 

Bayesian parameter estimation approach uses Automatic Relevance Determination (ARD) to 

down weight unnecessary fibers. BPX estimates angles θ and ϕ but not FA, MD, AD, or RD. 

Angles θ and ϕ are estimated for every direction (indeed by k). We ran BedpostX using the 

default settings unless noted otherwise: 2 fibers, weight = 1, and burn in = 1000.

2.1.3. DSI studio’s constant solid angle Q-Ball imaging (CSA-QBI)—Q-ball 

imaging is a widely used reconstruction scheme available through DSI Studio that estimates 

the diffusion orientation distribution function (dODF) through a spherical tomographic 

inversion (Tuch, 2004). QBI was derived from q-space formalism (Callaghan et al., 1988) 

and uses a Funk-Radon transform to estimate the dODF. The original Q-ball imaging 

improved the dODF estimation by considering the constant solid angle (CSA-QBI; (Aganj 

et al., 2010)). CSA-QBI was downloaded from NITRC (nitrc.org) in 2020. For ease of 

comparison to the other methods (LLS, STB, BPX, BaMM, and CSD), we estimated the 

angle of the peaks given by the dODF surface generated by CSA-QBI (Fig. 1A). Peaks were 
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selecting based on a normalized dODF probability greater than 0.3 and with a matching 

antipodal peak defined as two peaks having an absolute value dot product greater than 0.99.

2.1.4. MRtrix3’s constrained spherical deconvolution (CSD)—Constrained 

spherical deconvolution (CSD) is currently one of the most cited reconstruction schemes 

available through MRtrix3 (Tournier et al., 2007, 2013, 2019). This method uses a 

constrained spherical deconvolution to estimate the fiber orientation distribution (FOD) and 

implements a regularized spherical deconvolution to deconvolve the signal with a single 

fiber response function. The following MRtrix3 functions with default settings were used 

unless otherwise noted: dwi2response with default tournier flag; dwi2fod with default csd 

flag; sh2peaks to extract XYZ coordinates of default top three peaks. For ease of comparison 

to the other methods (LLS, STB, BaMM, BPX, and CSA-QBI), the second and third peaks 

were included as a fiber direction if their magnitude was at least 10% of the maximal peak. 

The XYZ coordinates were then converted to spherical polar coordinates for consistency of 

presentation.

2.1.5. Linear least squares (LLS)—The LLS method solves an overdetermined 

system of linear equations by single value decomposition (Basser et al., 1994a; Tristán-Vega 

et al., 2012). The solution yields a diffusion tensor D, which can be decom-posed into 

eigenvalues (λ1, λ2, λ3 Fig. 1B) and eigenvectors (ν1, ν2, ν3). Derived quantities from 

FSL’s ‘dtifit’ are fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), 

mean diffusivity (MD). In addition, the orientation of the principal axis of diffusion can be 

characterized in terms of polar angles relative to the Z-axis (θ) and azimuthal rotation in the 

XY plane (ϕ, Fig. 1B (Behrens et al., 2003).

2.1.6. Single tensor Bayesian estimation (STB)—We wanted to compare the LLS 

single tensor fit to a Bayesian estimation that used biological priors and had a non-negative 

constraint. The single tensor Bayesian method estimates the posterior probability of the set 

of parameters, ωi = (θ, ϕ, λ1, λ2, λ3, S0) in voxel j, given the single tensor model M with 

relevant background information I:

P (ωi ∣ Mj, I) ∝ P (Mj ∣ ωi, I)P (ωi ∣ I) (2)

The background information I is given as several priors that reflect biological constraints: 

λ1, λ2, λ3 were limited to between 0 and 3 mm2/s, the biological range of diffusion in 

white matter. We assumed rotational symmetry; λ2, λ3 were set equal to each other, and θ, 

ϕ were limited to between 0 and π owing to the directional symmetry of the diffusion tensor. 

In STB, diffusion is modeled as a tensor, M (see Eq. (3) below). To estimate the model 

parameters, we used standard Monte Carlo Markov Chain methods (Lee et al., 2010).

2.2. Simulated data

Simulated data were generated using the Gaussian tensor model (Basser et al., 1994a, Basser 

et al., 1994b):
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μi = S0 exp −bi ⋅ xiRxi′ , (3)

where S0 is the signal with no diffusion weighting, μi is the signal with a diffusion gradient 

applied along the vector xi with b-value bi, and R is the diffusion tensor. S0, was fixed at 

1000; bi and xi matched twelve acquisitions of the ABCD sequence (Casey et al., 2018). 

Three cases were simulated:

2.2.1. Single tensor—The first test case simulates highly organized white matter with a 

single principal direction, as in the mid-sagittal part of the corpus callosum. R was defined 

to have an anisotropy of 0.86, with angles θ and ϕ set to 1.8 and 2.8 radians, respectively. 

Gaussian noise was added independently to a real and imaginary channel which were 

combined as a magnitude to produce simulated data with Rician noise (Soares et al., 2013). 

We specified the signal to noise ratios (SNR) of 30, 50, 100, relative to the b0 to create three 

data sets with varying SNR.

2.2.2. Two crossing tensors—The second test case simulates two highly organized, 

crossing white matter tracts. The simulations were generated as two highly anisotropic 

tensors, R1 and R2. A range of possibilities was explored by varying the SNR, tensor 

fraction, FA, and crossing angle of the tensors. Values were varied as follows: SNR = 30, 

50, 100; tensor fractions of equal weighting (50%:50%) and unequal weighting (60%:40%, 

70%:30%); FA = 0.6:0.6, 0.6:0.8, 0.8:0.8; crossing angle = 30°, 60°, 90°.

2.2.3. Three crossing tensors—The final test case simulates three highly organized, 

crossing white matter tracts. The simulations were generated as three highly anisotropic 

tensors, R1, R2, and R3. A range of possibilities was explored by varying the SNR, 

tensor fraction, FA, and crossing angle of the tensors. Values were varied as follows: SNR 

= 30, 50, 100; tensor fraction equal weighting (33%:33%:33%) and unequal weighting 

(40%:34%:26%, 53%:34%:13%); FA = 0.6:0.6:0.6, 0.7:0.7:0.7, 0.8:0.8:0.8; crossing angle = 

30°, 60°, 90°.

2.3. Repeatedly sampled individual-specific data

2.3.1. Participants and study design—Three individuals who participated in a study 

of the effects of arm immobilization functional connectivity contributed data (Newbold et 

al., 2021, 2020). Participants (25yoF, 27yoM, 35yoM) were scanned daily for two weeks 

prior to an experimental intervention (unilateral arm casting). Imaging was performed at 

a consistent hour of the day to minimize diurnal effects. Data acquired during and after 

the casting period are not analyzed in this paper. Since Subject 1 (35yoM) did not have 

DWI data acquired prior to the experimental intervention, he was rescanned with the same 

sequence as the other subjects at later date. The Washington University School of Medicine 

Institutional Review Board provided experimental oversight. Participants provided informed 

consent for all aspects of the study and were paid for their participation.

2.3.2. MR image acquisition—All MRI data were acquired on a Siemens 3T Prisma 

using a 64-channel head coil, structural MRI was acquired at each scanning session and 

included T1-weighted images (Gradient echo, 3D MP-RAGE, sagittal, 300 slices, 0.8 mm 
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isotropic resolution, TR/TE=2400/2.22 ms, TI=1000 ms, flip angle = 8°), and T2-weighted 

images (Spin echo, 3D T2-SPC, sagittal, 300 slices, 0.8 mm isotropic resolution, TR/

TE=3200/563 ms) (Newbold et al., 2021, 2020).

Daily scans used the ABCD diffusion sequence, a single-shot echo planar diffusion-

weighted MRI with the following sequence parameters: 75 contiguous axial slices, 2 mm 

isotropic resolution, TR/TE 3500/83 ms, four shells (b-values 250, 500, 1000, and 1500s/

mm2). This sequence includes 103 vol and 96 encoding directions (Casey et al., 2018). 

Acquisition time per scan was 6.5 min, and a single acquisition was collected on each scan 

day. Total DWI scans (distributed across scanning sessions) for the three subjects were 9, 12, 

and 14, resulting in a total of 864, 1152, and 1440 total encoding directions, respectively. 

Two field maps (AP and PA) were acquired with the same settings as the diffusion weighted 

data for subsequent processing.

Subject 1 was also scanned using a custom set of diffusion gradients, with all other ABCD 

sequence parameters kept the same. This scan is referred to as the single session high 

angular resolution (SS-HAR) scan. The sequence parameters were as follows: 75 contiguous 

axial slices, 2 mm isotropic resolution, TR/TE 3500/83 ms, four shells (b-values 250, 500, 

1000, and 1500s/mm2), 1020 vol with 960 unique encoding directions. Acquisition time was 

1 hr. Two b0 acquisitions with reverse phase-encoding direction (AP and PA) were acquired 

with the same settings as the diffusion weighted data for estimation of the field map.

2.3.3. DWI processing—We applied FSL’s Eddy current correction and top-up 

(Andersson and Sotiropoulos, 2016; Smith et al., 2004) to each DWI acquisition. During 

eddy correction, FSL calculated total movement of each DWI relative to the first volume. 

We excluded volumes with framewise displacement greater than 0.5 mm (Baum et al., 

2018). The mean and standard deviation of displacement in millimeters relative to the prior 

volume for each subject were: 0.24 and 0.13 for Subject 1; 0.29 and 0.19 for Subject 

2; and 0.38 and 0.23 for Subject 3. Each DWI acquisition was affine registered to the 

participant’s structural T1 data, and gradient vectors were transformed accordingly before 

concatenating all diffusion data within an individual. Diffusion tensor maps were computed 

using FSL’s tool DTIFIT (Jenkinson et al., 2012). FSL’s eddy correction also generates 

rotation corrected b-vectors used in the subsequent processing (STB, BaMM, BPX, CSA-

QBI, CSD).

2.3.4. Creation of reliability curves using permutation resampling—Model 

estimation with permutation subsampling was used to quantitatively estimate modeled 

parameter variability. This approach was used for both simulated data and real human 

data. All available DWI volumes acquired across 9–14 scanning sessions were concatenated. 

Subsamples covered the shell surface approximately evenly (Fig. 2A). Solid angle sectors 

were defined by dividing the shell into sixteen bidirectional groups (Fig. 2B). The XY-plane 

was divided into four quadrants and polar angle (θ) was divided into four intervals equating 

arclength. For each permutation, we pseudo-randomly sampled DWI encodings in a manner 

that maintained approximately constant angular coverage (Figure S1).
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For all exemplar parameter estimation methods (BaMM, BPX, QBI, LLS, STB), we 

compared the estimation of relevant modeled diffusion parameters ({θ, ϕ} for all models, 

{FA, AD, RD, MD} for relevant subset) over the range N = 10:1000, in approximately 

logarithmically spaced increments. Specifically, we used a step size of 10 for values of N 

below or equal to 200, then a step size of 20 for values of N between 200 and 300, a step 

size of 40 for values of N between 300 and 500, and a step size of 50 for values between 500 

and 1000. DWI volumes were quasi-randomly selected according to the above-described 

scheme. These steps were repeated over 1000 permutations at each subsampling size. 

For single tensor shape diffusion parameters {FA, AD, RD, MD}, the parameter estimate 

variability was defined as

e‒N = 〈 xi − χT
2〉1 ∕ 2 ∕ χT (4)

Where xi represents a parameter estimate {FA, AD, RD, MD} obtained from a single 

permutation; χT is the ground truth as specified when generating the tensors in the 

simulations, or the estimated value obtained when using all available human neuroimaging 

data; the bracket denotes mean over permutations. e‒N was plotted as a function of sample 

size (N), creating reliability curves for each parameter.

Since diffusion is estimated as a bipolar tensor that is symmetric around the origin, the error 

estimation for angles θ, ϕ was modified accordingly to account for modulus pi.

2.3.5. Mean error threshold whole brain maps—To generate a voxel-wise heatmap 

visualizing the threshold sample size N needed to reach a mean error less than 5% for each 

voxel, we conducted the permutation testing described above on every voxel of the brain 

using the LLS method. The mean error was calculated for each voxel at each value of N. A 

heatmap was created for each diffusion metric, such that voxels are colored by the number of 

measurements needed to reach a mean error < 5%.

3. Results

3.1. Single tensor simulations: BaMM and CSD detect a single fiber more accurately than 
BPX or CSA-QBI

Some regions of the brain, such as the corpus callosum, have a single dominant fiber 

direction. Thus, we first tested diffusion imaging methods with simulated single tensor fiber 

data. To evaluate the accuracy and reliability of diffusion metrics, we used permutation 

subsampling of the simulated diffusion data to estimate parameter variability for all crossing 

fiber models (BaMM [Bayesian Multi-tensor Model-selection], BPX [BedpostX], CSA-QBI 

[Constant Solid Angle Q-Ball Imaging], CSD [Constrained Spherical Deconvolution]) and 

single tensor methods (LLS [Linear Least Squares], STB [Single Tensor Bayesian]). We 

plotted the estimated radian value of the fiber (or tensor) angles (ϕ, θ) to highlight the 

number of fibers estimated at each DWI sample size. Open circles represent the results of 

individual permutations and are colored according to the number of fibers estimated (Fig. 3).
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Multiple SNR values were tested to track the effect of SNR on reliability and accuracy. The 

forward-modeled parameter space for simulated single tensors was: SNR 50 (Fig. 3), 30, and 

100 (Figure S2 for BaMM, BPX, CSA-QBI and CSD, and S3 for LLS and STB). Initially, 

default settings were used for all modeling schemes: BaMM, CSA-QBI and CSD up to three 

fibers; BPX two fibers (for same analyses using BPX with other settings see Figure S4).

BaMM accurately estimated the orientation of the single forward modeled principal 

eigenvector, even with limited quantities of data (> 20 DWI samples; blue/sky blue symbols 

Fig. 3A, S2).

BPX generally falsely estimated two fibers (69% of permutations at DWI = 10, at least 90% 

of permutations at DWI > 120), even when given large quantities of data (Fig. 3B, S2). 

At DWI < 200, the angle of the second fiber was broadly distributed over the interval 0 

to π (green/olive symbols Fig. 3B). At DWI > 400, BPX continued to estimate two fibers 

separated by a small angle, the mean of which closely approximated the single modeled 

principal eigenvector. When the max number of fibers was increased to 3 (default 2), BPX 

falsely estimated three fibers in the majority of permutations (39% of permutations at DWI = 

10, linearly increasing to 88% of permutations at DWI = 1000; Figure S4).

QBI estimated one, two or three fibers given different numbers of DWI (Fig. 3C, S2). 

At < 90 DWI, QBI was most likely to estimate three fibers that were broadly distributed 

over the interval 0 to π, and also frequently estimated one or two; at 10 DWI, 90% of 

permutations estimated three fibers, 10% estimated two. By 80 DWI, 47%, 42%, and 11% of 

permutations estimated three, two, and one fiber, respectively. Unlike BPX, QBI consistently 

and accurately estimated a single fiber at higher DWI quantities (300 DWI: 12%, 31%, and 

57% of permutations estimated three, two, and one fiber, respectively). Over 90% of QBI 

permutations estimated a single fiber at > 460 DWI.

CSD also accurately estimated the orientation of the single forward modeled principal 

eigenvector with limited quantities of data (> 20 DWI samples; Fig. 3D).

Mean measurement error was calculated relative to the forward-modeled angle or shape 

metric, to quantify the accuracy of each method as a function of the number of diffusion 

measurements (Figure S2-3, Eq. (4)). For BaMM and CSD, error linearly decreased with 

increasing subsampling size. In contrast, for BPX a linear decrease of error with increasing 

subsampling measurements was detected only for the secondary fiber but not the primary 

fiber. QBI’s error decreased with increasing subsampling sizes only for the primary fiber, 

while the second and third fiber had very high errors.

We also evaluated the accuracy of the single tensor methods LLS and STB on simulated 

single tensor data. As expected and similar to BaMM and CSD, LLS and STB estimation 

of FA, AD, RD, MD, and angles ϕ and θ improved with increasing number of diffusion 

measurements (Figure S3).

3.2. Two tensor simulations: BaMM is robust against overfitting

Next, we simulated two crossing fibers, as within the crossing of the superior longitudinal 

and uncinate fasciculi (Figs. 4, S5-8). We explored the following forward-modeled 
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parameter space: fiber crossing angle (30°, 60°, 90°), relative weight of fiber compartments 

(50/50, 60/40, 70/30), SNR (30, 50, 100), and FA of tensors (0.6/0.6, 0.6/0.8, 0.8/0.8). The 

parameter space was chosen to explore fiber orientation, relative size of fiber compartments, 

SNR, and the respective FA of the fiber compartments. Fig. 4 shows the results of 90° 

crossing angle, 60/40 relative weight, SNR 50, and FA of 0.8/0.8. Results corresponding to 

the full parameter space are reported in the Supplemental Figures (Figures S5-8, BaMM, 

BPX, CSA-QBI, and CSD respectively). Results were consistent across the parameter space, 

with slight variations in the subsampling size needed to reach specific error thresholds. 

Single tensor models (LLS and STB) estimated the two crossing fibers as a weighted 

average and the single tensor’s principal eigenvector, which reflects the inaccurate shape 

assumption (Figure S9). Again, default settings were used for all modeling schemes: BaMM, 

CSA-QBI, and CSD up to three fibers; BPX two fibers (for same analyses of BPX using 

max 3-fiber settings see Figure S10).

BaMM consistently and correctly estimated two fibers for > 30 DWI (red/pink and green/

olive symbols Fig. 4A, full parameter space in Figure S5).

BPX estimated two fibers at all but the smallest subsampling size (DWI = 10; Fig. 4B, 

S6) when using default settings. When we increased BPX’s maximum allowable number of 

fibers to 3 (Figure S9), BPX frequently estimated three fibers for all DWI subsamplings with 

consistently increased angular error.

For simulated two tensor data, similar to single tensor data, QBI also incorrectly estimated 

three fibers at DWI < 150 (Fig. 4C, S7). Even though two fiber directions were most 

commonly found at higher sampling density, some permutations still demonstrated three 

fiber directions at all subsampling sizes (62% at 100 DWI, 44% at 300 DWI, 33% at 500 

DWI, 14% at 800 DWI).

CSD most frequently estimated two fibers for all sample sizes. With insufficient data (< 50 

DWI) some permutations estimated one or three fiber directions (at 40 DWI, 9% estimated 

1 direction and 9% estimated 3 directions). With larger data quantity (> 460 DWI), at least 

10% of permutations estimated a third fiber direction.

3.3. Three tensor simulations: accurate estimates achieved with fewest DWIs using 
BaMM

The final simulation was of three crossing tensors, as in crowded areas of deep white 

matter, where the thalamic radiation, longitudinal tracts, and commissural tracts all cross. 

We explored the following forward-modeled parameter space: fiber crossing angle (30°, 

60°, 90°), relative weight of fiber compartments (33/33/33, 26/34/40, 13/34/53), SNR (30, 

50, 100), and FA of tensors (0.6/0.6/0.6, 0.7/0.7/0.7, 0.8/0.8/0.8). Fig. 5 shows the results 

of 90° crossing angle, 40/34/26 relative weight, SNR 50, and FA of 0.8/0.8/0.8. Results 

corresponding to the full parameter space are reported in the Supplement (Figures S11-14, 

BaMM, BPX, CSA-QBI, and CSD respectively). Results were consistent across most of the 

parameter space. All methods showed the lowest accuracy for the narrowest crossing fiber 

angle (30°).
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BaMM consistently estimated three fiber compartments with sufficient data (DWI > 200, 

Fig. 5A, S11). We increased BPX’s max possible fibers to 3 to match the simulated data, 

and then BPX estimated three fiber compartments at all subsampling sizes (Fig. 5B, S12). 

As with prior modeling, BaMM and BPX correctly determined there were three fiber 

compartments and accurately estimated ϕ and θ for the three fibers with increasing sampling 

density.

QBI most frequently estimated three fiber directions at all sampling densities, yet often 

estimated one or two fibers < 500 DWI (Fig. 5C, S13).

For the base simulation set (90° crossing angle, 40/34/26 relative weight, SNR 50, and 

FA of 0.8/0.8/0.8), CSD consistently estimated three fiber directions with > 200 DWI and 

demonstrated increasing accuracy with increasing sampling density (Fig. 5D). The number 

of estimated fiber directions was less consistent for CSD than the other methods evaluated 

here, with varying number of fiber directions given slight changes in the simulation 

parameter set (Figure S14).

For the entire parameter space of the three tensor simulations, BaMM and BPX log 

errors decreased almost linearly with an increase in the number of diffusion measurements 

(Figure S11-12). QBI (Figures S13) approached the expected relationship between log 

error and sample size once three fiber directions were consistently estimated (> 500 DWI), 

yet still had higher error than all other methods at the largest subsampling sizes. CSD 

generally showed a linear relationship between log error and sample size when three fiber 

directions were estimated (Figure S14), but accuracy varied when fewer fiber directions 

were estimated.

3.4. Whole brain reliability mapping reveals very high data requirements in gray matter

To test reliability of diffusion metrics in human data (highly sampled, three participants), 

we used permutation subsampling of all available data to estimate whole-brain parameter 

variability (FA, RD, AD, MD, ϕ, θ) using the Linear Least Squares (LLS) method. LLS 

was used because none of the other methods were computationally tractable for whole 

brain analyses of this type, and whole brain reliability maps were desired to help identify 

anatomically defined regions of interest (ROIs). Fig. 6 shows the number of DWIs required 

to reach a mean error (RMSE) < 5% at each voxel in Subject 2 (Subject 1 and 3 shown 

in Figure S15). Subject 2 was chosen as the exemplar because they had the relatively best 

LLS reliability, (single slice inter-subject comparison in Figure S16). Error is now reported 

as the deviation from the mean when using the full sample ( Eq. (4)) rather than relative to 

the ground truth as in the prior simulations. AD, RD, and MD had less measurement error 

than FA and the angles ϕ and θ across most of the brain. In parts of the corpus callosum, 

only 20 DWIs were required for an FA RMSE < 5%. For most deep white matter voxels 

(e.g., corticospinal tracts, frontal crossing tracts), about 100 DWI samples were sufficient for 

an FA RMSE < 5%. In comparison, gray matter voxels required 300–500 measurements to 

reach an FA RMSE < 5%.
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3.5. Corpus callosum: only BaMM estimates single fiber < 600 DWIs

To examine individual-specific diffusion metric reliability with highly sampled data, across 

methods, several ROIs were selected based on the whole-brain, voxel-wise LLS reliability 

maps (Fig. 6 and S15-16) and prior anatomical knowledge. Fig. 7 shows diffusion estimates 

in a voxel of the corpus callosum exemplifying highly anisotropic diffusion (Fig. 7A; MNI: 

−1, 22, 9; Subject 2). This ROI in Subject 2 with BPX max 3 fibers is shown in Figure 

S17. Permutation results for Subject 1 and 3 are in Figures S18-19, respectively. This corpus 

callosum ROI was chosen because it is strongly expected to contain only a single white 

matter fiber direction. Reliability curves for all methods and subjects (including LLS and 

STB) are shown in Figure S20. As in the simulated single tensor data, these single tensor 

estimation methods showed low error rates (now reflecting reliability rather than accuracy), 

even for low DWI numbers.

BaMM estimated only a single fiber in the corpus callosum (Fig. 7B), regardless of the 

number of DWIs in the subsample, with angles ϕ and θ closely matching the results 

observed with single tensor methods (see Fig. 3, S2-3).

In contrast, BPX consistently estimated two fibers in the corpus callosum across all numbers 

of DWIs for the default setting of two fibers max (Fig. 7C). Figure S17 shows that 

when BPX’s max fiber number was increased to three it started to estimate three fibers 

in the corpus callosum for higher numbers of DWIs. The BPX principal fiber (red/pink) 

generally matched the orientation obtained with BaMM, CSA-QBI, and CSD (Fig. 7). 

At low sampling density, the angle of the second fiber estimated by BPX was broadly 

distributed over the interval 0 to π (green/olive). For DWI counts > 400, BPX continued 

to estimate two fibers, the average of which matched the orientation found by the other 

methods.

Similar to the simulated data, CSA-QBI estimated three fibers for subsamples with ⟨ 200 

DWI, two fibers < 400 DWI, and a single fiber for ⟩ 400 DWI (Fig. 7D). For subsamples 

with ⟨ 200 DWI, CSA-QBI was most likely to estimate three fibers that were broadly 

distributed over the interval 0 to π, and also frequently estimated one or two fibers. 

Unlike BPX, CSA-QBI consistently and accurately estimated a single fiber for ⟩ 400 DWI. 

The existing anatomical priors about the corpus callosum would suggest a single primary 

diffusion direction, matching BaMM’s results at all subsampling sizes and CSA-QBI’s with 

~1000 DWIs.

CSD predominantly estimated a single fiber direction across all subsample sizes (Fig. 

7E). A subset of permutations estimated a second fiber direction, and the proportion of 

permutations with a second fiber direction decreased with increasing sample size (<10% 

with > 20 DWI, ⟨5% with ⟩ 300 DWI).

3.6. Left frontal white matter: BPX with two fiber default setting reliable with fewest DWIs

We next selected a voxel in the left frontal lobe (MNI −18, 22, 26) where the superior 

longitudinal fasciculus and the uncinate fasciculus cross (Fig. 8A). This voxel was chosen 

to be > 10 mm from any gray matter voxel in all three subjects. This ROI in Subject 2 

with BPX max 3 fibers is shown in Figure S21, and Subjects 1 and 3 in Figures S22-23, 
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respectively. Reliability curves for all methods and subjects are shown in Figure S24. The 

single tensor models are inadequate to describe the full microstructural complexity, and 

increased error can be observed in Figure S20 vs. Figure S24.

Fig. 8B-E contrasts the angle measurement reliability of the crossing fibers models (BaMM, 

BPX, CSA-QBI, and CSD). For very low numbers of DWI per subsample (< 50), BaMM 

identified the principal diffusion direction, whereas BPX returned approximately uniform 

density of diffusion directions at all angles (i.e., little to no angular information). BaMM 

consistently estimated two diffusion directions with > 100 DWI. BPX consistently estimated 

two directions with > 20 DWI. Angular measurement error was generally less with BPX 

than BaMM, but comparable for > 250 DWI. When BPX max fiber count was increased to 

3 (Figure S20), BPX estimated three fibers with > 250 DWI, and angular measurement error 

increased for all sample sizes.

CSA-QBI most frequently estimated three fiber directions at all sub-sampling sizes, but also 

frequently estimated one or two fibers. The CSA-QBI estimation of two or three fibers was 

broadly distributed over 0 to π for < 500 DWI, and the error improved only marginally with 

increasing DWIs.

CSD also frequently estimated three fiber directions with < 30 DWI and with > 300, <800 

DWI. When CSD estimated two fiber directions, the angle estimations matched that of 

BaMM and BPX.

3.7. Right corticospinal tract: poor reliability and non-converging fiber count

The third ROI we analyzed in depth was in the right corticospinal tract (CST) as it 

progressed through/near the internal capsule, a brain region with potentially three crossing 

fibers (MNI 22, −19, 11; Figure S25A). Based on anatomical priors, model sensitivity, 

registration to MNI coordinates, and accuracy of ROI location across subjects, we could 

expect a single fiber direction reflecting the CST, two fiber directions for the CST and 

internal capsule, or three directions for a fanning behavior of either the CST or internal 

capsule fibers. BPX settings were set to a maximum of three fibers accordingly. Results for 

Subjects 1 and 3 are in Figures S26-27, respectively. Reliability curves for all methods and 

subjects (including LLS and STB) are shown in Figure S28

BaMM, CSA-QBI, and CSD estimated varying number of fibers with different sample sizes, 

while BPX estimated three fibers with almost uniform angular distribution of ϕ and θ from 

0 to π. Estimated error (relative to the mean angle orientation estimated by that method 

using all available data) improved with increasing number of DWI for all methods. However, 

since the models diverged in their estimation of number of fibers and the orientation of those 

fibers, we can only speak to the reliability of the models relative to themselves and not their 

accuracy.

3.8. Repeated ABCD scans as reliable as single session high angular resolution scan

In response to the concern that repeated ABCD scans increased angular sampling in random 

rather than controlled fashion, we collected single session high angular resolution (SS-HAR) 

data. The sequence replicated the ABCD scan used previously and replaced the 96-direction 
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vector set with a 960-direction vector set. Subject 1 was rescanned using this sequence that 

had a total of 1020 DWI, replicating the ratio of diffusion weighted volumes to b0 images in 

the original sequence. All methods generally replicated trends observed previously (Figure 

S29), with equivalent reliability when comparing the single scan and repeated sampling 

approaches.

4. Discussion

Identifying and understanding inter-individual differences in brain organization is critically 

important for neuroscience, neurology, neu-rosurgery, and psychiatry (Fair et al., 2021; 

Gordon et al., 2017; Gratton et al., 2020; Mitchell et al., 2013). While almost all typically 

developing individuals share the same major white matter bundles (Mori et al., 2005), 

variations in size, position, and/or orientation of white matter fibers could have significant 

effects on surgical plans (Luque Laguna et al., 2020; Roland et al., 2021), and recovery from 

brain injury (Laumann et al., 2021).

4.1. Reliability and limited accuracy of classic single tensor fitting (LLS, STB)

In both highly sampled human and simulated data, single tensor estimate variability (LLS, 

STB) decreased with increasing sample size. Assuming a normal distribution, measurement 

error should be inversely related to the square root of the sample size (e.g., DWI directions 

in this context). Our results failed to follow this pattern under two conditions: when there 

were insufficient data to constrain the model (e.g., < 20 DWI directions for LLS and STB), 

or when the model misrepresented the underlying diffusion process (i.e., using single tensor 

methods for multiple fibers, or assuming excess fibers for a single fiber direction). Overall, 

deep white matter voxels showed lower measurement error than the rest of the brain, and 

larger data amounts were needed for voxels with lower FA (Fig. 6). FA measurement 

error was < 5% with 70–150 DWIs in deep white matter, while cortical voxels required 

300–500 DWIs to comparably reduce error. Angles ϕ and θ, which are critical for tracking 

applications, showed the highest measurement error of all the diffusion metrics. Uncertainty 

in the angle of the tensor is related to uncertainty in anisotropy, explaining why angle error 

is higher in gray matter (Jones and Cercignani, 2010).

The accuracy of single-tensor modeling in regions of crossing fibers is inherently limited 

because the model cannot accurately represent the underlying diffusion process. Improved 

accuracy can be achieved with more complex models. Yet, more complex models increase 

the likeli-hood of over fitting and thus require additional testing and validation to ensure that 

biases inaccurate assumptions are avoided.

4.2. BaMM: a novel estimation method for preventing overfitting of diffusion data

Bayesian methods provide a useful approach for this type of problem by incorporating 

model selection in the analysis, which minimizes the risk of over fitting by incorporating 

a penalty against models that use an excessive number of parameters. The Bayesian Multi-

tensor Model-selection (BaMM) method was designed in accordance with this principle. 

The BaMM parameter estimation algorithm is based on previous Bayesian, model-selection 

methods (Bretthorst, 1990). We designed BaMM to compare multiple diffusion models and 
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select the model best suited for the available data. Here, we demonstrate that BaMM can 

accurately estimate zero, one, two, or three sticks, and that its precision improves with 

increasing DWI data. In the current implementation, BaMM uses the same assumed model 

as BPX (ball-and-sticks; (Behrens et al., 2003)) but can accommodate a large input data set 

by scaling the parameter estimation penalties to the dataset size. We tested and validated 

BaMM over a wide range of diffusion measurements (10 to 1000) to rule out bias for a 

specific number of DWIs. The current work was completed using a ball- and- sticks partial 

volumes model, but BaMM can also accommodate full multi-tensor models, multi-fiber 

kurtosis models, or other models yet to be developed (Chiang et al., 2019; Wang et al., 

2014). The BaMM framework is adaptable to any set of mathematical assumptions about 

white matter structure and can serve to directly compare different diffusion models against 

the available data.

4.3. BPX: accurate and reliable only if assumptions are met

BPX was in the past one of the most popular schemes for probabilistic tracking. BPX was 

initially published with 30 direction DWI data, and then with 60 direction DWI data (Jbabdi 

et al., 2012; Sotiropoulos et al., 2013). The datasets analyzed here contained much higher 

quantities of data (800+ direction low-motion DWIs for each individual). With an excess 

of DWIs, we observed that BPX consistently estimates the maximum allowed number of 

fibers. BPX’s default setting is a maximum of two fibers, and with these settings BPX 

estimated two fibers for simulated single tensor data (Fig. 3) and for the corpus callosum 

(Fig. 7). When set to allow for a maximum of three tensors, BPX estimated three fibers in 

simulated single tensor data and in the corpus callosum ROI (Figure S4 and S17). When 

provided with large data sets (> 500 DWI), BPX tends to split a single tensor into two 

that are almost superimposed. This is inaccurate but likely not detrimental to subsequent 

tractography. By contrast, a potentially inappropriately oriented second or third fiber, could 

substantially deviate probabilistic tracking (Fig 9C-D). When BPX’s assumptions are met, it 

is accurate and reliable from 10 to 1000 DWIs, but determining the appropriate priors for all 

brain voxels poses a significant challenge.

4.4. CSA-QBI: accurate only with very large amounts of diffusion data

Constant solid angle Q-Ball Imaging (CSA-QBI) was designed to eliminate diffusion tensor 

shape assumptions. CSA-QBI is a method derived from q-space formalism (Callaghan et 

al., 1988) and uses a Funk-Radon transform to estimate the ODF (Aganj et al., 2010; 

Tuch, 2004). CSA-QBI can estimate one, two or three tensors with 1000 DWIs, but 

problematically, the reliability of these estimates always remained low (Fig 3-5, 7-9). With 

< 800 DWIs QBI tends to model additional fiber directions, possibly capturing noise in the 

data. CSA-QBI requires many more DWI than what is currently being acquired in a clinical 

or research setting.

4.5. CSD improved fiber ODF estimation with sufficient data

Constrained Spherical Deconvolution (CSD) from the imaging package MRtrix3 (Tournier 

et al., 2019) is another method that uses spherical harmonic deconvolution. In contrast to 

CSA-QBI, CSD uses a constrained spherical deconvolution to estimate the fiber ODF. CSD 

demonstrated greater reliability with smaller sampling density than CSA-QBI. Yet a subset 
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of permutations often estimated excess fiber directions. The ABCD acquisition scheme 

(Casey et al., 2018) used in the current analyses achieves high angular resolution diffusion 

imaging, yet CSD often necessitated larger quantities of DWI for consistent fiber direction 

estimation. In aggregate, the results of the present CSA-QBI and CSD testing suggest that 

precise and reliable fiber estimation may require greater quantities of data than are typically 

obtained.

4.6. Overfitting and prior dependence of multi-fiber diffusion imaging methods

The last twenty years of diffusion imaging research have generated a steady progression 

of new and increasingly complex models (Aganj et al., 2010; Behrens et al., 2003; Jbabdi 

et al., 2012; Tournier et al., 2007, 2013; Tuch, 2004; Wang et al., 2014). The most novel 

and potentially exciting methodologies may have outstripped the conventionally acquired 

quantity of data needed to constrain the model. In the current work, we tested a broad 

distribution of the most widely cited methodologies and parameter estimation approaches: 

the classic diffusion tensor model that endures due to its simplicity (Basser et al., 1994a, 

Basser et al., 1994b; Pierpaoli et al., 1996); FSL’s BedpostX that popularized the ball and 

stick model, which simplifies shape assumptions (Behrens et al., 2007, 2003; Jbabdi et al., 

2012; Jenkinson et al., 2012); DSI Studio’s Constant Solid-Angle Q-Ball Imaging which 

was derived from q-space formalism (Callaghan et al., 1988) and estimates the ODF (Aganj 

et al., 2010; Tuch, 2004); and finally MRtrix3’s Constrained Spherical Deconvolution that 

estimates the fiber ODF (Tournier et al., 2007, 2013, 2019). While this list is not exhaustive 

and novel methods will continue to be developed, the models tested here similarly share a 

sensitivity to inappropriate priors and vulnerability to overfitting. Underrecognition of this 

point may underlie an emphasis on complex models and a relative underemphasis on the 

quantity and quality of DWI data needed to achieve accurate fiber estimation.

4.7. High angular resolution diffusion data acquisition

In comparison to the repeated sample acquisitions, we also collected supplementary DWI 

data with 960 unique B-vectors and 50 b0 applied (1020 DWI). Of the methods tested in the 

current work, none of them improved with single-scan high angular resolution data, although 

CSD performed equally well with both data acquisition schemes (Figure S29). Instead, it 

appears that repeated acquisitions of ABCD’s 103 DWI protocol were potentially less prone 

to overfitting. Combining DWI samples over multiple sessions introduces jitter owing to 

variability of head position and effectively improves angular sampling.

4.7. Precision diffusion imaging is achievable with practical data acquisition times

Only 15 to 30 DWIs are typically acquired in clinical settings. As MRI hardware and 

processing software improved, researchers started to acquire larger diffusion data sets (100 

- 300 DWIs per subject) while maintaining reasonable imaging times (<20 min). Our study 

demonstrated that one can reliably estimate the shape and orientation of a single diffusion 

tensor in deep white matter with about 100 diffusion measurements. Thus, researchers 

(Casey et al., 2018; Paquette et al., 2016; Van Essen et al., 2012) as well as clinicians ones 

should consider collecting a greater number of DWIs (at least ~100) than has been typical.
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For crossing-fiber diffusion models, at least 300 DWIs are generally required in deep white 

matter, assuming high data quality. To advance from 100 to 300 DWI requires an increase 

in total scan time from about 6 min to about 20 min. Acquiring 1000 DWIs with current 

technology takes a little over an hour. An hour- long diffusion scan may be warranted for 

precision mapping for research or in neurosurgical planning (Conti Nibali et al., 2019). 

Diffusion data acquisition is typically better tolerated than task or resting state functional 

MRI (fMRI) because the patient can sleep or watch a movie during the scan. Therefore, 

additional investment in scanning time could have significant positive effects on diagnostics 

and treatment of neurological and neurosurgical patients. In addition, acquiring greater 

amounts of high-quality DWI data would expand the available processing schemes beyond 

the models described here to methodologies which require even more data (e.g., DSI, DBSI) 

(Paquette et al., 2016; Wang et al., 2015).

4.8. Structural connectivity maps (end-to-end tracking) in cortex

Researchers have been exploring the feasibility and validity of MRI-based structural 

connectivity analyses for decades (Baum et al., 2018; Maier-Hein et al., 2017; Messaritaki et 

al., 2019; Pestilli et al., 2014; Roine et al., 2019; Satterthwaite et al., 2013; Sotiropoulos and 

Zalesky, 2019; Yeh et al., 2018). Many studies that attempt to build structural connectivity 

maps initiate the fiber tracking at the border of gray and white matter. Since FA and angle 

orientations (ϕ and θ; Fig. 6, S13) are less reliable closer to gray matter, more errors 

are introduced at initiation of the tracking. Although many other challenges to structural 

connectivity maps must still be addressed (Jespersen et al., 2007; Van Essen et al., 2014), 

structural connectivity and other advanced modeling techniques would likely also greatly 

benefit from larger numbers of DWIs per individual.

4.9. Summary: accuracy and reliability of diffusion imaging models

We evaluated the accuracy and reliability of single and multiple crossing-fiber models (LLS, 

STB, BPX, CSA-QBI, CSD, BaMM) in both simulated and repeatedly sampled human DWI 

data (9 - 14 complete DWI datasets), as a function of data amount. LLS, STB and BPX 

were only capable of reifying their prior assumptions independent of data amount. CSA-QBI 

required very large numbers of DWIs (>800) to start approaching a degree of reliability 

and accuracy. CSD and BaMM performed much better, with BaMM proving the relatively 

most over fitting resistant across test cases. To enhance the scientific and clinical utility 

of diffusion imaging, more data should be collected per individual and analyses should be 

conducted with methods designed to reduce overfitting.
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Fig. 1. Estimated Tensor and Angles
(A) Constant Solid Angle Q-Ball Imaging (QBI) reports fifteen spherical harmonic values, 

from which a 3D surface is estimated. The surface is colored by the orientation distribution 

function (ODF). The surface/ODF peaks are extracted (black line) and angles φ and θ 
estimated to match in B. (B) For Linear Least Squares (LLS) and Single Tensor Bayesian 

(STB), the tensor describing Brownian diffusion of water was calculated. Three eigenvalues 

are used to describe the tensor shape. From the largest eigenvector, two angles are estimated 

to describe the tensor orientation in 3D space. For Bayesian Multi-Tensor Model-Selection 

(BaMM) and FSL’s BedpostX (BPX), a stick corresponding to eigenvector-1 is estimated 

and its angles reported.
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Fig. 2. B-Vector selection
Subjects were scanned every day for two weeks, with 96 unique B-vector directions acquired 

each scan. A) All 1152 B-Vectors from the daily scans plotted on a single sphere. B) 

B-Vectors were subdivided by their position on the sphere into 16 groups of equal surface 

area, 4 of which are shown. Encodings were pseudo-randomly selected from the 16 groups 

to obtain approximately uniform angular sampling over the sphere.
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Fig. 3. Accuracy of Diffusion Measures: Simulated Single Tensor
(A) φ/θ angle estimations by Bayesian Multi-tensor Model-selection (BaMM). Open circles 

represent the results obtained by repeated permutation sampling. Same color legend for all 

data panels. Permutations that resulted in a single fiber direction are plotted in blue/sky 

blue (φ/θ). Permutations that resulted in two fibers are plotted in red/pink (φ/θ) and green/

olive (φ/θ). Permutations that resulted in three fibers are plotted in purple/lilac (φ/θ), orange/

salmon (φ/θ), and teal/cyan (φ/θ). (B) FSL’s BedpostX (BPX). (C) Constant Solid Angle 

Q-Ball Imaging (CSA-QBI). (D) Constrained Spherical Deconvolution (CSD).
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Fig. 4. Accuracy of diffusion measures: simulated two crossing tensors
The tensors were oriented such that they were perpendicular to each other. The first tensor 

had larger weighting equal to 60% of the signal. Rician noise was added for an SNR = 

50. (A) φ/θ angle estimations by Bayesian Multi-tensor Model-selection (BaMM). Open 

circles represent the results obtained by repeated permutation sampling. Same color legend 

for all data panels. Permutations that resulted in a single fiber direction are plotted in 

blue/sky blue (φ/θ). Permutations that resulted in two fibers are plotted in red/pink (φ/θ) and 

green/olive (φ/θ). Permutations that resulted in three fibers are plotted in purple/lilac (φ/θ), 

orange/salmon (φ/θ), and teal/cyan (φ/θ). (B) FSL’s BedpostX (BPX). (C) Constant Solid 

Angle Q-Ball Imaging (CSA-QBI). (D) Constrained Spherical Deconvolution (CSD).
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Fig. 5. Accuracy of diffusion measures in simulated three crossing tensor data
The tensors were oriented such that they were perpendicular to each other. The tensors 

had weighting equal to 40%, 34%, and 26% of the signal. Rician noise was added for an 

SNR = 50. (A) φ/θ angle estimations by Bayesian Multi-tensor Model-selection (BaMM). 

Open circles represent the results obtained by repeated permutation sampling. Same color 

legend for all data panels. Permutations that resulted in a single fiber direction are plotted in 

blue/sky blue (φ/θ). Permutations that resulted in two fibers are plotted in red/pink (φ/θ) and 

green/olive (φ/θ). Permutations that resulted in three fibers are plotted in purple/lilac (φ/θ), 

orange/salmon (φ/θ), and teal/cyan (φ/θ). (B) FSL’s BedpostX (BPX). (C) Constant Solid 

Angle Q-Ball Imaging (CSA-QBI). (D) Constrained Spherical Deconvolution (CSD).
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Fig. 6. Whole-brain DTI reliability map (linear least squares) for mean error < 5% (Subject 2)
(A) The color scale shows the number of DWI measurements needed to achieve a voxel-wise 

error less than 5% in FA. Error is calculated relative to the mean FA found using the entire 

sample. Results for (B) RD, (C) AD, (D) MD, and (E) angle φ are shown. Subjects 1 and 3 

are shown in Figure S15, all subjects shown in S16.
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Fig. 7. Reliability of diffusion measures in the genu of the corpus callosum (subject 2)
(A) The locus of the analyzed voxel (MNI: 1, 22, 9) is marked with a circle. Linear 

Least Squares (LLS) FA reliability map as in Fig. 6A. (B) φ/θ angle estimations by 

Bayesian Multi-tensor Model-selection (BaMM). (C) FSL’s BedpostX (BPX). (D) Constant 

Solid Angle Q-Ball Imaging (CSA-QBI). (E) Constrained Spherical Deconvolution (CSD). 

Subject 1 and 3 in Figures S18-19, respectively.
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Fig. 8. Reliability of diffusion measures in left frontal region (Subject 2)
(A) The locus of the analyzed voxel (MNI: 18, 22, 26) is marked with a circle. Linear 

Least Squares (LLS) FA reliability map as in Fig. 6A (B) φ/θ angle estimations by 

Bayesian Multi-tensor Model-selection (BaMM). (C) FSL’s BedpostX (BPX). (D) Constant 

Solid Angle Q-Ball Imaging (CSA-QBI). (E) Constrained Spherical Deconvolution (CSD). 

Subject 1 and 3 in Figures S22-23, respectively.
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