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Abstract

Objective/background: In vivo imaging and quantification of the microstructures of small 

airways in three dimensions (3D) allows a better understanding and management of airway 
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diseases, such as asthma and chronic obstructive pulmonary disease (COPD). At present, the 

resolution and contrast of the currently available conventional optical coherence tomography 

(OCT) imaging technologies operating at 1300 nm remain challenging to directly visualize the 

fine microstructures of small airways in vivo.

Methods: We developed an ultrahigh-resolution diffractive endoscopic OCT at 800 nm to 

afford a resolving power of 1.7 μm (in tissue) with an improved contrast and a custom deep 

residual learning based image segmentation framework to perform accurate and automated 3D 

quantification of airway anatomy.

Results: The 800-nm diffractive OCT enabled the direct delineation of the structural components 

in the small airway wall in vivo. We further first demonstrated the 3D anatomic quantification of 

critical tissue compartments of small airways in sheep using the automated segmentation method.

Conclusion: The deep learning assisted diffractive OCT provides a unique ability to access the 

small airways, directly visualize and quantify the important tissue compartments, such as airway 

smooth muscle, in the airway wall in vivo in 3D.

Significance: These pilot results suggest a potential technology for calculating volumetric 

measurements of small airways in patients in vivo.

Keywords

Optical coherence tomography; quantitative imaging; deep learning; airway smooth muscle; small 
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I. Introduction

SMALL airways are the critical site of pathology and important therapeutic target for several 

lung diseases[1, 2], and are a major cause of global healthcare morbidity and mortality 

with rising prevalence rates[3, 4]. Previous studies revealed that small airway walls were 

thickened in fatal asthma compared to those in nonfatal asthma[5, 6]. In COPD, the disease 

predominantly involves small airway remodeling[1, 7]. Small airway pathology often occurs 

in the early course of COPD before the onset of symptoms and before discernable changes 

in spirometry[8, 9]. Despite their importance, evaluating small airway pathologies in 
vivo remains challenging[2], hindering the effective diagnostics, therapeutics, and clear 

understanding of the basic mechanisms of these diseases[10, 11]. Due to the relative 

inaccessibility to biopsy, the current methods for studying small airway pathology rely 

on indirect measures (such as pulmonary function testing)[12], ex vivo histopathology, or 

conventional radiographic techniques[13] which do not provide the resolution and contrast 

sufficient to exam the fine microstructures of small airways[14].

The ability to directly visualize volumetric morphology on critical tissue components in 

the airway wall in vivo will have a profound impact on understating the development 

and progression of lung disease. Given the unique capability afforded by endoscopic OCT 

for non-invasive and high-resolution optical biopsy, 3D imaging of airway pathology in 
vivo becomes possible[15, 16]. It has been demonstrated that the 1300-nm endoscopic 

OCT could be potentially useful for measuring small airway wall thickness in patient[17, 
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18]. However, the resolution (about 10 μm) and imaging contrast afforded by 1300-nm 

endoscopic OCT is suboptimal for accurately assessing the microstructures in the walls of 

the small airways.

In addition, the high-speed endoscopic OCT generates a large amount of volumetric imaging 

data (up to tens of GBs), making manual image quantification extremely laborious if not 

impossible. Neural networks are currently standard methods for automated segmentation 

of medical images to cope with the increasing volume of images and the shortage of 

available human expertise[19-22]. Nowadays, the well-established deep learning frameworks 

can be conveniently customized and optimized for automated OCT image quantification 

with considerable accuracy[23-25]. However, the adoption of such an advanced tool for the 

anatomic quantification of OCT airway images was limited by the insufficient capability 

of conventional endoscopic OCT to directly resolve airway microstructures, such as airway 

smooth muscle.

To address the limitations of traditional 1300-nm OCT, in this study, we developed an 

800-nm diffractive endoscopic OCT with a considerably higher resolution (about 1.7 

μm in tissue) and improved image contrast, enabling direct visualization of 3D airway 

microstructures in vivo[26-33]. Furthermore, for the first time we trained and optimized 

a deep residual learning based automated segmentation network and demonstrated that 

critical tissue compartments of small airways in sheep could be segmented, quantified and 

visualized in three dimensions with an accuracy similar to our experienced investigators. 

The capability of deep learning assisted ultrahigh-resolution diffractive endoscopic OCT to 

comprehensively image and anatomically quantify small airways longitudinally provides an 

unprecedented opportunity to image previously unexplored aspects of airway pathology in 
vivo and may serve as an intravital imaging tool to elucidate the etiology, progression of 

disease, and response to therapy in human lung diseases.

II. Materials and Methods

A. Ultrahigh-resolution Diffractive OCT System

In vivo OCT images of sheep airways were acquired using a custom-built bench-top 

diffractive OCT system based on an 800-nm SD-OCT platform (Fig. 1a) and a diffractive 

imaging catheter (Fig. 1b), the details of which was reported elsewhere[27, 28, 31, 34]. The 

diffractive catheter had a small diameter of 1.3 mm (and 1.8 mm with the protective plastic 

sheath). Such an OCT system achieved excellent achromatic performance with a measured 

ultrahigh axial resolution of about 2.4 μm in air (or 1.7 μm in tissue), which represents a 4X 

improvement over conventional 1300-nm OCT. Meanwhile, our diffractive catheter provided 

a transversal resolution of ~7.2 μm. The image acquisition rate was 20 frames per second 

using a home-built broadband rotational joint[30]. 3D imaging was achieved by pulling back 

the circumferentially rotating catheter, with a pullback speed of 0.4 mm/s (corresponding to 

an image-to-image pitch of about 20 μm).
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B. Study Flow and 3D Segmentation Method

In our study, we investigated the feasibility of the technology for imaging microstructures 

of small airways in sheep. Correlation studies were performed first to identify the 

correlated OCT and histology pairs[32]. Members of our research team (YW, JT) learned to 

accurately determine the small airway microstructures in OCT images based on correlated 

histologic images. These investigators then manually labelled the microstructures and tissue 

compartments of small airways in cross-sectional OCT images using Semantic Segmentation 

Editor, an open-sourced web-based interactive image annotation tool[35].

To facilitate the volumetric visualization and anatomic quantification of small airway 

microstructures, we customized a popular deep residual learning architecture (ResNet18) 

and trained an automated airway OCT segmentation framework[36]. First, we manually 

labeled 618 OCT cross-sectional images randomly selected from 10 sheep airways (n=5 for 

sheep), which were used for training a neural network for automated segmentation of small 

airway compartments (Fig. 1c). Then, 46 histology-correlated OCT images were used as the 

test dataset for evaluating the performance of the trained neural network (versus the manual 

segmentations of OCT investigators) through calculating the intersection over union (IoU) 

values between the predicted labels and manual ground truth labels (Fig. 1c).

During the training process, the randomly initialized weight parameters were updated 

for layer segmentation by minimizing a loss function. We implemented and compared 

three widely-used loss functions, including binary cross entropy, Dice loss function, and 

Kullback-Leibler divergence loss function[37]. We selected the Kullback-Leibler divergence 

loss function due to its better test performance in terms of IoU (see Results). The barebone 

ResNet neural network built upon PyTorch 0.4.0 and Python 3.5 was used[36], both training 

and inference were performed on a Nvidia GTX 1080 Graphic Card on a desktop PC 

running Windows 10.

C. Sheep Studies

The in vivo sheep airways imaging protocol was approved by the Animal Care and Use 

Committee of the Johns Hopkins University. Sheep were anesthetized and OCT imaging 

were performed as previously reported (n=27)[32]. Briefly, the imaging catheter was 

deployed to the small airway through the 2.2-mm working channel of a bronchoscope 

(Olympus BF-P40) (Fig. 2). After OCT imaging, the sheep was sacrificed, the lungs 

were harvested and fixed, and the imaged airway sections were dissected for histological 

processing and correlation. Each histological slide contained a 10-μm thick tissue sample 

sectioned with close match with the microstructure architectures and orientations of cross-

sectional or en face OCT images. Histological slides were stained with haemotoxylin and 

eosin, Masson’s trichrome, or a-smooth muscle actin (aSMA).

D. Image Representation

Cross-sectional OCT intensity images (wrapped and unwrapped) were converted to a 

logarithmic scale and displayed in an 8-bit gray scale. Volumetric images were represented 

by an 8-bit gray scale with varied lengths according to the size of the specimen imaged. 

As an alternative approach for volumetric representations of data obtained with the 
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diffractive OCT, we also presented images in “unwrapped” 2D en face format with tissue 

thickness encoded using a color scale or gray scale. This provided a visual morphological 

representation of each tissue compartment for real-time qualitative assessment.

III. Results

A. Identification of the Microstructures of Small Airways

In vivo endoscopic imaging of small airways with the 800-nm diffractive OCT system 

provided direct visualization of the small airway wall and its major tissue compartments 

in vivo in the sheep model. A representative cross-sectional OCT image and its magnified 

view (Figs. 3a and c) were compared with the correlated histology and its magnified view 

(Figs. 3b and d), respectively. We were able to clearly identify the microstructures of 

sheep small airways, including the epithelium, basement membrane, airway smooth muscle, 

adventitia, submucosal glands, cartilage, blood vessels, and alveoli. Our correlation studies 

measuring each tissue compartment of airway in the OCT and histology revealed a good 

correlation, i.e., r=0.61 (p<0.001) for the epithelium, r=0.82 (p<0.001) for the basement 

membrane, r=0.76 (p<0.001) for the airway smooth muscle, r=0.86 (p<0.001) for the 

adventitia, r=0.81 (p<0.001) for the cartilage and r=0.76 (p<0.001) for the whole airway 

wall[32]. It is worthwhile to note that excluding submucosal glands and blood vessels in the 

correlation studies is because their collapsed structures in histological micrographs and the 

difficulties to accurate identify the walls of glands (due to the mucus) and vessels (due to 

the shadowing effect) in OCT images. To assess the global architecture of small airways, 

an 18-mm long sheep small airway was imaged and an en face view was constructed using 

color-coded depth projection[38], which clearly depicted the complex, interwoven network 

of microstructures and important tissue compartments that make up the airway wall (Figs. 3e 

and f).

B. Volumetric Visualization and Quantification of Tissue Compartments in Small Airways 
of Sheep

We trained a deep residual learning based neural network to automatically segment 

each small airway tissue compartment from the OCT images. The performance of our 

segmentation network was first evaluated using the test dataset. The automated segmentation 

results demonstrate a high similarity to the ones that were manually labelled (ground truth) 

by one of the experienced OCT reviewers, who segmented the OCT images by referring to 

corresponding histology (Figs. 4a-c). An average IoU of ~0.92 with an IoU of more than 

0.8 for each tissue compartment in airway wall and airway lumen was achieved by using the 

Kullback-Leibler divergence loss function (Fig. 4d).

The trained neural network was then applied to the series of OCT images of the small 

airways, and the segmented microstructures were then reconstructed along the longitudinal 

lumen direction in a 3D fashion (Fig. 5). This permitted quantitative evaluation of the 

architecture and volume of each tissue compartment. We have parameterized the unwrapped 

en face views of each tissue compartment (Figs. 6a-c) by encoding tissue thickness 

in color for an 18-mm long sheep small airway segment. One can clearly appreciate 

the longitudinally organized collagenous structures of basement membrane anchoring the 
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similarly oriented epithelium (Figs. 6a and b). Running perpendicular to the longitudinally 

oriented basement membrane, is the circumferentially oriented airway smooth muscle (Fig. 

6c).

We further assessed the cross-sectional area of each tissue compartment longitudinally. We 

observed that the areas of the epithelium, basement membrane, airway smooth muscle, 

adventitia and cartilage increase gradually along the catheter pull-back direction (distal 

to the proximal direction) (Figs. 6a-d), leading to an increased cross-sectional airway 

wall area (Fig. 6e). Linear fitting was performed in one representative airway to indicate 

the trend of changes of cross-sectional areas for each tissue compartment and the entire 

airway wall over the length of the single airway (Fig. 6). It is worth pointing out that the 

oscillations on tissue areas of microcompartments in longitudinal lumen direction were not 

caused by breathing (since a breath hold was used during imaging), or heartbeat (since 

the frequency of sheep heartbeat is around 1-1.5 Hz and no such characteristic temporal 

frequency features were identified in the frequency analyses of the fluctuations of tissue 

areas along the pull-back direction). Those oscillations on measurements may be contributed 

by the limitations of resolutions (~1.7 μm in axial direction and ~7.2 μm in transversal 

direction) and quantification accuracy (an average IoU of ~0.92) of the diffractive OCT 

system.

C. Measuring Band Widths of Basement Membrane and Airway Smooth Muscle in the 
OCT and Histology

Both the volumetric architectures of basement membrane and airway smooth muscle in 

OCT images demonstrate good visual correlation with histology (Figs. 6a-c and Fig. 7). We 

further measured bandwidths of basement membrane and airway smooth muscle in the OCT 

and histology. The band widths were first measured directly in the histology micrographs, as 

shown with double-headed arrows in Figs. 7c-d. As for the OCT, the basement membrane 

and airway smooth muscle layers were first segmented from the volumetric datasets (n=6) 

with the trained neural network. Unwrapped en face images of basement membrane and 

airway smooth muscle were reconstructed by summing the pixels perpendicular to the 

lumen surface and encoding tissue thickness in gray level (Fig. 8). Thickness profiles from 

the 1-mm cross-sections were randomly selected on en face images. Then the band peaks 

and band widths were calculated using the find-peaks algorithm in Python. Band widths 

were obtained at the full width at half maximum (FWHM) of the peak. A minimum peak 

prominence of 3.5 microns was enforced in the algorithm and was chosen in consideration 

of the resolution limitations of the system (Fig. 8). All calculations of band width were 

measured from airway segments (1 mm in length and averaged 5 adjacent pixels) free from 

branching or excessive mucus obstruction. As shown in Fig. 9, the basement membrane 

and airway smooth muscle measured in the OCT and histology show closely related band 

widths, i.e., 165.9 ± 25.3 μm in OCT versus 137.4 ± 22.9 μm in histology for the basement 

membrane and 97.1 ± 18.5 μm in OCT versus 104.5 ± 27.4 μm in histology for the airway 

smooth muscle.
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IV. Discussions

Previously, it was elegantly demonstrated that polarization-sensitive OCT operating at 1300 

nm could be used for indirectly estimating smooth muscle content in medium airways (with 

a diameter larger than 4 mm) by assessing bulk tissue birefringence[39]. To our knowledge, 

this report is the first to demonstrate the capability of OCT for directly visualizing and 

quantifying airway smooth muscle and other critical tissue compartments in small airways 

(with a diameter less than 2 mm) in vivo, which may be critical sites related to asthma and 

COPD[1, 2, 11, 13, 40].

Recent studies have suggested that smooth muscle remodeling plays a key role in the 

pathogenesis of asthma and results in a significant increase in smooth muscle thickness 

through hyperplasia and hypertrophy[41, 42]. Direct visualization and quantification of 

airway smooth muscle in vivo with diffractive OCT may offer a unique opportunity for 

longitudinally studying the remodeling process, determining the severity, phenotyping, 

guiding and monitoring the response to treatment in asthma[2, 40, 41]. Furthermore, it 

has been reported that COPD progression closely correlates with the thickening of small 

airway wall tissue, owing to the increased volume in each tissue compartment by a repair 

or remodeling process[1, 11]. As one of the best predictors of the rapid decline in forced 

expiratory volume (FEV1) in COPD patients[43], nonspecific airway responsiveness was 

found to be strongly associated with the increased thickness in the epithelium and basement 

membrane[44]. The capability of diffractive OCT to visualize and assess volumetric 

morphological changes in each of these critical tissue compartment in small airways in 
vivo will likely provide critical information to elucidate the development and progression of 

COPD.

The current study simply demonstrated the feasibility of diffractive endoscopic OCT. It was 

limited to image small airways of sheep and the smallest airways imaged are approximately 

1.8 mm in diameter. Nevertheless, we found that the circumferentially oriented bundle 

architecture of smooth muscle in the sheep small airways was similar to that of medium 

airways measured with birefringence OCT[39]. A systematic study is imperative for a better 

understanding of the 3D microstructure of small airways and validate the clinical potential 

of diffractive OCT for assessing airway pathology in patients. For future clinical use, 

800-nm diffractive OCT technology needs further improvements. First, although the imaging 

speed of 20 frames per second is sufficient for demonstrating its operational feasibility, a 

higher speed is more desirable for clinic use to image over a longer airway segment and 

minimize motion artifacts. In principle, the speed can be improved by using a fast fiber-optic 

rotary joint and a fast imaging spectrometer. Second, training a high-performance deep 

learning neural network currently requires a large amount of high-quality manually labeled 

images, and manually labelling is onerous. Overcoming this barrier would further facilitate 

the clinical adoption of diffractive OCT technology, and unsupervised training or other 

training schemes with limited manually labeled images should be explored in the future. 

Additionally, we have already begun to test a new achromatic OCT microprobe that is only 

1 mm in diameter, allowing in vivo imaging the smallest airways where most chronic lung 

diseases begin[29]. We envision the diffractive OCT technology can be applied for imaging 

medium and large airways which will likely require further imaging catheter modifications. 
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Potential modifications include using a balloon to centralize the imaging probe in airways 

and adding an optofluidic channel for temporarily changing the local optical properties of 

lung tissues to improve the imaging performance[45]. Using a lung phantom will be able to 

help test these new catheter modifications[46].

V. Conclusion

We report for the first time, noninvasive, and automated quantification and visualization 

of 3D subsurface microstructures in small airways of animals in vivo with the deep 

learning assisted diffractive OCT. With an 800-nm broadband laser source and correction of 

chromatic aberration by diffractive optics, the newly developed diffractive OCT technology 

was able to achieve superior imaging resolution and contrast (versus 1300-nm OCT) 

for accurate delineation of small airway microstructures in vivo, such as the epithelium, 

basement membrane, airway smooth muscle, in sheep. This ultrahigh-resolution endoscopic 

OCT further enabled us to visualize and quantify the tissue compartments in the airway wall 

in 3D using a custom deep residual learning based segmentation method. Given the high 

resolution and high segmentation accuracy, deep learning assisted diffractive OCT enables 

the in vivo objective assessment of airway pathology and treatment outcome in ways there 

were previously not possible, allowing a better understanding and management of human 

lung diseases, such as asthma and COPD.
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Fig. 1. 800-nm diffractive OCT system and workflow for neural network training and testing.
(a) Schematic of the diffractive spectral-domain OCT system operating at 800 nm with 

a customized linear-K spectrometer and an achromatic diffractive catheter of a 1.3-mm 

diameter. (b) Photo of the distal end of a diffractive catheter encased within a hypodermic 

tube. (c) For neural network training, unwrapped OCT images in the training dataset were 

manually labeled by an experience OCT reviewer. After that, the trained network first 

underwent the performance evaluation on the test dataset, the segmentation results were 

compared with the manually labeled ground truth. Then, the trained network was tested 

on 3D airway scans to automatically recognize and segment airway microstructures for 

volumetric visualization and quantification of small airways of sheep.
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Fig. 2. Diffractive OCT catheter in bronchoscope.
(a) The diffractive OCT catheter deployed through the working channel in bronchoscope. (b) 

The diffractive OCT catheter in small airway under the bronchoscopic view.
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Fig. 3. In vivo imaging of sheep small airways.
(a, b) Representative cross-sectional OCT image and correlated haemotoxylin and eosin 

histology, (c, d) two 3X zoomed views of the area boxed with dashed green outlines in (a, b). 

(e) En face image and (f) its zoomed view (marked with the red line boxed area in (e)) of an 

unwrapped sheep small airway of 18-mm long, by axially projecting a 200-μm thick tissue 

slice (starting from airway lumen surface) with color-coded depth information. A: alveoli, 

Ad: adventitia, ASM: airway smooth muscle, BM: basement membrane, BV: blood vessel, 

C: cartilage, EP: epithelium, G: submucosal glands. Scale bars: 1 mm.
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Fig. 4. Performance evaluation of the trained segmentation network with test dataset.
(a, b) Representative cross-sectional OCT image from the test dataset and its correlated 

histology. (c) The manual segmentation (center, ground truth) is compared with the 

automated segmentation results (right) from the unwrapped OCT (left). (d) The similarity 

(characterized with the intersection over union (IoU)) calculated by comparing 14 

automated segmentation results with their corresponding manual ground truth labels for 

each compartment in the airway wall, the resulting IoU are presented as mean values with 

standard deviations. Scale bars: 500 μm.
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Fig. 5. 3D visualization of small airway tissue compartments.
Visualization of the volumetric architectures of tissue compartments (embedded in the cut-

away view of the reconstructed 3D OCT image) in (n=1) 18-mm long sheep small airway, 

including epithelium (a), basement membrane (b), and airway smooth muscle (c). Thickness 

of each tissue compartment is represented with color and the cut-away view of 3D OCT 

image is represented with gray scale. Scale bars: 1 mm.
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Fig. 6. Visualization and quantification of small airway tissue compartments.
(a-c) Unwrapped en face views of three tissue compartments in (n=1) representative 18-mm 

long sheep small airway with tissue thickness coded by color, including the epithelium (a), 

basement membrane (b), and airway smooth muscle (c). Quantifications of cross-sectional 

area of small airway tissue compartments, such as epithelium (a), basement membrane (b), 

airway smooth muscle (c), adventitia and cartilage (d), and airway wall with and without 

cartilage (e), are shown along the longitudinal airway lumen direction. The linear fitting 

lines (red and black dashed lines) in (a-e) indicate the increasing cross-sectional areas of 

each tissue compartment along the catheter pull-back direction (from distal to proximal end). 

0 mm in the horizontal axes in (a-e) indicates the starting distal point of the pull-back OCT 

imaging. B: branch. Scale bars: 1 mm.

Yuan et al. Page 16

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 3D architectures of basement membrane and airway smooth muscle in sheep small 
airways.
(a, b) Two adjacent histological slides, which were stained with haemotoxylin and eosin 

(a) and Masson’s trichrome (b), respectively, show the volumetric architectural evolvement 

of basement membrane and airway smooth muscle at different depth. (c, d) Two adjacent 

histological slides stained with a smooth muscle actin stain (i.e., aSMA) to specifically 

visualize airway smooth muscle cells. Starting from the airway luminal surface, histological 

slides were sectioned in sequence along the longitudinal direction of the airway lumen with 

as close as possible orientation to en face OCT images. The histological slides shown in 

(a, c) were sectioned before those shown in (b, d). All these histological specimens were 

10-μm thick. The band widths of airway smooth muscle (white double-headed arrows) can 

be measured directly on the histology micrographs. ASM: airway smooth muscle, BM: 

basement membrane. Scale bars: 1 mm.
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Fig. 8. Measuring band widths of basement membrane and airway smooth muscle in unwrapped 
en face OCT images.
(a, c) Representative en face images of basement membrane and airway smooth muscle with 

the tissue thickness encoded in gray level. Dashed lines: 1mm. (b, d) Thickness profiles from 

the 1-mm horizontal (for basement membrane) and longitudinal (for airway smooth muscle) 

cross-sections indicated with dashed lines in (a) and (c), respectively.
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Fig. 9. Band widths of basement membrane and airway smooth muscle in the OCT versus in 
histology.
(a) As for the band widths of basement membrane, the average measurement from 6 

histological micrographs (n=56) is compared with that from 6 en face OCT images 

(n=95). (b) The average airway smooth muscle band width is measured in 21 histological 

micrographs (n=361), versus that measured in 6 en face OCT images (n=109).
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