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Abstract—Motivation: Infection (bacteria in the wound)
and ischemia (insufficient blood supply) in Diabetic Foot
Ulcers (DFUs) increase the risk of limb amputation. Goal:
To develop an image-based DFU infection and ischemia de-
tection system that uses deep learning. Methods: The DFU
dataset was augmented using geometric and color image
operations, after which binary infection and ischemia clas-
sification was done using the EfficientNet deep learning
model and a comprehensive set of baselines. Results: The
EfficientNets model achieved 99% accuracy in ischemia
classification and 98% in infection classification, outper-
forming ResNet and Inception (87% accuracy) and Ensem-
ble CNN, the prior state of the art (Classification accuracy
of 90% for ischemia 73% for infection). EfficientNets also
classified test images in a fraction (10% to 50%) of the time
taken by baseline models. Conclusions: This work demon-
strates that EfficientNets is a viable deep learning model for
infection and ischemia classification.

Index Terms—Deep Learning, Diabetic Foot Ulcers, Effi-
cientNet, Infection, Ischemia.

Impact Statement— The EfficientNet neural networks ar-
chitecture was innovatively adapted for ischemia and Infec-
tion recognition in Diabetic Foot Ulcer Images and signif-
icantly outperformed the state of the art in both accuracy
and speed.

l. INTRODUCTION

VER 6.5 million people in the US (or approximately 2% of
O the population [1]) have chronic wounds, which are preva-
lent in the elderly population [2], [3] and cost the healthcare
system over $25 billion annually [4]. Chronic wounds are often
painful and require proper treatment including regular cleaning,
debridement, changing of dressings and the use of antibiotics
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in order to heal properly [5]. Due to the large and growing
number of chronic wounds, there is an increasing demand for
information technology solutions that assist the work of medical
personnel, improve efficiency and reduce the cost of care.

There are four main types of chronic wounds: pressure ulcers,
diabetic foot ulcers, venous ulcers, and arterial ulcers. Diabetic
foot ulcers (DFUs), the focus of this paper, are a major com-
plication of diabetes. Infection and ischemia are two common
problems that occur in the healing process of DFUs, which
may lead to amputation of limbs and admission of patients into
hospitals [6]. After limb amputation, the patient’s quality of
life degrades quickly with a life expectancy of fewer than 3
years thereafter [7]. Infection occurs in 40%—80% [8] of DFUs
and ischemia occurs in almost 50% of DFUs [9]. Infection
is caused by the presence of bacteria in the wound, which
causes cell death. DFUs are at risk of becoming infected as
they are often located on the lower limbs such as on the sole
of the patient’s foot [10]. Ischemia is caused by insufficient
blood circulation due to chronic complications of diabetes. It is
essential to recognize infection and ischemia of DFUs early to
reduce the risk of amputation. The economic burden of treating
DFUs including infection and ischemia, ranges from $9-13
billion [11].

To diagnose infection and ischemia accurately, the wound
bacteriology needs to be tested combined with review of pa-
tient records such as clinical history, physical health and blood
tests. But this information is not always available to clinicians.
Experienced wound experts are able to recognize the presence
of infection and ischemia in DFUs by visual inspection. Visual
cues of wound infection include increased redness in and around
the ulcer, and colored purulent. Visual cues for a wound with
ischemia include the presence of poor reperfusion to the foot,
or black gangrenous toes (tissue death to part of the foot).
Prior work has demonstrated that infection and ischemia can
be detected reliably from the appearance of the wound in a
photograph using image analyses methods, without requiring
wound tests and accurate records [12]. The goal of this work is
to create deep learning models that can replicate the diagnoses of
infection and ischemia in DFUs by wound experts. Such models
can be used remotely and especially in situations (e.g. patients’
homes) where wound experts are not available. The accuracy of
medical image recognition tasks using machine learning algo-
rithms has increased significantly in recent years, outperforming
and producing more consistent assessments than skilled humans
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Fig. 1.

including clinicians in some cases [13], [14]. Moreover, specific
to wounds, Netten et al. [15] showed that clinicians achieved low
validity and reliability for remote assessment of DFU mobile
phone images.

Our approach: In this work, a DFU infection and Ischaemia
detection system that utilizes the EfficientNets neural networks
architecture (See Fig. 1) for binary classification of wound
images, was developed. The research utilized a wound infection
and ischemia dataset made publicly available as part of the
Diabetic Foot Ulcers Grand Challenge (DFUC) 2021 [16], [17]
with details expounded on in Section II-A. EfficientNets [18],
[19] are computationally efficient with fewer parameters than
other methods and have achieved 84.4% top-1 state of the
art results on the ImageNet dataset for classifying 14 million
natural images into 1,000 categories. To achieve computational
efficiency, a key innovation in EfficientNets is compound scal-
ing, a new scaling method in which a compound coefficient is
used to uniformly scale the depth, width and resolution of a
neural network. Figure 3(a) shows various methods of scaling
including compound scaling. The intuition behind compound
scaling is that the network needs more layers to increase the
receptive field and more channels to capture more fine-grained
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Diabetic Foot Ulcer Ischemia and Infection Recognition using EfficientNet Deep Learning Models.

patterns in larger images. Wound image analysis is a fine-
grained image analysis problem [20], wherein images belonging
to distinct target categories appear quite similar. EfficientNet
achieves state-of-the-art performance by scaling up the CNN-
based model in order to detect wound details in higher resolution
images.

Challenges: In DFU assessment using deep learning methods
include: (1) High inter-class similarity and intra-class variations
of the infection and ischemia wound classes in DFU images;
(2) Highly variable and non-standardized DFU dataset imaging
conditions with large variations in the camera’s distance from
the foot, its orientation (pose) and lighting conditions; (3) Lack
of patient demographic information such as patient ethnicity,
age, sex, foot size or any accompanying meta-data for the DFU
dataset.

Prior work: Earlier approaches to recognize infection in
wounds utilized traditional machine learning techniques with
handcrafted features [21], [22]. Hsu et al. [21] utilized a cluster-
ing technique followed by machine learning infection classifica-
tion using the Support Vector Machines (SVM) algorithm. Hsu
et al. [22] first segmented the wound image and then recognized
wound infection using the SVM algorithm.
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(a) Statistics of the DFUC 2021 dataset utilized in this work

(b) 3 augmentations of a wound image. Left: affine transformations
such as shearing and scaling, Middle: increase in brightness, Right: a
center cropped image

(c) 3 augmentations of a wound image. Left: image flipped horizon-
tally, Middle: image flipped vertically, Right: the hue changed by 50%

(d) 3 augmentations of a wound image. Left: image rotated clockwise,
Middle: the image rotated by an angle, Right: the saturation increased
by 50%

Fig. 2. Dataset Statistics and Examples of data augmentation of a
wound image.

As manual feature engineering is tedious, time-consuming
and error-prone, more recent work has utilized neural networks
approaches [23], [24], [25] that generally have superior perfor-
mance when adequate data is available. Wang et al. [23] used
a novel variant of a deep ConvNet for wound segmentation
and then detected infection using SVM. Nejati et al. [24] used
a pre-trained AlexNet neural network as a feature extractor,
then performed feature reduction using Principal Components
Analysis (PCA) and classification using linear SVM on vari-
ous wound tissues including infected tissue. Goyal et al. [25]
proposed a novel DFUNet architecture which combines depth
and parallel convolution layers to discriminate the DFU from

healthy skin. Goyal et al. [12] achieved the highest accuracy
of 90% accuracy for binary ischemia classification and 73%
for binary infection classification using the Ensemble CNN on
the same DFUC2021 dataset analyzed in this paper [16], [17].
Their neural networks model works by using the Inception-V3,
ResNet50, and InceptionRes-NetV2 CNN models to extract bot-
tleneck features from wound images, which were then combined
and classified using an SVM classifier [12]. Yap et al. [16]
utilized the VGG16, ResNet101, InceptionV3, DenseNetl21
and EfficientNet architectures to classify the DFUC2021 dataset
as a four-class classification (infection (yes/No) and ischaemia
(yes/no)) problem [16]. The EfficientNet BO achieved the best
results for four-class classification with macro-average Preci-
sion, Recall and F1-Score of 0.57, 0.62 and 0.55 respectively.
Al-Garaawi et al. [26] used a CNN-based DFU classification
method to classify Infection and Ischaemia in the DFUC dataset
as a 2-class classification problem [16], [17]. The proposed
2-stage method consisted of first using mapped binary patterns
to extract texture information before feeding the stack of RGB
and mapped binary pattern images to the CNN. This method
achieved 0.995% (AUC) and 0.990% (F-measure) for Ischaemia,
and 0.820% (AUC) and 0.744% (F-measure) for infection. It
is important to note that the three works [12], [16], [26],
which explored multi-class classification on the DFUC2021
dataset were by the group that released the dataset. However,
the publicly released version of the DFUC2021 dataset [16],
[17] that we analyzed, only included labels that support binary
classification. Based on this limitation, we were only able to
explore binary classification in this paper but have the goal
of labeling and exploring multiple classes in future. Table 1
summarizes prior machine learning based wound infection and
and ischaemia work.

Our proposed approach is related to, but outperforms the work
of Goyal et al. [12]. Rather than using a single CNN-based model
for four-class classification of Infection (Yes/No) and Ischaemia
(Yes/No) as was done by Yap et al. [16], in order to achieve
the best possible performance, we trained two separate CNN-
based models to classify Infection and Ischaemia respectively.
Also, while prior work [12], [26] benchmarked the accuracy
of various proposed CNN-based models this is the first work
to benchmark and establish the superior classification speed of
the EfficientNet model that will facilitate faster diagnoses in
practical deployments.

Our contributions: in this paper include:

1) Envisioning and proposing an innovative DFU Infection
and Ischaemia detection system that consists of two Ef-
ficientNets, one each for Infection and Ischaemia. This
envisioned system can be utilized for remote wound as-
sessment in the patient’s home. A visiting nurse would
upload a wound picture taken in the patient’s home to a
cloud server for assessment of infections and ischemia.
The proposed EfficientNet models will analyze the wound
image in the cloud. The nurse can use the proposed wound
system’s predictions as supporting evidence for treating
the patient.

2) Innovatively adapting the EfficientNet neural networks
architecture for analyses of fine-grained wound details
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TABLE |
PRIOR WOUND INFECTION AND ISCHAEMIA RECOGNITION WORK AND DFUC2021 DATASET STATISTICS

(a) Prior work on DFU Classification and Wound Infection Recognition

Authors/
Citation

Specific Machine

Learning problem Summary of Approach

No. of target classes Best performance results

Wound Ischaemia and Infection Recognition using deep neural network models

DFU wound Ischaemia

Goyal et al. . 2 classes (Ischaemia: Yes/No; accuracy (Ischaemia: 90%,
2020 [12] ;ne(iolgrfgggﬁn Ensemble CNN Infection: Yes/No) Infection: 73%)
Yap et al DFU wound Ischaemia VGG16, ResNet101, 4 classes (both Infection and EfficientNet BO: macro-average
205 n 6j and Infection InceptionV3, DenseNet121, | Ischaemia, Infection, Precision, Recall and F1-Score
Recognition EfficientNet Ischaemia, None) of 0.57, 0.62 and 0.55

. . Part A: 2 classes (healthy skin and Ischaemia: 0.995% (AUC),
fllfa;%az“é‘ ;'zUh:‘tf;’C“t;‘jnI“haem‘a CNN-based DFU DFU); 0.990% (F-measure)
2 6]. Recognition classification method Part B: 2 classes (Ischaemia: Yes/No; | Infection: 0.820% (AUC),

Infection: Yes/No) 0.744% (F-measure)

Wound Infection Recognition using deep neural network models

Wang et al. wound segmentation

2015 [23] | and infection detection | 9eeP neural network, SVM

infection classification
accuracy 95.6%

2 classes (infection and no
infection)

classification of 7
tissue types including
infection

Nejati et al.

2018 [24] deep neural network, SVM

7 classes (Necrotic, Healthy Gran,
Slough, Infected, Unhealthy Gran,
Hyper Gran, Epithelialization)

tissue classification accuracy
86.4%

Wound Infection Recognition using traditional machine learning techniques

Hsu et al. detection of 4 tissue clustering method and 4 classes (Swelling, Blood Region, detection accuracy of 95.23%
2017 [21] types including infection | classification using SVM Infected, Tissue Necrosis) Y i
Hsu et al. wound segmentation robust image segmentation, | 4 classes (Swelling, Granulation, tissue classification accuracy
2019 [22] and infection detection classification using SVM Infection, Tissue Necrosis) 83.58%
(b) Statistics of different versions of the DFUC2021 dataset
APth?rS/ Spec1f!c Machine No. of target classes Statistics of dataset
Citation Learning problem
. . e Te v . Ischaemia: (Yes, 235; No, 1431) augmented to
%’g(;‘l[f’z]“[' DFUC2081 dataset Iznf;‘;:;;(;‘g‘a;‘;‘)‘d Yes, No; (Yes, 4935; No, 4935); Infection: (Yes, 982; No, 684)
: ’ augmented to (Yes, 2946; No, 2946)

Yap et al. DFUC2021 dataset 4 classes (both Infection and both Infection and Ischaemia: 621; Infection: 2555;

2021 [16] classification Ischaemia, Infection, Ischaemia, None) Ischaemia: 277; none of them: 2552

Al-Garaawi DFU dataset classification | Part A: 2 classes (healthy skin and DFU); | Part A: 641 healthy, 1038 Ulcer

et al. 2022 and DFUC2021 dataset Part B: 2 classes (Ischaemia: Yes, No; Part B: Ischaemia: augmented (Yes, 4935; No, 4935);

[26] classification Infection: Yes, No) Infection: augmented (Yes, 2946; No, 2946)

ga’ly;l[gg]”l' DFU dataset classification | 2 classes (healthy skin and DFU) 641 healthy, 1038 DFU

in high-resolution images for binary classification of:
(1) ischemia vs. No ischemia; and (2) infection vs. no
infection.

3) Performing rigorous evaluations of the EfficientNet ar-
chitecture, demonstrating that it achieves 99% accuracy
in ischemia classification and 98% in infection classifica-
tion, outperforming various baseline image classification
CNNs models including DenseNet121, ResNet50 and
Inception V3. It also outperformed Ensemble CNN [12],
the previous state-of-the-art (Classification accuracy of
90% for ischemia and 73% for infection) with a slightly
higher accuracy in the classification of ischemia than for
infection recognition.

4) Evaluation of wound image analysis speed. Due to com-
pound scaling, the EfficientNets model was significantly
faster, running in 10% to 50% (About 5 minutes) of the
time taken by baseline models (About 1 h). The Efficient-
Net running time is reasonable for the envisioned usage
scenario.

Il. MATERIALS AND METHODS
A. DFU Infection and Ischemia Dataset

The Diabetic Foot Ulcers Grand Challenge (DFUC) 2021
dataset [16], [17] contained images of DFUs that were col-
lected from the Lancashire Teaching Hospital with the approval
for research from the U.K. National Health Service (NHS)
Research Ethics Committee (REC) (NHS REC reference no.

15/NW/0539). Statistics for the DFUC are showing Fig. 2(a).
Each class had about 3000 images captured in stable room
lighting at a distance of 30-40 cm from the foot with the plane
of the ulcer parallel to the image. The images were acquired
by a podiatrist and a diabetic ulcers consultant physician, both
with more than 5 years of professional experience, who produced
ground truth labels on infection and ischemia status. The original
DFU images had sizes varying between 1600 x 1200 and 3648
x 2736, which were resized to a dimension of 640 x 640
that was suitable for deep learning, optimizes performance and
minimizes computational costs.

B. Methodology

Gathering and annotating the large number of medical images
for deep learning tasks can be tedious and expensive. To reduce
overfitting and improve model robustness, transfer learning and
data augmentation of the original DFU dataset were utilized.
For transfer learning, the EfficientNet deep learning model was
first pre-trained on the large ImageNet dataset. The weights
the model learned from Imagenet were then utilized as initial
weights to train it on the smaller DFU dataset. For data aug-
mentation, slightly modified versions of each original wound
image were generated and added to the dataset, increasing its size
while preserving important semantic information. The proposed
approach, which is now described in some detail, includes the
data augmentation techniques and the EfficientNet deep learning
architecture used for ischemia and infection classification.
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TABLE Il

DATA AUGMENTATION TYPES AND THE EFFICIENTNET-BO

BASELINE NETWORK

(a) Data Augmentation scenarios

Name

Description

Saturation, Con-
trast, Brightness
and Hue

Modify saturation, contrast, and brightness
by random factors sampled from a uniform
distribution of [0.7; 1.3], Also, shift the hue

by a value sampled from a uniform dis-
tribution of [-0.1; 0.1], simulating changes
in color due to camera settings and lesion
characteristics.

Rotate the image by up to 90, shear by up
to 20, and scale the area by [0.8; 1.2]. New
pixels are filled symmetrically at edges.
This can reproduce camera distortions and
create new lesion shapes.

Randomly flip the images horizontally
and/or vertically

Randomly crop the original image. The
crop has [0.4 - 1.0] of the original area,
and 3/4 - 4/3 of the original aspect ratio.
Combination of D - B - C — A

B Affine

C Flips

D Random Crops

E Combination Set

(P) EfficientNet-BO baseline Pet\york — Each row shows a stage i with
L; layers, input resolution (H;,W;) and output channels C;

Stage Operator Resolution  Channels Layers
i ﬁ; I:I,' X V’Vl é,' LA,'
1 Conv3x3 224 x 224 32 1
2 MBConvl, k3x3 112 x 112 16 |
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBConv6, k3x3 28 x 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 7x17 320 1
9 Convlx1 & Pooling &« FC 7 x 7 1280 1

1) Data Augmentation Techniques: Data augmentation
operations utilized were grouped into the five types shown in
Table 2(a), selected because they had produced good results
for the similar skin lesion analysis task [27], [28], [29]. The
operations included color modifications and geometric trans-
forms (rotation, scaling, random cropping), image processing
operations and combinations. Figure 2(b), (c), and (d) show
examples of modified (augmented) wound images from the
infection dataset.

2) Deep Learning Architectures for Binary Ischemia
and Infection Classification: included pre-trained, fine-tuned,
CNN models (transfer learning) including VGG16 [30],
Inception-v3 [31], ResNet50 [32], DenseNet121 [33], Efficient-
Net BO-B7 [18], [19]. Additional details on these models will
be provided in latter sections. To perform transfer learning, the
weights of the first few layers of the pre-trained networks that
typically learn common features, such as textures, edges and
curves in the image were frozen. The latter layers of the neural
network, which focus on learning task-specific features, were
re-trained.

3) EfficientNet Model Architecture and Compound Scal-
ing: Compound scaling is one of the main innovations in the
EfficientNet architecture. The scaling problem can be formu-
lated as follows [18]. A ConvNet Layer ¢ can be defined as a

function: Y; = F;(X;), where F; is the operator and Y; is the
output tensor. X; is the input tensor with shape < H;, W;, C; >,
where H; and W, are spatial dimensions and C; is the channel
dimension. The ConvNet is defined as:

N= ) FrFXemw.cs) (1)

1=1...5

Here F iL ‘ means that layer F; is repeated L; times in stage ¢
and < Hi, Wi, C'i > represents the shape of input tensor X of
layer i. Regular ConvINet designs focus on finding the best layer
architecture F; but model scaling tries to expand the network
length L;, width C;, and/or resolution (H;, W;) with F; remain-
ing the same in the pre-defined baseline network. Conventional
model scaling methods scale ConvNets in one of the d, w, r
dimensions as their optimal values depend on each other. The
model’s goal is to maximize accuracy subject to any resource
constraints. This problem can be formulated as the optimization
problem in equation 2, where w, d, r are coefficients for scaling
network width, depth, and resolution and F;, L;, H;, W;, C; are
pre-defined parameters in the baseline network.

max Accuracy(N(d,w,r))

d,w,r

Ad'Ai
S.t. N(d,w,r) = @ Fi L (X<T-I:Ii,7'-Wi,w-C’i>)

i=1...s
Memory(N) < target_memory
FLOPS(N) < target_flops 2)
depth : d = o
width : w = 3%
resolution : r = ~®
st - B2 2
a>1l,8>1,v>1 (3)

The compound scaling method applied to EfficientNet in-
volves uniformly scales its width, depth, and resolution using
the same compound coefficient ¢ as expressed in Equation (3).
Optimal values of the o, 3, y parameters can be determined using
grid search. Variants B1 to B7 of the EfficientNet model shown in
Table 2, are created by scaling the baseline model EfficientNet-
BO using various compound coefficients ¢ in Equation (3). For
EfficientNet-BO0, ¢ is set to 1 and optimal parameter values are
a =12, = 1.1 and v = 1.15 subject to the constraints in
Equation 3. In the next step, «, (3, -y are set as constants.

The main building block of the EfficientNet architecture is the
mobile inverted bottleneck block [34], [35] or inverted residual
block, which is denoted as MBConv in stages 2 to 8 in Table 2.
These blocks also apply squeeze and excitation [36] optimiza-
tions as well as the swish activation [37], which is shown in
Figure 4(c) and Figure 4(d). Detailed technical details of the
inverted residual block and the Squeeze-and-excitation (SE)
block and Swish Activation are in the Supplementary Materials.

Figure 3(b) illustrates EfficientNet BO. Its blocks correspond
to the stages of the EfficientNet-BO architecture in Table 2 and
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(a) Residual Block
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Global Pooling | 1x1xC
txtxcr
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WxHxC

Residual

SE-ResNet Module

(c) SE-ResNet Module

Fig. 4.

Figure 3(c) provides more details on its modules shown in Fig-
ure 3(b). As EfficientNets B1 to B7 have a similar architecture,
additional details will be suppressed due to space constraints.
Figure 4(b) illustrates the inverted residual block, which will
be explained in more detail in the Supplementary Materials.
EfficientNet architectures decrease the number of trainable pa-
rameters significantly, yielding training and testing times as well
as memory usage that are much smaller than previous models.
The squeeze and excitation blocks in EfficientNets scale each
channel of the model based on its importance, enabling it to
focus on useful information. Consequently, the EfficientNets
architecture improves on the accuracy, training and test times
of similar models for fine-grained classification tasks such as
wound infection and ischemia recognition.

C. Evaluation Metrics

EfficientNet as well as a comprehensive set of baseline models
were evaluated using the following performance metrics:
True Positive Rate (TPR), also known as recall or Sensitivity:

TP
TPR= ———
R TP+ FN
Precision:
TP
Precision =

TP+ FP

Inverted Residual Block

(b) Inverted Residual Block

(=

o~

N

Residual Block, Inverted Residual Block, SE-ResNet Module and Swish Activation.

vV
4 0 4
(d) Swish Activation
False Positive Rate (FPR):
FP
FPR= FP+TN
Specificity:
TN
PR = 2N TP
Accuracy:
TP+ TN
A = —
ce P+ N

Other metrics include F1-Score, which is the Harmonic Mean
of Precision and Recall, the Receiver Operating Characteristic
(ROC), which is the plot of TPR (sensitivity) versus FPR (1-
specificity), and the AUC, which stands for “Area under the
ROC Curve.” That is, AUC measures the entire two-dimensional
area below the entire ROC curve from (0,0) to (1,1). An ideal
classifier should have 100% sensitivity (TPR = 1) and 100%
specificity (I'NR =1, or FPR = 0)

D. Baseline Neural Networks Models

1) VGG16: is a 16-layer CNN architecture proposed by Si-
monyan et al. [30], which achieved the best performance in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
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2014, classifying 1 million images into 1000 possible classes
with a top-5 error rate of 7.3%.

2) ResNet50: or deep residual network proposed by He
et al.,he2016deep and introduced the Residual Block that al-
leviates the vanishing gradient problem when training very
deep neural networks. The Residual Block has skip connections
between layers in the ResNet architecture, enabling deep neural
networks that have hundreds or even thousands of layers to
achieve compelling performance.

3) Inception v3: is a neural networks architecture proposed
by Szegedy et al. [31], [38], which introduced multiple innova-
tions to modify previous versions of the Inception architecture
in order to reduce computational cost. Specific techniques pro-
posed to reduce the computational cost associated with scaling
of inception v3 included factorized convolutions, regularization,
dimension reduction, and parallelized computations.

4) DenseNet121: or Dense Connected Convolutional Net-
work (DenseNet) was proposed by Huang et al. [33]. DenseNet
has feed-forward connections from each layer to every other
layer that was based on the observation that CNNs become more
accurate and more efficient to train when connections between
layers are shorter. The structure of DenseNet can mitigate the
vanishing-gradient problem, increase feature propagation and
feature reuse, as well as decreasing the number of parameters in
the model [33].

5) Ensemble CNN: is the state-of-the-art neural networks
model for classifying wound infection and ischemia [12]. It uses
three neural network architectures (Inception-V3, ResNet50,
and InceptionRes-NetV2) to extract bottleneck features from
DFU images that were combined before being fed into an SVM
classifier that performs ischemia and infection classification.

E. Experimental Methodology

The infection and ischemia datasets were first split into
70% training, 15% validation and 15% testing sets. Data-
augmentation operations were then applied to each original
wound image to augment the training, validation and test sets for
infection and ischemia classification. By augmenting the 5890
original foot infection images in the infection dataset, 40740
images (training), 8730 images (validation), and 8730 images
(testing) were generated. From the 9870 original foot ischemia
images, after augmentation, there were 6909 images (training),
1480 images (validation), and 1481 images (testing). Before
classification by various CNN models, each wound image was
resized to a dimension of 120 x 120 RGB images for the
VGG16 [30] model and a dimension of 224 x 224 RGB images
for the ResNet50 [32], DenseNet121 [33], and EfficientNet
BO-B7 [18] architectures. For the Inception-v3 [31] model, the
images were resized to a dimension of 299 x 299. PyTorch 1.8.1
was used as the framework for performing these experiments.

lll. RESULTS

Overall performance: Tables 3(a) and 3(b) show results of
the evaluation of EfficientNet and various baseline models using
various metrics including Accuracy, F1-Score, AUCROC (Area
under the ROC Curve), Sensitivity, Specificity, True Positive

Rate (TPR), False Positive Rate (FPR). The models generally
performed better in the binary classification of ischemia than
infection. The average accuracy of all the models in the ischemia
dataset was 97.636%, which was notably better than the average
accuracy of 92.89% in the infection dataset. EfficientNet classi-
fied both infection and ischemia better than baseline models. The
EfficientNet model B5 achieved a Sensitivity of 99% for clas-
sifying infection, which was 4% higher than 95% achieved by
Dense-Net121, the second-best model. For classifying ischemia,
the EfficientNet model B1 achieved a Sensitivity of 100%, which
was similar for the Inception V3 model and 4% higher than
96% achieved by DenseNetl121. The EfficientNet model Bl
also achieved the highest Specificity of 99%, which was 1%
higher than that achieved by DenseNet121 (98%). EfficientNet
B1 also had an AUC of 0.9939, outperforming all other baselines
including the Ensemble CNN the previous state-of-the-art for
wound infection and ischemia classification [12].

Performance of baseline models: DenseNet121 was generally
the best performing baseline with Sensitivity and Specificity
of 95% and 94% respectively for infection classification. For
ischemia classification, Inception V3 had the highest Sensitivity
metric of 100%, whereas DenseNet121 had the highest Speci-
ficity of 98%.

Test time: In the envisioned use case, a visiting nurse takes a
picture of the patient’s wound in their home, submits it to our
infection and ischemia classification system, and has to wait
for its results before taking action. This makes it important that
the model has a reasonable test time. As shown in Tables 3(a)
and 3(b), due to compound scaling, the EfficientNet models had
faster test times than all baselines. For infection classification,
the EfficientNet models’ testing times were approximately 1/2
to 1/10 of that of baseline models. For ischemia classification,
the EfficientNet models’ testing times were less than 1/10 of
that of baseline models. In order to ensure a fair comparison, all
models were trained and tested on the same desktop machine
with an NVIDIA GTX 1080 Ti GPU.

Performance gains due to data augmentation: were evaluated
by training the EfficientNet BS model with and without data
augmentation for infection classification with results shown at
the bottom of Table 3(a). The data augmentation in scenario (E)
performed best. It combines geometric and color transforma-
tions, surpassing the AUC values achieved by the other augmen-
tation scenarios, no augmentation or individual augmentations.
Data augmentation significantly improved the performance of
EfficientNet B5 for infection classification but did not improve
the performance of EfficientNet B1 on the ischemia dataset,
possibly because its performance on the ischemia dataset was
already high.

Exploring mis-classifications: Figure 5(c), (d), (g), and (h)
show examples of images from the infection and ischemia
datasets, which were mis-classified by the EfficientNet model.
Additional examples of mis-classification by the EfficientNet
model are also shown in Figure 6(c). These mis-classifications
occurred due to a variety of reasons. First, some mis-classified
images are blurred or have bad lighting conditions, as shown in
the examples in Figure 5(d), (h) and Figure 6(c). Secondly, some
mis-classified images such as Figure 5(c) and 5(g) may contain
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TABLE Il
BINARY CLASSIFICATION OF INFECTION AND ISCHEMIA

(a) The performance measures of binary classification of infection by EfficientNet and baseline models

Model Accuracy  FI-Score ~ AUC Sensitivity ~ Specificity TPR FPR Testing Time
EfficientNet B5 0.9792 0.9792 0.9792 0.99 0.97 0.99 0.03 11m 17s
EfficientNet B3 0.978 0.978 0.978 0.98 0.98 0.98 0.02 16m 9s
EfficientNet B2 0.9741 0.9741 0.9741 0.97 0.97 0.97 0.02 44m 50s
EfficientNet B4 0.9738 0.9738 0.9738 0.97 0.98 0.967 0.019 14m 32s
EfficientNet Bl 0.9714 0.9714 0.9714 0.97 0.98 0.967 0.02 31m 60s
EfficientNet BO 0.968 0.968 0.968 0.96 0.97 0.96 0.03 45m 9s
EfficientNet BS 0.9164 0.92 0.92 0.90 0.9333 0.90 0.0667 8m 65
(no data augmentation)
DenseNet121 0.943 0.943 0.943 0.95 0.94 0.9508 0.065 1h 17m 33s
ResNet50 0.87 0.87 0.87 0.85 0.89 0.85 0.11 59m 15s
Inception v3 0.86 0.86 0.86 0.84 0.88 0.84 0.12 1h 14m 47s
VGG16 0.85 0.85 0.85 0.83 0.87 0.83 0.13 1h 03m 22s
Ensemble CNN [12] 0.727 0.722 0.731 0.709 0.744
3 Layer CNN 0.85 0.85 0.85 0.87 0.84 0.87 0.16 1h 04m 23s
(b) The performance measures of binary classification of ischemia by EfficientNet and Baseline models
Model Accuracy  F1-Score ~ AUC Sensitivity ~ Specificity TPR FPR Testing Time
EfficientNet B1 0.9939 0.9939 0.9939 1.00 0.99 1.00 0.0123 4m 23s
EfficientNet B4 0.9919 0.9919 0.9919 0.99 0.99 0.9947 0.011 4m 23s
EfficientNet BO 0.9905 0.9905 0.9905 0.99 0.99 0.9918 0.0107 4m 15s
EfficientNet B5 0.9899 0.9899 0.9899 1.00 0.98 0.9986 0.018 4m 15s
EfficientNet B3 0.9892 0.9892 0.9892 1.00 0.98 1.00 0.02 Sm 10s
EfficientNet B2 0.9885 0.9885 0.9885 1.00 0.98 0.9986 0.02 Tm 44s
EfficientNet BI 09946 099 0.99 1.00 09893 1.00 00107  10m S4s
(no data augmentation)
Inception v3 0.9858 0.9858 0.9858 1.00 0.97 1.00 0.027 59m 15s
DenseNet121 0.9689 0.9689 0.9689 0.96 0.98 0.96 0.02 59m 15s
VGG16 0.9534 0.9534 0.9534 0.92 0.98 0.924 0.016 59m 15s
ResNet50 0.9467 0.9467 0.9467 0.91 0.98 0.9134 0.021 59m 15s
Ensemble CNN [12] 0.903 0.902 0.904 0.886 0.921
3 Layer CNN 0.9413 0.9413 0.9413 0.98 0.90 0.979 0.1 59m 15s

ambiguous features that may be difficult to analyze even for
wound experts.

Explainability using GradCam activation maps: Gradient-
weighted Class Activation Mapping (or GradCam) [39] uses the
gradients in the final convolutional layer of the target to produce
a localization map that highlights regions in the image that were
important for predicting the target. Four examples of wound
images from the Infection dataset and their GradCam images
are shown in Figure 6(a). Four examples of wound images from
the ischemia dataset and their GradCam images are shown in
Figure 6(b). The ischemia and non ischemia wound labels are
shown under each column of the wound images.

In the GradCam maps, the red area highlights the region(s) the
model focused on. The GradCam of DFU wound images show
that for the diagnosis of infection and ischaemia, the EfficientNet
model focused on the wound and the nearby skin with less focus
on the corners of the images (blue and green areas). There is
a blue and green area in the center of the second GradCam of
ischaemia, which is counterintuitive. This might be because this
wound was covered with necrotic tissue (dead tissue) and does
not show the the actual wound. Consequently, the EfficientNet
model focused on the nearby skin to discover visual cues of
ischaemia, which is caused by insufficient blood that may affect
the visual appearance of nearby skin.

5-fold cross validation boxplots: Figure 7 shows boxplots of
the test accuracies of four experiments using 5-fold cross

validation. The 5-fold cross validation experiment was
performed with the EfficientNet B5 model on the Infection
dataset and EfficientNet B1 model on the ischemia dataset
with and without data augmentation. It can be observed that
the variance in the EfficientNet model’s accuracies are small
(or high stability) across different folds as evidenced by the
relatively small height of the boxplots for both the infection
and ischemia datasets.

IV. DISCUSSION

Summary of findings: The EfficientNet architecture outper-
formed all baselines including Ensemble CNN, the prior state-
of-the-art for both infection and ischemia classification across
a comprehensive set of metrics including Accuracy, F1-Score,
AUC, Sensitivity, Specificity, TPR and FPR. Its results were
stable across 5 folds as evidenced by a small range in the
boxplots across folds and results were generally better for the
classification of ischemia than infection. Various versions of the
EfficientNets were explored, showing that EfficientNet B5 per-
formed best for infection classification, while EfficientNet B1
performed best for ischemia classification. Data augmentation
improved the performance of EfficientNet B5 on the infection
dataset but did not improve the performance of EfficientNet
B1 on the ischemia dataset, possibly because the performance
numbers were already high for ischemia classification. Due to
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(c) Examples of non-infection cases mis-classified by EfficientNet (both have
ambiguous features)

(e) Examples of non-ischemia cases correctly classified by EfficientNet
models

(g) Examples of non-ischemia cases mis-classified by EfficientNet (both have
ambiguous features)

Fig. 5.

compound scaling, the test set speeds of EfficientNets were
significantly faster than all baselines, which is important for
the envisioned remote assessment scenario.

The EfficientNet model mis-classified some images for sev-
eral reasons including those that were blurred, had bad lighting
condition, or contained ambiguous and misleading features that
may be challenging to analyze even for wound experts.

Limitations of this work: First of all, the datasets included
cases of infection and ischemia that were visible and debrided

(d) Examples of infection cases mis-classified by EfficientNet (blurred and bad
lighting; ambiguous features)

(f) Examples of ischemia cases correctly classified by EfficientNet

(h) Examples of ischemia cases mis-classified by EfficientNet (ambiguous
features; blurred and bad lighting)

Examples of correctly and incorrectly classified images for infection and ischemia.

(removal of dead skin). In several cases, infection and ischemia
may occur but may not always be visible or have to be analyzed
without debridement. Secondly, although both conditions were
analyzed separately, infection and ischemia can occur simultane-
ously on the same wound. Consequently, it might be meaningful
to create a dataset that includes images with multiple conditions
occurring in the same DFU image and investigate multi-label
classification. Finally, the wound images were captured profes-
sionally with great care. However, in our envisioned use case, the
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infected uninfected infected uninfected

(a) wound images and their GradCam images by EfficientNet B5 on Infection dataset

non Ischaemia Ischaemia Ischaemia non Ischaemia

(b) wound images and their GradCam images by EfficientNet B1 on ischemia dataset

£

Infected Infected Uninfected Uninfected

Ischaemia Ischaemia Nonischaemia Nonischaemia Nonischaemia

(c) images misclassified by the EfficientNet model; first row: Infection dataset; second row: ischemia dataset

Fig. 6. Examples of wound images GradCam and misclassified images.
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Fig. 7. boxplot for 5 fold cross validation using EfficientNet B5 on
Infection dataset and EfficientNet B1 on ischemia dataset.

wound images will be captured by a wound nurse who will likely
be a novice photographer. Consequently, many wounds may not
occur in the center of the wound image, or maybe blurry or
have arbitrary capture angles. The inclusion of such imperfect
images would make the model’s performance more robust and
more realistic.

V. CONCLUSION

This work investigated using EfficientNet model for the bi-
nary classification of: (1) ischemia and non-ischemia; and (2)
infection and non-infection on a Diabetic Foot Ulcers (DFU)
dataset. We also evaluated the performance of our proposed
models comprehensively and compared them to the results of
other baseline models. EfficientNet models achieved excellent
performance for the binary classification of ischemia and infec-
tion and outperformed all baselines including EnsembleCNN,
the prior state-of-the-art for ischemia and infection classifica-
tion, with a slightly higher accuracy in the classification of
ischemia. Due to compound scaling, the EfficientNet was also
significantly faster than all baselines. The envisioned wound
diagnosis system that will integrate the proposed Infection and
Ischaemia classification module could replicate the diagnoses
rubric of the wound experts, supporting the work of non-experts
in low resource settings and situations (e.g. patients’ homes)
where wound experts are not available.

The research described in this paper is related to our prior
research on using a patch attention CNN with context preserving
attention to predict the Photographic Wound Assessment Tool
(PWAT) wound assessment score of chronic wounds [40]. The
PWAT is considered the state-of-the-art rubric for scoring a
wound’s healing status based on key visual attributes including

wound size, depth, amounts of various tissues types, and periul-
cer viability. The Infection and Ischaemia classifiers developed
in this work will be a separate module that flags wounds that
need to be referred to experts and fast-tracked to prevent limb
amputations. In future work, we would like to validate the
proposed model in a live deployment.
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