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Background. Emerging evidence indicates tribbles homolog 1 (Trib1) protein may be involved in lipid metabolism regulation and
coronary artery disease (CAD) pathogenesis. However, whether TRIB1 gene variants affect lipid levels and CAD remains elusive,
this study is aimed at clarifying the effect of TRIB1 variants on lipid profile and CAD. Methods. By searching PubMed and
Cochrane databases for studies published before December 18, 2022, a total of 108,831 individuals were included for the
analysis. Results. The outcomes of the analysis on all individuals showed that the A allele carriers of rs17321515 and rs2954029
variants had higher low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels than the noncarriers.
Consistently, a higher CAD risk was observed in the A allele carriers. Subgroup analysis indicated that increased LDL-C, TC,
and CAD risk were observed in Asian population. Conclusions. Variants of TRIB1 (i.e., rs17321515 and rs2954029) may serve
as causal genetic markers for dyslipidemia and CAD in Asian population.

1. Introduction

Trib1, a serine-threonine kinase-like protein, encodes by the
TRIB1 gene, and it is proposed that Trib1 acts as an adaptor
protein in multiple pathways, but the precise molecular
function is unknown. Trib1 expression is ubiquitous and
predominately in the liver [1] and coronary arteries [2]. Pre-
liminary clinical data indicate that Trib1 expression is
largely elevated in the coronary artery of advanced CAD [3].

It is now increasingly evidenced that Trib1 may be a
promising regulator of lipid metabolism [4]. For instance,
Trib1 knock-out increased mice’s plasma triglycerides (TG)
and cholesterol levels [5]. In contrast, overexpression of
Trib1 reduced and normalized these parameters [6]. More-
over, the adenovirus-mediated rescue of Trib1 expression
in liver-specific Bmal1 knock-out mice lowered plasma pro-
protein convertase subtilisin/kexin type 9 (PCSK9) levels,
increased low-density lipoprotein receptor (LDLR) counts,
and decreased plasma LDL-C levels [7]. However, deletion
of Trib1 increased CCAAT/enhancer-binding protein alpha

(CEBPα) and activated transcription factor 3 (ATF3) levels,
reduced LDLR counts, and elevated plasma LDL-C levels
[8]. Collectively, it indicated that Trib1 protein expression
was closely related to lipid metabolism.

Currently, some functional variants of TRIB1 altered
mRNA secondary structure [9] therefore impacting Trib1
protein expression [6, 10]. Therefore, variants of rs2954029
and rs17321515 may also modulate the expression of Trib1.

Dyslipidemia is characterized by increased TG, TC, and
LDL-C levels and decreased high-density lipoprotein choles-
terol (HDL-C) levels in plasma. Since dyslipidemia is one of
the most critical risk factors for CAD and accounts for at
least 50% of population-attributable risk [11], it is tempting
to speculate that the increased CAD risk caused by
rs2954029 [12] and rs17321515 [13] variants may stem from
atherogenic dyslipidemia. However, a series of GWAS iden-
tified rs2954029 [14–18], and rs17321515 [19] variant was
associated only with higher TG levels in Caucasians. Two
GWAS further indicated that the association of rs2954029
[20] and rs17321515 [21] variants with CAD was mediated
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by the elevated TG levels. However, whether variants of
rs2954029 and rs17321515 were associated with other lipid
parameters (e.g., LDL-C, TC, and HDL-C), it remains
unknown. In order to clarify it, this study is conducted to
clarify the association of rs17321515 and rs2954029 variants
with lipid levels and CAD risk.

2. Methods

The present meta-analysis is in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) [22].

2.1. Literature Search. A comprehensive search of the litera-
ture was performed from June 1, 2021 to December 18, 2022,
by using relevant databases including PubMed, Cochrane
Library, Embase, Medline, Google Scholar, and Web of Sci-
ence. The following keywords were used in the search:
(“tribbles homolog 1,” “TRIB1,” “rs17321515,” or
“rs2954029”), (“polymorphism,” “mutant,” “mutation,”
“variant,” “variation,” “SNP,” or “single nucleotide polymor-
phism”) and (“lipid,” “plasma lipid,” “circulating lipid,”
“serum lipid,” “blood lipid”).

2.2. Inclusion Criteria. The inclusion criteria for association
analysis of variants of rs17321515 and rs2954029 with
CAD were as follows: (1) studies using a population-based
case-control design; (2) CAD cases were angiographically
defined; (3) genotype frequencies of cases and controls
according to variants of rs17321515 and rs2954029 were
available. The inclusion criteria for association analysis of
variants of rs17321515 and rs2954029 with lipid levels were

as follows: (1) the studies investigated the association of
TRIB1 rs17321515 or rs2954029 variants with lipid levels;
(2) the studies at least provided one of four parameters in
lipid profile (TG, TC, LDL-C, and HDL-C); (3) the studies
provided the genotype frequencies of variants of
rs17321515 and rs2954029; (4) the studies provided mean
lipid levels with standard deviation (SD) or standard errors
(SE) by the genotypes of rs17321515 and rs2954029; (5)
the interventional studies provided preintervention data;
(6) the language of eligible studies was restricted to English
or Chinese.

2.3. Data Extraction. Data screening between the two
authors was compared by kappa statistics [23]. Two authors
extracted the data independently by using standardized data
extraction tables. The discrepancy in data collected was
resolved by consensus or a discussion with the third author.
If key data was absent, e-mail or telephone was used to con-
tact the corresponding authors to acquire this information.
The following data were extracted from each eligible study:
the first author’s name, year, country, ethnicity, gender,
genotype count, genotyping methods, type of study, type of
disease, total sample size, and mean lipid levels with SD or
SE by genotypes.

2.4. Data Analysis. The units of TG, TC, LDL-C, and HDL-C
were converted into mmol/L. All extracted data were
expressed asmean ± SD. The odds ratio (OR) with 95% con-
fidence interval (CI) was used to evaluate the strength of var-
iants of rs17321515 and rs2954029 with CAD risk. The
standardized mean difference (SMD) and 95% CI were used
to evaluate the differences in lipid levels between the
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Figure 1: Flow diagram of the article’s selection process.
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genotypes rs17321515 and rs2954029. The pooled OR was
performed for allelic model (A vs. G for rs17321515 and A
vs. T for rs2954029), additive model (AA vs. GG for
rs17321515 and AA vs. TT for rs2954029), dominant model
((GA+AA) vs. GG for rs17321515 and (TA+AA) vs. TT for

rs2954029), and recessive model ((GG+GA) vs. AA for
rs17321515 and (TT+TA) vs. AA for rs2954029). Since most
of the included studies presented lipid data in a dominant
model ((GA+AA) vs. GG for rs17321515 and (TA+AA) vs.
TT for rs2954029), a dominant model was adopted to ensure
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Figure 2: Forest plot of TRIB1 rs17321515 variant with lipid profile.
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adequate statistical power. All statistical tests were con-
ducted with the Cochrane Collaboration meta-analysis soft-
ware, Review Manager 5.4. P < 0:05 was recognized as
statistically significant.

2.5. Subgroup Analysis. Subgroup analysis was carried out by
ethnicity, gender, and the general population. Subgroup
analysis by ethnicity was primarily conducted in the Asian
cohort. Subgroup analysis by gender was performed in males
and females. In some studies, the subjects were divided into
more than one subpopulation (e.g., the subjects originated
from different gender, case, and control subjects). Each sub-
population was regarded as an independent comparison in
this study.

2.6. Other Analyses. Refer to the previous publication [24]
for more details about heterogeneity processing, sensitivity
analysis, risk bias test, and publication bias test.

3. Results

3.1. Study Selection. The kappa value was 0.95 (>0.75)
between the authors, and the details of the study selection
were summarized in Figure 1 (please see Figure S1 for the
full electronic search strategy).

3.2. Characteristics of Included Studies. The meta-analysis of
TRIB1 rs2954029 variant with lipid profile was presented in
Supplementary Material: Table S1. The meta-analysis of
TRIB1 rs17321515 variant with CAD risk was presented in
Supplementary Material: Table S2. The meta-analysis of
TRIB1 rs2954029 variant with CAD risk was presented in
Supplementary Material: Table S3. The characteristics of
the individual studies included in the meta-analysis
between TRIB1 variants and lipid profile were presented in
Supplementary Material: Table S4. The characteristics of
the individual studies included in the meta-analysis
between TRIB1 rs17321515 variant and CAD were

Table 1: Meta-analysis of TRIB1 rs17321515 variant with lipid profile.

Groups or subgroups Comparisons (subjects) PH SMD (95% CI) PSMD

TG

All 13 (18 466) <0.001 0.11 (0.07-0.14) <0.001
Studies in HWE 11 (17 672) <0.001 0.20 (0.08-0.32) <0.01
Asian 12 (13 495) <0.001 0.18 (0.03-0.32) 0.02

Male 3 (1 158) 0.25 0.08 (-0.08-0.24) 0.32

Female 3 (1 139) 0.48 0.00 (-0.13-0.13) 0.94

General population 10 (15 229) <0.001 0.17 (0.05-0.29) 0.01

TC

All 12 (8 828) 0.64 0.08 (0.02-0.13) 0.01

Studies in HWE 10 (8 034) 0.45 0.08 (0.02-0.14) 0.01

Asian 12 (8 828) 0.63 0.08 (0.02-0.13) 0.01

Male 3 (1 158) 0.50 -0.01 (-0.14-0.12) 0.87

Female 3 (1 139) 0.99 0.04 (-0.09-0.18) 0.50

General population 9 (5 591) 0.76 0.08 (0.02-0.14) 0.01

LDL-C

All 14 (21 399) 0.86 0.07 (0.04-0.11) <0.001
Studies in HWE 12 (20 605) 0.77 0.08 (0.04-0.11) <0.001
Asian 13 (16 428) 0.83 0.07 (0.03-0.11) <0.001
Male 3 (1 158) 0.09 0.07(-0.06-0.20) 0.29

Female 3 (1 139) 0.89 0.04 (-0.09-0.17) 0.53

General population 11 (18 162) 0.78 0.07 (0.04-0.11) <0.001
HDL-C

All 14 (21 399) 0.14 -0.02 (-0.05-0.01) 0.25

Studies in HWE 12 (20 605) 0.12 -0.02 (-0.05-0.01) 0.18

Asian 13 (16 428) 0.33 0.00 (-0.04-0.04) 0.94

Male 3 (1 158) 0.01 -0.02 (-0.15-0.11) 0.78

Female 3 (1 139) 0.59 0.07 (-0.06-0.21) 0.29

General population 11 (18 162) 0.07 -0.02 (-0.05-0.01) 0.26

SMD: standardized mean difference; 95% CI: 95% confidence interval; PH: PHeterogeneity; HWE: Hardy-Weinberg equilibrium; TG: triglycerides; TC: total
cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol.
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presented in Supplementary Material: Table S5. The
characteristics of the individual studies included in the
meta-analysis between TRIB1 rs2954029 variant and CAD
were presented in Supplementary Material: Table S6. The
plasma lipid levels by the genotypes of TRIB1 rs17321515
variant were presented in Supplementary Material:
Table S7. The plasma lipid levels by the genotypes of
TRIB1 rs2954029 variant were presented in Supplementary
Material: Table S8.

3.3. Effect of rs17321515 on Lipid Profile. The effect of
rs17321515 on lipid profile was harmful (Figure 2). Sub-
group analysis indicated that the significant effect of
rs17321515 on lipid profile was primarily in Asians and
the general population (please see Table 1 for more details).

3.4. Effect of rs2954029 on Lipid Profile. rs2954029 had an
ambiguous effect on lipid profile (Figure 3). Subgroup anal-
ysis indicated that the significant effect of rs2954029 on lipid
profile was primarily in Asians and the general population
(please see Table S1 for more details).

3.5. Effect of rs17321515 on CAD. The effect of rs17321515
on CAD was harmful (Figure 4). Subgroup analysis indi-
cated that the effect of rs17321515 on CAD was observed
in Asians (Table S2).

3.6. Effect of rs2954029 on CAD. The effect of rs2954029 on
CAD was harmful (Figure 5). Subgroup analysis indicated
that the effect of rs2954029 on CAD was observed in Asians
and Caucasians (Table S3).

3.7. Evaluation of Heterogeneity. Significant heterogeneity
was detected in analyzing the effect of rs17321515 and
rs2954029 on CAD risk (Table S2, Table S3). Notably, the
recalculated results changed substantially after eliminating
heterogeneity (see Table S2 and Table S3 for more details).

3.8. Sensitivity Analysis. Sensitivity analysis indicated that
some comparisons may influence the effect of rs17321515
and rs2954029 on lipid and CAD risk (please see
Figure S2-S4 for more details). However, the effects of
rs17321515 and rs2954029 on lipid and CAD did not
change substantially after omitting these comparisons,
indicating that the synthetic results were robust.
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Figure 3: Forest plot of TRIB1 rs2954029 variant with lipid profile.
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3.9. Risk Bias Test. The effects of rs17321515 and rs2954029
on lipid and CAD showed a low risk of bias (see Figure S5
for more details), indicating that the included studies were
of relatively high quality.

3.10. Publication Bias Test. Begg’s test did not find any pub-
lication bias in the present study, which was confirmed by
Egger’s regression test (see Figure S6-S9 for more details).

4. Discussion

The present study showed that rs17321515 and rs2954029
caused atherogenic dyslipidemia and increased CAD risk
in Asians, indicating that the Asian populations were at high
risk of CAD.

Previous studies indicated that inhibition of Trib1
caused atherogenic dyslipidemia [8], while overexpression
[6] or rescue [7] of Trib1 remodeled lipid metabolism
homeostasis. Therefore, rs2954029 and rs17321515 may
affect lipid levels by influencing Trib1 expression [6, 9, 10].

The present study showed that rs17321515 increased
LDL-C, TC, and TG levels (Table 1). Since dyslipidemia
played a critical role in CAD pathogenesis [11], it indicated
that increased CAD risk associated with rs17321515
(Table S2) was mediated, at least partly, by the increased
LDL-C, TC, and TG levels (Table 1). In contrast,
rs2954029 increased LDL-C (harmful), TC (harmful), and
HDL-C (beneficial) levels (Table S1), indicating that
rs2954029 had an ambiguous effect on lipid profile. When
combined with Shihab et al.’s [11] study, it indicated that
the increased CAD risk associated with rs2954029
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Figure 4: Forest plot of TRIB1 rs17321515 variant with CAD risk.
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(Table S3) was mediated by the increased LDL-C and TC
levels (Table S1).

According to the 2018 ACC/AHA [25], the 2019 ESC/
EAS [26], and the adult treatment panel III (ATP III) choles-
terol guidelines [27], LDL-C was considered the major cause
of CAD and treated as the primary target for therapy, while
other lipids were used as the secondary or supplementary
therapeutic targets. In the present study, significantly
increased LDL-C levels were observed in subjects with
rs2954029 and rs17321515 (Table 1, Table S1), indicating

that rs2954029 and rs17321515 may serve as causal genetic
markers for dyslipidemia or CAD.

Subgroup analysis by ethnicity indicated that signifi-
cantly increased LDL-C and TC were observed in Asians
with rs2954029 and rs17321515 (Table 1, Table S1),
indicating that Asians with rs2954029 and rs17321515
were at high risk of CAD. Intriguingly, this speculation
was verified in the present study, whereas rs2954029 and
rs17321515 significantly increased the risk of CAD in
Asians (Table S2, Table S3). Meanwhile, rs2954029
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Figure 5: Forest plot of TRIB1 rs2954029 variant with CAD risk.
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significantly increased the risk of CAD in Caucasians
(Table S3), indicating that Caucasians with rs2954029 had
a high risk to develop CAD. However, whether rs17321515
impacted the risk of CAD in Caucasians could not be
determined due to the absence of original data. Therefore,
further clinical trials on Caucasians are certainly needed.

Subgroup analysis by gender indicated that rs17321515
did not show statistically significant effect on lipid profile
in both males and females. However, only 3 comparisons
(1158 individuals for males and 1139 individuals for
females) were used to calculate the results in males and
females (Table 1), which lowers the strength of the results
and needs to be confirmed by future studies. Moreover, the
effects of rs2954029 and rs17321515 on lipid and CAD were
significant in general population, indicating that general
population with rs2954029 and rs17321515 were at high risk
of dyslipidemia or CAD.

4.1. Strengths and Limitations. The present meta-analysis
has several strengths. For instance, the clinical data of
108,831 individuals were included, which increased the reli-
ability of synthetic results due to high statistical power [28].
Moreover, the synthetic results were recalculated after
excluding the studies with heterogeneity, which further
advanced the preciseness of conclusions drawn in this man-
uscript and were not likely to be type I errors (false-positive
results) [28]. However, several limitations of the present
study should be noted. Firstly, a large number of genes and
some environmental factors are involved in dyslipidemia
and CAD [28]. Our study has not investigated the interac-
tion of TRIB1 variants with other variant loci or environ-
mental factors on lipid profile and CAD risk due to the
lack of original data from the included studies. In other
words, more precise results could have been gained if more
detailed individual data were available, or if the stratification
analyses based on the environmental factors such as smok-
ing, alcohol consumption, and exercise were performed
[29]. Secondly, this meta-analysis only included the studies
published in English and Chinese as it was very difficult to
get the full papers published in various languages [29].
Thirdly, we did not register a protocol (e.g., PROSPERO)
for this meta-analysis, which may introduce potential bias
to this review.

5. Conclusions

Variants of TRIB1 (i.e., rs17321515 and rs2954029) may
serve as causal genetic markers for dyslipidemia and CAD
in Asian population.
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