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and EMT

Yan Zheng', Huiging Jia'? Ping Wang', Litong Liu', Zhaoxv Chen', Xiaoming Xing?, Jin Wang', Xiachua Tan' and

1,2

Chenggin Wang

© The Author(s) 2022

TRAIP, as a 53 kDa E3 ubiquitin protein ligase, is involved in various cellular processes and closely related to the occurrence and
development of tumors. At present, few studies on the relationship between TRAIP and triple negative breast cancer (TNBC) were
reported. Bioinformatic analysis and Western blot, immunohistochemistry (IHC), CCK-8, colony formation, flow cytometry, wound
healing, Transwell, and dual-luciferase reporter assays were performed, and xenograft mouse models were established to explore
the role of TRAIP in TNBC. This study showed that the expression of TRAIP protein was upregulated in TNBC tissues and cell lines.
Silencing of TRAIP significantly inhibited the proliferation, migration, and invasion of TNBC cells, whereas opposite results were
observed in the TRAIP overexpression. In addition, TRAIP regulated cell proliferation, migration, and invasion through RB-E2F
signaling and epithelial mesenchymal transformation (EMT). MiR-590-3p directly targeted the TRAIP 3/-UTR, and its expression were
lower in TNBC tissues. Its mimic significantly downregulated the expression of TRAIP and subsequently suppressed cell proliferation,
migration, and invasion. Rescue experiments indicated that TRAIP silencing reversed the promotion of miR-590-3p inhibitor on cell
proliferation, migration, and invasion. TRAIP overexpression could also reverse the inhibition of miR-590-3p mimic on
tumorigenesis. Finally, TRAIP knockdown significantly inhibited tumor growth and metastasis in animal experiments. In conclusion,
TRAIP is an oncogene that influences the proliferation, migration, and invasion of TNBC cells through RB-E2F signaling and EMT.

Therefore, TRAIP may be a potential therapeutic target for TNBC.

Cancer Gene Therapy (2023) 30:74-84; https://doi.org/10.1038/s41417-022-00517-7

BACKGROUND

Breast cancer is one of the most common malignant tumors in the
world and the main cause of death from cancer in women [1, 2].
Triple negative breast cancer (TNBC), a subtype of breast cancer,
refers to breast cancer with negative expression levels of human
epidermal growth factor receptor 2 (HER2), estrogen receptor (ER),
and progesterone receptor (PR) [3]. Patients with TNBC could not
benefit from endocrine therapy and HER2 targeted therapy,
resulting in higher recurrence, metastasis rates, and mortality
[4, 5]. Therefore, study on new therapeutic targets and targeted
drugs for TNBC has become a research hotspot locally and
internationally.

Proliferative activity is the basis and prerequisite of tumor
migration and invasion. Studies have shown that RB-E2F signaling
pathway played an important role in tumor cell proliferation [6].
Gene mutations of this pathway are widespread in TNBC,
including CCND1 (encoding Cyclin D1) and CCNE1 (encoding
Cyclin E1) gene amplification and RB gene deletion [7]. RB-E2F
signaling is also involved in cell migration, angiogenesis, and
epithelial mesenchymal transformation (EMT) [8, 9]. Knockdown of
E2F2 resulted in enhanced migration of TNBC cell line MDA-MB-
231 and increased lung metastases in mice [10]. EMT is known to

be one of the important mechanisms of tumor metastasis,
characterized by epithelial cells losing cell connections and
acquiring mesenchymal properties, such as motility and invasive-
ness [11, 12]. Dongre et al. showed that the expression of
epithelial marker was decreased, while mesenchymal marker and
nuclear transcription factors were upregulated [13]. Some scholars
found the expression of EMT-related genes in breast cancer cell
lines inactivated by RB1 [14], and E-cadherin, Snail, and Twist
genes were highly expressed in TNBC [15].

The tumor necrosis factor (TNF) receptor-related factor (TRAF)
interacting protein (TRAIP) is a 53 kDa E3 ubiquitin protein ligase
containing three domains: the RING domain near the N-terminal,
followed by the putative coiled-coil domain and the leucine zipper
domain [16, 17]. TRAIP was reported to be involved in various
cellular processes, including cell proliferation, DNA damage
response, mitosis, and embryonic development [18-21]. TRAIP was
located near the mitotic chromosomes and regulated the mitosis
process through spindle assembly checkpoints [22]. In particular, it
played a new role in the mitosis process through the isotopic
dimerization of its coiled-coil domain [23]. Park et al. created TRAIP-
deficient mice and found that the mice shortly died due to early
embryonic development [24]. Silencing of TRAIP resulted in a strong
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inhibition of human keratinocyte cell proliferation and cell cycle
arrest [25]. In addition, the inactivation of TRAIP caused serious
damage to and scarcity of nucleotides, thereby endangering
genome stability and revealing that TRAIP is a component of the
mammalian replication stress response network [26]. All of the
above data suggested that TRAIP palyed an extremely vital role in
the cell process and laid a cytological foundation for the occurrence
and development of tumors. However, up to now, few studies
focused on the relation between TRAIP and TNBC.

The first microRNA (miRNA) was identified in 1993 as a small
RNA transcribed from the Caenorhabditis elegans lin-4 locus
[27, 28]. The prediction results of a bioinformatic software
showed that miR-590-3p was the upstream molecule of TRAIP.
MiR-590-3p could also inhibit EMT, cell migration, and cell
invasion in breast cancer [29]. However, the detailed association
among miR-590-3p, TRAIP, RB-E2F signaling, and EMT in TNBC
remained unclear.

In this study, the expression and role of TRAIP in TNBC and cell
line proliferation, migration, and invasion were investigated. In
addition, the mechanism of TRAIP regulating the proliferation and
migration/invasion of TNBC cells was further explored by
analyzing the relationship among miR-590-3p, TRAIP, RB-E2F
signaling, and EMT. This study may provide theoretical basis for
seeking a new target of anti-TNBC therapy.

METHODS

Bioinformatic analysis

UALCAN (http://ualcan.path.uab.edu/) is an online open access platform that
could be used to analyze the relative transcription levels and clinicopatho-
logical characteristics between cancer tissues and paired normal tissues [30].
The target gene “TRAIP” was entered on the homepage of the website,
“breast invasive carcinoma” was selected, and the differential expression of
the target gene in breast cancer tissues and normal tissues was obtained. The
differential expression of TRAIP from a sample type (normal/primary tumor)
and a breast cancer subtype (luminal, HER2 4, and triple negative) was
analyzed. Meanwhile, Kaplan-Meier plotter was used evaluate the impact of
54,000 genes on the survival rate of 21 cancer types. Hazard ratio (HR), 95%
confidence interval (Cl), and logarithmic P value were also automatically
calculated and displayed on the web page. Patients were divided into high-
expression and low-expression TRAIP according to the automatic best
threshold that all possible cutoff values between the lower and upper
quartiles are computed. A log-rank P value < 0.05 was considered statistically
significant.

Tissue samples and cell lines

Seventy-five female patients with primary TNBC treated at the Affiliated
Hospital of Qingdao University between 2013 and 2015 participated in this
study. All patients did not receive chemotherapy nor radiotherapy before
surgery, and the related clinical information (Table 1) was obtained from all
patients with written consent. This study was reviewed and approved by
the Institutional Medical Ethics Committee of the Qingdao University
Affiliated Hospital.

Human breast cancer cell lines MCF-7, MDA-MB-231, MDA-MB-468, and
BT-549 were routinely cultured in DMEM medium containing 10% fetal
bovine serum and 1% penicillin and streptomycin at an incubator (37°C
and 5% CO,). The cells in logarithmic growth phase were taken for the
subsequent experiment.

Immunohistochemistry (IHC) analysis

The procedure of IHC staining was performed as described previously
[31]. Anti-TRAIP (dilution at 1:300, 4°C, overnight) and sheep anti-rabbit
(abcam, dilution at 1:100, 37°C, 30 min) were incubated. Sections were
stained with diaminobenzidine and counterstained with hematoxylin.
Phosphate-buffered saline (PBS) was used as negative control. The
criteria  for the interpretation of immunohistochemistry were
scored in accordance with staining intensity and tumor cell positive
ratio. The sum of staining intensity (0, none; 1, weak; 2, intermediate;
and 3, strong) and positive tumor cell proportion (0, none;1, < 1/100; 2,
1/100-1/10; 3, 1/10-1/3; 4, 1/3-2/3; and 5, > 2/3) was regarded as the
total score, which ranged from 0 to 8.
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Table 1. Association between TRAIP in triple negative breast cancer
(TNBC) and patient characteristics.

Variables n Mean+SD P value
Age
<60 years 44 5.818+0.815 0.504
>60 years 31 5.581 +0.765
Tumor size (cm)
<2 34 5.706 £ 0.799 0.985
>2 41 5.732+0.807
Tumor grade
1l 25 5.920+0.812 0.499
1] 50 5.620 + 0.780
Carcinoma 75 5.720+0.798 <0.001*
Adjacent tissues 75 4.467 +0.622
Lymph node metastasis
Negative 55 5.564 +0.788 0.166
Positive 20 6.150 + 0.671
Vascular invasion
Presence 10 6.400 + 0.700 0.096
Absence 65 5.615+0.764
Primary tumor 20 6.150+ 0.671 0.001*
Metastatic tumor in 20 7.050 + 0.605
lymph nodes
Tumor recurrence
Positive 22 6.181 + 0.665 0.038*
Negative 53 5.528 +0.775

"Significant at <0.05.

Vector construction and cell transfections
LV3-hsa-TRAIP-318\543\131 (ShTRAIP-1, ShTRAIP-2, and ShTRAIP-3) and LV5-
hsa-TRAIP-homo (OETRAIP) were constructed by lentiviral vectors (Gene-
Pharma, Shanghai, China). Negative control was also constructed with LV3
(ShCtrl) and LV5 (NC) empty lentiviral separately. MDA-MB-231 and MDA-MB-
468 cells were transfected with the ShTRAIP-1/2/3 vector to silence TRAIP and
LV3 empty lentiviral as ShCtrl. BT-549 cell was transfected with LV5-hsa-
TRAIP-homo (OETRAIP) to overexpress TRAIP and LV5 empty lentiviral as NC.
TNBC cells were transfected using lentiviral vectors at an appropriate
multiplicity of infection (MOI) when cells grew to 50%-70% confluence.
Stable transfected cells were screened by puromycin in accordance with
protocols. MiR-590-3p mimic and miR-590-3p inhibitor, negative control for
miRNA mimic, and negative control for miRNA inhibitor were purchased from
GenePharma. The 3-UTR segment of wild-type TRAIP mRNA, which
possessed the binding site for miR-590-3p, was amplified from the DNA of
293 T cells and cloned into the luciferase reporter vector pGL3cM (Tsingke,
Beijing, China). All sequences are listed in Table 2.

Western blot analysis

Protein preparation and Western blot assay were performed as described
previously [31]. The antibodies used were as follows: anti-TRAIP
(ProteinTech, dilution at 1:1000), anti-B-actin (ProteinTech, dilution at
1:4000), anti-RB, anti-P-RB, anti-E2F1, anti-Cyclin D1, anti-Cyclin E1, anti-
P21, anti-MMP9, anti-Twist, anti-Slug, anti-E-cad (abcam, all at dilution
1:1000), anti-MMP2, and anti-Vimentin (abcam, all at dilution at 1:500).

Cell proliferation analysis

A CCK-8 kit (Dojindo, Shanghai, China) was used to measure the
proliferation of TNBC cells. A total of 2000 cells at a volume of 100 pL
per well were cultured, with six replicate wells in a 96-well plate. Then, the
CCK-8 reagent (10 uL) was added to generate a working solution and
incubated for 2h. The assay was performed at days 1-5. For colony
formation assay, 2 x 10° cells were seeded in a six-well plate and cultured
for approximately 10 days at the described condition. Then, the colonies
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Table 2. Sequences of TRAIP, miR-590-3p and their negative control.
Name Sequence (5'—3’)
LV3-TRAIP-homo-318 GGAGGAGAATGTCTTGGATGC
LV3-TRAIP-homo-543 GCAGCAGGATGAGACCAAACA
LV3-TRAIP-homo-131 GCACTATCTGCTCCGACTTCT
LV3NC TTCTCCGAACGTGTCACGT

UAAUUUUAUGUAUAAGCUAGU
UAGCUUAUACAUAAAAUUAUU
UUCUCCGAACGUGUCACGUTT
ACGUGACACGUUCGGAGAATT
ACUAGCUUAUACAUAAAAUUA
CAGUACUUUUGUGUAGUACAA

Has-miR-590-3p mimics
Negative control mimics

Has-miR-590-3p inhibitor
Negative control inhibitor

were washed with PBS, fixed with methanol, and dyed with crystal violet.
Finally, they were counted using Image software.

Cell cycle analysis by flow cytometer (FCM)

Cells were washed with ice-cold PBS twice and harvested by trypsinization
without EDTA in six-well plates. After centrifugation was performed for
5 min, the cells were washed with ice-cold PBS and fixed with 70% ethanol
overnight at 4°C. RNaseA (20 pg/mL) and propidium iodine (50 pg/mL)
were added to the cells for 30 min in the dark. The stained cells were then
analyzed with an FCM (Beckman Coulter).

Transwell assays

In the invasion experiment, 6 x 10* cells per well were suspended in
serum-free medium and loaded into the upper compartment of a chamber
coated with Matrigel (BD Biosciences). After 24 h of incubation at 37°C, the
invasive cells were migrated through the Matrigel to a medium containing
20% serum in the lower compartment and stained with 0.5% crystal violet.
The number of invading cells in five random microscope fields (100x) was
counted. For migration analysis, 4 x 10* cells were seeded in the upper
chamber that was not coated with Matrigel and then measured in
accordance with the invasive assay.

Wound healing assay

The wounds were caused by a 200 yL-sterile yellow tip when the cells
reached 90% confluence in six-well plates. The cells were gently washed
with PBS to remove the shed cells, and serum-free medium was added for
further culture. Subsequently, the wounds were photographed and
calculated under the microscope after 0 and 24 h.

Dual-luciferase reporter assay

Luciferase reporter assays were conducted to demonstrate whether miR-
590-3p was a direct target of TRAIP. Wild-type (WT) and mutant-type (MUT)
TRAIP 3/-UTRs were transfected into 293 T cell with synthetic miR-590-3p
mimic or NC mimic. The cells were lysed, and the activities of Renilla
luciferase and Firefly luciferase were detected by a dual-luciferase reporter
system (Promega, USA) following the provided protocols. Data were
presented as the ratio of experimental (Renilla) luciferase to control (Firefly)
luciferase.

Xenograft assays in nude mice

The animal study was approved by the Animal Ethics Committee of
Qingdao University, China. In particular, 1 x 107 ShCtrl and ShTRAIP-1 MDA-
MB-231 cells were subcutaneously implanted into 5-week-old female
BABL/c nude mice, with five mice in each group. The size and weight of
tumors were recorded every 7 days, and tumor volume was measured
using the following formula: volume (mm3) = (Widthleength)/z. In
addition, 10 BABL/c mice were randomly divided into two groups (five in
each group) and injected with ShCtrl and ShTRAIP-1 MDA-MB-231 cells
(1 x 10%) via tail vein. Six weeks later, the mice were euthanized. The whole
lung tissue of each mouse was sectioned and stained with hematoxylin
and eosin (H&E), and metastatic nodules were counted in high-power
fields under a microscope.
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Statistical analyses

All dates were presented as the mean *standard deviation, and each
experiment was performed at least three times. Statistical analyses were
performed using Graphpad 8.0 software. Student’s t-test (two tailed) and
ANOVA were utilized to detect differences between two groups or more
than two groups. Chi-square test was used to estimate the correlation
between TRAIP expression and clinicopathologic features. Differences were
considered statistically significant at P < 0.05 or P<0.01.

RESULTS

Overexpression of TRAIP in TNBC tissues and cells

The UALCAN database was used to analyze the expression of
TRAIP in breast cancer. The results showed that TRAIP was
expressed higher in primary breast tumors (n=1097) than in
normal tissues (n=114, Fig. 1A, P<0.001). TRAIP expression
increased in TNBC compared with luminal or HER2 + type (Fig. 1B,
P <0.001). In addition, The Kaplan—Meier plotter database showed
that high TRAIP expression was significantly associated with poor
prognosis of the 95 patients with TNBC (Fig. 1C, P < 0.05). Western
blot assays were performed to detect the expression of TRAIP in 8
pairs of fresh TNBC tumors and adjacent tissues. The results
showed that the protein levels (Fig. 1D, P < 0.01) of TRAIP in the
tumor tissues were markedly higher than those in the correspond-
ing adjacent tissues, suggesting TRAIP was overexpressed in TNBC.
Furthermore, TRAIP expression was examined by immunohisto-
chemistry and confirmed to be higher in breast cancer (Fig. 1E,
upper right) than in the corresponding adjacent tissues
(Fig. 1E, upper left, P<0.01; Wilcoxon's test; Table 1). Moreover,
the TRAIP expression in the metastatic cancer tissues in the lymph
node (Fig. 1E, lower right) was significantly higher than that in the
primary cancer tissues (Fig. 1E, lower left, P < 0.01; Wilcoxon test;
Table 1). In addition, patients with recurrence of carcinoma had
higher TRAIP expression than those without recurrence (P < 0.05,
Table 1). No significant differences were found between groups
for age, tumor size, grade, or vascular invasion (Table 1).

The TRAIP protein levels in MCF-7, MDA-MB-231, MDA-MB-468,
and BT-549 cells lines were evaluated using Western blot. The
results showed that the TRAIP protein levels were significantly
higher in MDA-MB-231 and MDA-MB-468 cell lines than in MCF-7
and BT-549 cell lines (Fig. 1F). Therefore, MDA-MB-231 and MDA-
MB-468 were chosen for silencing TRAIP expression by using
TRAIP-ShRNA (ShTRAIP-1/2/3). ShTRAIP-1/2 was more effective and
thus used for the subsequent cell function experiments. BT-549
was used for overexpressing TRAIP (OETRAIP). Western blot
analysis revealed that TRAIP expression was obviously silenced
or overexpressed (Fig. 1G-I, P < 0.01).

Silencing of TRAIP suppressed tumor cells proliferation and
migration/invasion in vitro

CCK-8 and colony-formation assays were performed to determine
the effect of TRAIP depletion on the proliferation in cancer cells. The
results showed that the proliferation of MDA-MB-231 and MDA-MB-
468 cells in the ShTRAIP-1/2 group was significantly inhibited
compared with that of the control group (Fig. 2A, B, P<0.01).
Meanwhile, the growth of the OETRAIP group was significantly faster
than that of the NC group in BT-549 cells. Given that cell proliferation
was inhibited by TRAIP downregulation, the cell cycle distribution
was examined by flow cytometry analysis. The G1 phase cells in the
ShTRAIP-1/2 group showed significant enrichment, but the S phase
cells were reduced relative to the ShCtrl group. However, an
opposite result was observed in BT-549 cell (Fig. 2C, P < 0.01).

The expression of RB, phospho-RB, E2F1, Cyclin D1, CyclinE1, and
P21 was examined by Western blot to explore the mechanism of
TRAIP on the cell proliferation and cell cycle. The results showed that
the expression of RB, phospho-RB, E2F1, CyclinD1, and CyclinE1
decreased and that of P21 increased in the ShTRAIP-1 group
compared with those in the ShCtrl group of MDA-MB-231 and MDA-
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MB-468 cells. On the contrary, the expression of RB, phospho-RB,
E2F1, CyclinD1, and CyclinE1 increased and that of P21 decreased in
the OETRAIP group of BT-549 cells (Fig. 2D, P < 0.05 or 0.01). These
results further suggested that silencing of TRAIP may induce G1/S
arrest by repressing the RB-E2F signaling pathway.

Transwell assay and scratch test were performed to determine
the effect of TRAIP gene knockdown on cell migration/invasion.
The results of scratch test displayed that the ability of horizontal
migration capacity was weakened compared with that in the
control group of MDA-MB-231 and MDA-MB-468 cells (Fig. 3A,
P <0.01). Similarly, the vertical migratory and invasive capacity in
the ShTRAIP-1/2 groups receded relative to those in the control
group (Fig. 3B, P<0.01). For confirmation of the above results,
migration and invasion assays were also performed in the
OETRAIP group (Fig. 3A, B, P<0.01). All the experiments
demonstrated that the cell's migratory/invasive ability was
progressively suppressed by TRAIP depletion.

The expression levels of MMP-2, MMP-9, Twist, Slug, Vimentin,
and E-cadherin were detected by Western blot to further probe
the effect of TRAIP in EMT. The results showed that the expression
of E-cadherin increased and that of MMP-2, MMP-9, Twist, Slug,
Vimentin decreased compared with those in the ShCtrl group of
MDA-MB-231 and MDA-MB-468 cells. However, the expression of
MMP-2, MMP-9, Twist, Slug, Vimentin increased and E-cadherin
decreased in the OETRAIP group (Fig. 3C, P<0.05 or 0.01).
Consequently, these findings suggested that silencing of TRAIP
may inhibit cell migration and invasion by suppressing EMT in
breast cancer cells.

Cancer Gene Therapy (2023) 30:74 - 84

MiR-590-3p directly targeted TRAIP and repressed TRAIP
expression

By using online bioinformatics assay (Miranda, targetscan), the
miRNA-targeting sites of miR590-3p on the 3/-UTR of TRAIP were
found (Fig. 4A). In the luciferase reporter assays, the over-
expression of miR-590-3p significantly reduced the luciferase
activities of the WT TRAIP 3’-UTR reporter compared with the
control. By contrast, when MUT sequence occurred at the binding
sites, the luciferase level of the MUT UTR group showed no
significant difference from the control group (Fig. 4B, P<0.01).
Therefore, TRAIP was a direct target of miR-590-3p. MiR-590-3p
mimic (miR-590 mimic) and miR-590-3p inhibitor (MiR-590
inhibitor) were transfected into MDA-MB-231 and BT-549 cells,
respectively. Western blot assays indicated that miR-590-3p mimic
could downregulate TRAIP expression, and miR-590-3p inhibitor
could upregulate it (Fig. 4C, P<0.01).

Overexpression of miR-590-3p could restrain TNBC cell
proliferation and migration/invasion

CCK-8 and colony-formation assays were performed to explore the
effect of miR-590-3p mimic on the proliferation and migration/
invasion in cancer cells. The results showed that the proliferation
was markedly restrained in contrast to the NC mimic group (Fig. 5A,
B, P <0.01). Flow cytometry analysis revealed that the number of G1
phase cells was significantly enriched, whereas that of the S phase
cells was reduced in the miR-590-3p mimic group (Fig. 5C, P < 0.05
or 0.01). Meanwhile, RB, Phospho-RB, E2F1, CyclinD1, and CyclinE1
decreased and P21 increased in the miR-590-3p mimic group
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expression of RB, phospho-RB, E2F1, Cyclin D1, CyclinE1 and P21 was examined by Western blot. All data are shown as the means + SD of

three experiments. (**P < 0.01, *P < 0.05).

compared with those in the NC mimic group of BT-549 (Fig. 5D,
P <0.05 or 0.01). This finding was also confirmed in the miR-590-3p
inhibitor group of MDA-MB-231 cells. These results further
suggested that overexpression of miR-590-3p induced G1/S arrest
by repressing the RB-E2F signaling pathway.

The results of Transwell and scratch test displayed that the
abilities of migration and invasion were restrained in the miR-590-
3p mimic group of BT-549 cells. Similar results were found in MDA-
MB-231 (Fig. 6A, B, P<0.05 or 0.01). Consequently, the cell’s
migratory/invasive ability was progressively suppressed by the
overexpression of miR-590-3p. Some major EMT markers were
detected by Western blot. The experimental results showed that
the expression of E-cadherin increased and that of MMP-2, MMP-9,
Twist, Slug, and Vimentin decreased compared with those in the
NC mimic group of BT-549 cells. However, the expression of MMP-
2, MMP-9, Twist, Slug, and Vimentin increased and that of
E-cadherin decreased in the miR-590-3p inhibitor group (Fig. 6C,
P <0.05 or 0.01). Consequently, these findings suggested that the
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overexpression of miR-590-3p may inhibit cell migration and
invasion by suppressing EMT in TNBC cells.

Knockdown of TRAIP reversed the effect of miR-590-3p on
proliferation, migration, and invasion in TNBC cells

A shift occurred when miR-590-3p inhibitor and LV3-hsa-TRAIP-
318 (miR-590 inhibitor + ShTRAIP-1) were co-transfected into the
MDA-MB-231 cells. In the rescue experiment, CCK-8 and colony-
formation assays showed that the proliferation improvement
caused by miR-590-3p inhibitor could be restored by silencing
TRAIP (Fig. 5A, B, P < 0.01). Knockdown of TRAIP rescued the result
that G1/S arrest caused by miR-590-3p inhibitor (Fig. 5C, P < 0.05
or 0.01). In RB-E2F signaling, RB, Phospho-RB, E2F1, CyclinD1, and
CyclinE1 decreased and that of P21 increased in the miR-590
inhibitor + ShTRAIP-1 group compared with those in the miR-590
inhibitor group for MDA-MB-231 (Fig. 5D, P < 0.05 or 0.01). These
results were also confirmed in BT-549 cells, which were co-
transfected with miR-590-3p mimic and LV5-hsa-TRAIP-homo
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(miR-590 mimic + OETRAIP; Fig. 5A-D, P < 0.05 or 0.01). Therefore, In addition, silencing of TRAIP reversed the results of Transwell
silencing TRAIP may rescue the consequence that miR-590-3p and scratch tests, that is, the abilities of migration and invasion
inhibitor induced cell proliferation via the RB-E2F signaling were reinforced by miR-590-3p inhibitor in MDA-MB-231 cells
pathway. (Fig. 6A, B, P<0.05 or 0.01). The expression of MMP-2, MMP-9,

Cancer Gene Therapy (2023) 30:74 -84 SPRINGER NATURE

79



Y. Zheng et al.

80

A 2 == icontt 3.0 -8~ Control
4~ miR-590 inhibitor Lo o0
209 o miRS90 inhibitor A 25 MiR-$90 mimics
@ +ShTRAIP-1 © sl ‘miR-530 mimics
3 w S 50 {oETRA
T 15 3 s
> >
° o 15
E 1.0 g *k
8 g 10
05 p
0.0 T T T T T 1 0.0 T T T T T 1
2 3 4 6 0 1 2 3 4 5 6
MDA-MB-231 Days BT-549 Days
B MDA-MB-231 BT-549
Control miRs0mimics ™03 TS Control MRS ihibitor i aor

+ShTRAIP-1

600 == Control 600 == Control
? == miR-590 inhibitor " == miR-590 mimics
2 miR-590 inhibitor 8 mmm MiR-590 mimics
5 == 4ShTRAIP-1 : +OETRAIP
E"’“ =g 400
£ 200 £ 200
H £
0 * "
MDA-MB-231 BT-549
MDA-MB-231 BT-549
D -
ShTRAIP-1 - - + - = -
OE-TRAIP - - - - - +
mi-590 mimics - - = = + +
mi-590 inhibitor - + + - = .
TRAIP |
RB
RB/B-actin 0.716 1.274 0.613 0.988 0.333 1.184
P-RB 3 '
P-RB/B-actin 0.753 1.233 0.327 0.927 0.211 0.733

P-RB/RB 1.051 0.967 0.533 0.938 0.634 0.619

E2F1

|- -

—
Cyclin E1 | — m— -

P21

e L
Broctin g G | | ——— — |

Control miR-590 inhibitor miR-550 inhibitor
i +ShTRAIP-1
| Bmopciessk g I DipG1: 56628 © I Dip G1: 68.25%
2y ] DipG2: 6.59% [ DipG2: 11.18% g (] pip G2: 8.48%
g = DipS :2511% Dips:3221% DipS :2327%
H
E » '
8
i i N
3 8
P 2
N
= " i
8

miR-590 mimics
+OE TRAIP
Il Dip G1: 62.75%

] pipG2: 8.34%
Dips :28.92%

Control miR-590 mimics

. DipG1: 61.94% I DipG1: 7278% 3
] Dip G2: 12.09% Dip G2: 6.44%
DipS :2596% & DipS :20.78%

= Control
== miR-590 inhibitor

o MIR-590 inhibitor

20 \
A
G0/G1 s G2/m Go/G1 s G2M
MDA-MB-231 BT-549
== Control
187 == miR-590 inhibitor
miR-590 inhibitor
3 == +ShTRAIP-1
]
= 1.04 ok ’j* wke I
°© *k T
e [ 7]
s *k L ]
o = I ## s #H
2 0.5+ ] T st % b 3
- I ] - t T
: ]’ﬁ :
0.0

TRAIP RB PRB  E2F1  CyclinD1 CyclinE1 P21
MDA-MB-231

Control
miR-590 mimics

2.0

miR-590 mimics
+OETRAIP

Relative protein level

o
N
N
N
N
N
N
N

pprzzzzza
0000000000007

E2F1  CyclinD1 CyclinE1 P21
BT-549

Fig. 5 TRAIP reverses the effects of miR-590-3p on cells proliferation and induces G1/S arrest via RB-E2F signaling. A CCK-8 assay was
examined 1, 2, 3, 4, and 5 days in MDA-MB-231 (Control group, miR-590 inhibitor group, miR-590 inhibitor+ShTRAIP-1 group) and BT-549
(Control group, miR-590 mimic group, miR-590 mimic + OETRAIP group). B Colony formation were photographed and colony numbers were
illustrated in histogram. C Flow cytometry revealed the distribution of cell phase in MDA-MB-231 and BT-549 cell lines. D The expression of RB,
phospho-RB, E2F1, CyclinE1, Cyclin D1 and P21 was examined by Western blot. All data are shown as the means + SD of three experiments.
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inhibitor+-ShTRAIP-1, or miR-590 mimic vs. miR-590 mimic+OETRAIP).

Twist, Slug, and Vimentin decreased and that of E-cadherin
increased in miR-590 inhibitor + ShTRAIP-1 MDA-MB-231 cells, as
confirmed by the miR-590 mimic + OETRAIP group (Fig. 6C,
P <0.05 or 0.01). These findings suggested that silencing TRAIP
may reverse the effect of miR-590-3p inhibitor on the migratory
and invasive abilities of TNBC cells through EMT.

Silencing of TRAIP suppressed proliferation and metastasis in
nude mice

Xenograft nude mouse models were established to further explore
the growth and metastatic capacities of TRAIP in vivo. The results

SPRINGER NATURE

showed that the mouse tumors’ weight (533+32mg vs.
178 +34mg) and tumor size (1430.2+26.9 mm> vs. 584.8 + 12.28
mm?) in ShTRAIP-1 cell xenografts significantly decreased compared
with those of the ShCtrl group (Fig. 7A, P < 0.05 or 0.01). Moreover,
luciferase-labeled ShTRAIP-1 MDA-MB-231 cells were injected into
female nude mice via the tail vein. After 40 days, only two out of the
five mice in the ShTRAIP-1 group developed lung metastasis,
whereas all five mice presented lung metastasis in the control
group. The weights of lungs from the ShTRAIP-1 group were
significantly lighter than those from the control group (Fig. 7B,
P <0.05 or 0.01). The number of tumor foci in the control group was
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much more than that in the ShTRAIP-1 group (Fig. 7C, P<0.01).
These results suggested that silencing of TRAIP could significantly
inhibit TNBC proliferation and metastasis in vivo.

DISCUSSION

The tumor necrosis factor (TNF) superfamily contains various
signaling proteins that regulate cell activity by binding to
homologous cell receptors [32]. TNF receptor associated factor
(TRAF) is a key scaffold connecting molecule in cells. Since the first
TRAFs were cloned in the mid-1990s, TRAFs has made remarkable
progress in regulating cell fate and cell death/survival [33].
Researchers used the yeast two-hybrid system to search for
additional TRAF1-interacting proteins. Analysis of the DNA
sequence of the TRAF1- and TRAF2-interacting c¢cDNA clones
revealed that they were derived from a single novel gene named
TRAIP. In addition, TRAIP could interact directly with TRAF1 and
TRAF2 in human cells (293T cells) [34]. TRAIP inhibits the
activation of NF-kB signaling pathway by inhibiting TRAF2

Cancer Gene Therapy (2023) 30:74 - 84

expression [35]. The cancer genome atlas (TCGA) is one of the
most abundant databases of tumor data types in the world [36]. It
has 1097 breast cancer data samples, including 1094 RNAseq data
and 106 paired data samples [37, 38]. TRAIP gene was screened
out by filtering and standardizing the original data [39-41]. The
UALCAN database also observed that TRAIP expression in TNBC
was increased compared with that in luminal or HER2 + type.
Meanwhile, Western blot assay revealed that TRAIP was highly
expressed in TNBC tissues and cells. Therefore, this study mainly
focused on the role of TRAIP in TNBC.

TRAIP has carcinogenic properties, and it is negatively
correlated with the prognosis of patients with liver cancer and
lung cancer, suggesting that TRAIP may be a promising
therapeutic target for those types of cancer [42, 43]. However,
the expression and clinical significance of TRAIP in TNBC have not
been verified. In the present study, the expression of TRAIP in
TNBC was found to be higher than that in adjacent normal tissues
for the first time, and the expression in lymph node metastasis
was significantly higher than that in primary lymph node
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metastasis. Moreover, the high expression of TRAIP was signifi-
cantly correlated with tumor recurrence, suggesting that the
expression of TRAIP was significantly correlated with the progres-
sion of TNBC.

Previous studies have reported that knockdown of TRAIP in
human epidermal keratinocytes inhibited cell proliferation and
induced the G1/S phase arrest of cell cycle [44]. This finding is
consistent with the results of cell proliferation experiment and
xenograft assay in the present study, that is, the silencing of TRAIP
could inhibit the proliferation of TNBC cells in vitro and in vivo and

SPRINGER NATURE

induce G1/S phase arrest. Chapard proved that TRAIP was a novel
E2F target [45]. Phosphorylation and dephosphorylation of RB
determined the activity of transcription factor E2F [46, 47].
Phosphorylation of RB caused the release of E2F1 and activated
CyclinD1 and CyclinE1, which then initiated DNA replication and led
to cell growth arrest [48, 49]. Cyclin-dependent kinase inhibitor p21
is one of the factors promoting cell cycle arrest under various stimuli
[50]. In the present experiment, Western blot results showed that
the expression of RB, Phospho-RB, E2F1, CyclinD1, and CyclinE1
decreased in the ShtrAIP-1 group, whereas that of P21 increased.
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Fig. 8 A model linking TRAIP to TNBC cell proliferation, migration
and invasion via RB-E2F and SLUG/TWIST. Upon direct targeted by
miR-590-3p, miR-590-3p has an opposite effect to TRAIP in TNBC cell
lines, and TRAIP could reverse the results of miR-590-3p. TRAIP could
facilitates G1/S transition and finally promotes TNBC cell prolifera-
tion. TRAIP also promotes processes of EMT, which finally accelerates
TNBC cell migration and invasion.

Therefore, TRAIP was hypothesized to possibly promote TNBC cell
proliferation and induce G1/S block through the RB-E2F signaling
pathway, thus regulating cell proliferation and cycle distribution.

Overexpression of TRAIP could promote the migratory/invasive
ability of osteosarcoma cells [51]. Transwell assays and nude
mouse lung metastasis model in the present study showed that
TRAIP could significantly promote the migratory and invasive
ability of TNBC cells. Wei's study showed that flag-TRAIP could co-
precipitate with Myc-Twist1 [52]. Twist1 is well known to be one of
the important transcription factors in the EMT pathway [53, 54].
E-cadherin is an epithelial adhesion that exists in human epithelial
cells, and it is used to connect cells and transmit intracellular
signals [55, 56]. Downregulation of E-cadherin could reduce
adhesion between cells, which is conducive to metastasis and
diffusion of malignant tumor cells [57, 58]. Snail could inhibit the
transcription of E-cadherin, thus accelerating intercellular loosen-
ing and promoting the proliferation and metastasis of malignant
tumor cells [59]. Vimentin could promote mesenchymal cell
mobility in epithelial tumor cells [60]. The present study found that
in the ShTRAIP-1 group, the expression levels of Twist, Slug,
Vimentin, MMP-2, and MMP-9 significantly decreased and that of
E-cadherin increased, whereas the OETRAIP group showed the
opposite. Therefore, TRAIP may promote the migration and
invasion of TNBC cells through the EMT pathway.

In addition, miR-590-3p was found to be one of the putative
targets of TRAIP by using online bioinformatics assay. Our
luciferase reporter assay showed TRAIP was a direct target of
miR-590-3p. Recent studies reported that miR-590-3p acted as a
tumor suppressor in glioblastoma multiform, medulloblastoma,
hepatocellular carcinoma, and nephroblastoma [61]. In the present
study, the proliferation and migration/invasion of TNBC cells were
restrained by miR-590-3p mimic, which was similar to the results
of other previous studies [62, 63]. Subsequently, the rescue
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experiment showed that the acceleration of proliferation and
migration/invasion in TNBC cells caused by miR-590-3p inhibitor
could be restored by silencing TRAIP.

Collectively, the results provided support, for the first time, that
TRAIP was highly expressed in TNBC and miR-590-3p could directly
target TRAIP. In addition, TRAIP knockdown may repress proliferation
and migration/invasion by regulating RB-E2F signaling and EMT in
TNBC cells (Fig. 8), suggesting that TRAIP plays a key regulatory role
in cell proliferation and migration/invasion in TNBC.

DATA AVAILABILITY
All remaining data and materials are available from the authors upon reasonable
request.
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