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Lineage-specific regulatory changes in
hypertrophic cardiomyopathy unraveled by single-
nucleus RNA-seq and spatial transcriptomics
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Hongyue Wang1,2,4, Yunhu Song1,3, Shuiyun Wang1,3✉, Shengshou Hu1,3✉ and Zhou Zhou 1,2✉

Abstract
Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder characterized by cardiomyocyte
hypertrophy and cardiac fibrosis. Pathological cardiac remodeling in the myocardium of HCM patients may progress
to heart failure. An in-depth elucidation of the lineage-specific changes in pathological cardiac remodeling of HCM is
pivotal for the development of therapies to mitigate the progression. Here, we performed single-nucleus RNA-seq of
the cardiac tissues from HCM patients or healthy donors and conducted spatial transcriptomic assays on tissue
sections from patients. Unbiased clustering of 55,122 nuclei from HCM and healthy conditions revealed 9 cell lineages
and 28 clusters. Lineage-specific changes in gene expression, subpopulation composition, and intercellular
communication in HCM were discovered through comparative analyses. According to the results of pseudotime
ordering, differential expression analysis, and differential regulatory network analysis, potential key genes during the
transition towards a failing state of cardiomyocytes such as FGF12, IL31RA, and CREB5 were identified. Transcriptomic
dynamics underlying cardiac fibroblast activation were also uncovered, and potential key genes involved in cardiac
fibrosis were obtained such as AEBP1, RUNX1, MEOX1, LEF1, and NRXN3. Using the spatial transcriptomic data, spatial
activity patterns of the candidate genes, pathways, and subpopulations were confirmed on patient tissue sections.
Moreover, we showed experimental evidence that in vitro knockdown of AEBP1 could promote the activation of
human cardiac fibroblasts, and overexpression of AEBP1 could attenuate the TGFβ-induced activation. Our study
provided a comprehensive analysis of the lineage-specific regulatory changes in HCM, which laid the foundation for
targeted drug development in HCM.

Introduction
Hypertrophic cardiomyopathy (HCM) is the most

common cardiac genetic disorder with an estimated pre-
valence of 1 in 2001. HCM is the leading cause of sudden

cardiac deaths (SCDs) in young people, accounting for
36% of SCDs in young athletes2. HCM is characterized by
an increased left ventricular wall thickness in the absence
of an associated cardiac or systemic disease3. Cardio-
myocyte hypertrophy and disarray, and cardiac fibrosis are
the key histopathological hallmarks of HCM4. Pathologi-
cal cardiac remodeling occurs in the myocardium of
HCM patients5, manifesting as cardiomyocyte dysfunc-
tion, escalated fibroblast activation (fibrosis), chronic
inflammation, and cell death. If left untreated, patholo-
gical cardiac remodeling may lead to adverse events,
including heart failure, arrhythmias, and death. In recent
years, significant efforts have been made to develop
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therapeutic agents for HCM. MYK-461, for instance,
inhibits cardiac myosin ATPase6. However, effective tar-
geted drugs for HCM are still very limited. An in-depth
elucidation of the cellular and molecular changes in
pathological cardiac remodeling of HCM is pivotal for
developing medical therapies to successfully prevent or
mitigate the HCM progression.
Previous studies have employed bulk RNA-seq to

explore the transcriptomic alterations in the cardiac tissue
of HCM at the tissue level7,8. However, cell-type-specific
changes could not be detected from bulk data. Single-cell
or single-nucleus RNA-seq (snRNA-seq) can overcome
this limitation and allows for unbiased dissection of the
cellular changes at unprecedented resolution. snRNA-seq
has been successfully applied to dissect the heterogeneity
of the adult human heart under healthy conditions9.
However, there is still a lack of research to explore the
transcriptomic changes in cardiac interventricular septum
(IVS) under the diseased condition of HCM at single-
nucleus resolution. The recent advent of spatially resolved
transcriptomics has greatly expanded our scope and
power to study the pathogenesis mechanism of diseases
by providing spatial information of gene expression that is
lost in single-cell/nucleus data10. Integrated analysis of
snRNA-seq and spatial transcriptomic data would pro-
foundly improve our knowledge regarding the cellular and
molecular changes of HCM.
In this study, we performed snRNA-seq of the cardiac

tissues from HCM patients and healthy donors. We also
conducted spatial transcriptomic assays on cardiac tissue
sections from HCM patients. Comparative analyses were
performed to explore lineage-specific changes in gene
expression, subpopulation composition, and intercellular
communication in HCM cardiac tissues. Potential key genes
during the transition towards a failing state of cardiomyo-
cytes or during the activation of fibroblasts were prioritized.
We showed experimental evidence that in vitro knock-

down of AEBP1 could promote the activation of human
cardiac fibroblasts, and overexpression of AEBP1 could
attenuate the TGFβ-induced activation, which suggests that
AEBP1 may function as a transcription repressor in cardiac
fibroblast activation. We hope that our study will expedite
the therapeutic development for mitigating the progression
to heart failure or attenuating cardiac fibrosis in HCM.

Results
Single-nucleus and spatial transcriptomic sequencing of
the cardiac IVS tissues from HCM patients and healthy
donors
The cardiac IVS tissues of HCM patients who under-

went surgical myectomy were collected for snRNA-seq
(n= 10; 10 samples) and spatial transcriptomic assays
(Fig. 1a; n= 6; 8 tissue sections). We also performed
snRNA-seq for a control group (referred to as

HEALTHY), which comprised cardiac IVS tissues from
healthy donors of heart transplants (n= 2; 3 samples).
The control group was ethnicity-, age-, and sex-matched
with the HCM group (Chinese, male). The detailed
demographic and clinical information of the enrolled
subjects are outlined in Supplementary Table S1. All
samples were sequenced individually. After quality con-
trol, a total of 55,122 nuclei (HCM: 39,183; HEALTHY:
15,939) were obtained (Supplementary Table S2). For the
spatial transcriptomic data, 2927 to 4849 spots were
detected (Supplementary Table S3). A web-based inter-
face (http://snsthcm.fwgenetics.org/) was established for
all datasets, which allowed for interactive examination of
the expression of any gene or the activity of any pathway
for both the snRNA-seq and spatial transcriptomic data.

Expansion of vascular-related lineages and contraction of
cardiomyocytes and fibroblasts in HCM
According to the expression of established markers for

each lineage9,11 (Fig. 1b, c), 9 cell types were identified by
joint clustering of the snRNA-seq data from both condi-
tions: vascular endothelial cells (vECs, marked by VWF),
fibroblasts (FBs, marked by PDGFRA), cardiomyocytes
(CMs, marked by TNNT2), pericytes (marked by KCNJ8),
myeloid cells (marked by C1QA), smooth muscle cells
(SMCs, marked by MYH11), lymphoid cells (marked by
IL7R), neuronal cells (marked by NRXN1), and lymphatic
endothelial cells (lECs, marked by MMRN1). Comparing
nucleus densities in the uniform manifold approximation
and projection (UMAP) space between the two conditions
revealed remarkable changes in the relative proportion of
cell types in HCM, particularly for vECs, pericytes, and
cardiomyocytes (Fig. 1d; Supplementary Figs. S1 and S2).
Furthermore, we quantified the changes in cellular com-
position between the two conditions (Fig. 1e). Vascular-
related lineages, including vECs, pericytes, and SMCs
were greatly expanded. Cardiomyocytes and fibroblasts
were greatly contracted, which potentially reflects the
increased cell death in HCM. The distinct molecular
signatures of each lineage are shown in Fig. 1f.

Cardiomyocyte-specific regulatory changes in the
pathological cardiac remodeling of HCM
Unbiased clustering grouped the cardiomyocytes into

two subpopulations: CM1 and CM2 (Fig. 2a; Supple-
mentary Table S4). CM2 expressed high levels of mala-
daptive markers for the reactivation of the fetal gene
program such as NPPB (encoding natriuretic peptide B, a
clinical biomarker for heart failure) and ACTA1 (encoding
skeletal α-actin)12, which thus denotes a subpopulation of
cardiomyocytes towards a failing state (Fig. 2b). CM1
expressed high levels of FGF12 and CORIN, which may
represent cardiomyocytes in a relatively homeostatic or
compensatory hypertrophy state. Consistent with this,
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Fig. 1 (See legend on next page.)
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CM2 was expanded in HCM, while CM1 was contracted
(Fig. 2c). Immunofluorescence staining confirmed the
presence of these two subpopulations on tissue sections
from HCM patients (Fig. 2d) and healthy donors (Sup-
plementary Fig. S3). Next, we applied DEsingle13 to detect
the differentially expressed genes based on the snRNA-
seq data in HCM versus HEALTHY for each lineage
(Supplementary Table S5). For cardiomyocytes, 2021
genes and 486 genes were significantly upregulated and
significantly downregulated, respectively (the absolute of
log2 fold change >1, adjusted P-value < 0.05). In line with
the pathological hypertrophy phenotype of HCM, the
upregulated genes were enriched for terms associated
with cell growth and protein synthesis (e.g., “Ribosome
assembly” and “Translation”), energy metabolism (e.g.,
“Oxidative phosphorylation”), stress response (e.g., “Cel-
lular responses to stress”), immune response (e.g., “Anti-
gen processing and presentation”), cell death (e.g.,
“Regulation of programmed cell death”), metabolic
reprogramming (e.g., “Organonitrogen compound meta-
bolic process”), and contraction (e.g., “Cardiac muscle
contraction”; Fig. 2e; Supplementary Table S6). The dif-
ferentially regulated pathways were supported by gene set
enrichment analysis (GSEA; Supplementary Table S7).
Using the method implemented in bigScale214, gene
regulatory networks (GRNs) for each lineage were built
separately for each condition (Supplementary Fig. S4).
Moreover, we performed a comparative analysis of the
GRNs between HCM and HEALTHY (differential reg-
ulatory networks analysis; DRN analysis) for each lineage,
which allowed for gene ranking according to the changes
in centrality, i.e., biological importance in the GRN
(Supplementary Table S8). The representative genes with
great changes in centrality were identified, such as CRYAB
(Crystallin Alpha B), EIF1 (Eukaryotic Translation Initia-
tion Factor 1), S100A1 (S100 Calcium Binding Protein
A1), PROS1 (Protein S), and CREB5 (CAMP Responsive
Element Binding Protein 5).

Transcriptomic dynamics during the transition towards a
failing state of cardiomyocytes in HCM
To decipher the transcriptomic dynamics during the

transition towards a failing state of cardiomyocytes in

HCM, we reconstructed the trajectory through the
pseudo-temporal ordering of the nuclei of cardiomyocytes
using Slingshot15 (Fig. 2f). The failing cardiomyocytes of
CM2 were ordered at a relatively later stage along pseu-
dotime trajectory (Fig. 2g). Significant differences existed
between the pseudotime distributions of the two condi-
tions (Fig. 2h; P-value < 2.2e-16, Kolmogorov–Smirnov
test). By using tradeSeq16, the genes exhibiting sig-
nificantly different expression patterns along the trajec-
tory between the two conditions were identified and
clustered into 7 gene clusters (Fig. 2i; Supplementary
Table S9; adjusted P-value < 0.05). Notably, the mala-
daptive markers, NPPB and NPPA, were within the last
gene cluster (VII).
Subsequently, we prioritized the potential key genes

according to the results of three independent analyses,
including the difference in expression patterns along the
trajectory (adjusted P-value < 0.05), the fold change of
expression levels between conditions (the absolute of log2
fold change > 1), and the centrality change in GRNs (DRN
rank <1000). Only genes encoding Transcription factors
(TFs), ligands, and receptors were considered. 14 candi-
date genes were prioritized (Fig. 2j). For most of the
candidate genes, the differential expression was supported
by pseudobulk RNA-seq analysis (adjusted P-value < 0.05,
Supplementary Table S10). The roles of most genes in the
transition of cardiomyocytes towards the failing state in
HCM have not been recognized previously, such as
FGF12 (fibroblast growth factor 12), CREB5, and BDNF
(brain-derived neurotrophic factor) (Fig. 2k). Regulon
analysis by using SCENIC17 confirmed that the regulon
activities of three prioritized TFs including CREB5, CUX2,
and DDIT3 were significantly higher in cardiomyocytes
from HCM (adjusted P-value < 0.05, Wilcoxon rank-sum
test; Supplementary Fig. S5 and Table S11). Notably,
according to the results of bulk RNA-seq7 previously
performed by our lab, some of the genes such as FGF12,
IL31RA, and PROS1 were significantly upregulated in the
cardiac tissues of HCM (q-value < 0.05; Supplementary
Fig. S6). Western blot assays confirmed that the protein
levels of FGF12 and BNP (encoded by NPPB) were sig-
nificantly changed in cardiac tissues from HCM patients
(n= 5) versus healthy donors (n= 5; P-value < 0.05,

(see figure on previous page)
Fig. 1 The changes in relative proportion for each cell type of human cardiac tissues in HCM. a Schematic representation of the overall
experimental procedure. The cardiac IVS tissues of HCM patients who underwent surgical myectomy were collected for snRNA-seq (n= 10;
10 samples) and spatial transcriptomic assays (n= 6; 8 tissue sections). As a control, cardiac IVS tissues from healthy heart transplant donors (n= 2;
3 samples; the samples HEALTHY1A and HEALTHY1B were from the same donor) were subjected to snRNA-seq. b Unbiased clustering of 55,122
nuclei from all 13 samples identifies 9 major cell types. The nucleus count is indicated by the number in parenthesis. c UMAP plot showing the
expression of the established marker genes for each cell type. d Comparison of the nucleus densities in the UMAP space between the two conditions
reveals remarkable changes in the relative proportion of cell types in HCM. Nuclei were randomly sampled in equal numbers for each group
(n= 15,939). e Relative proportion of each cell type in each condition. +: expansion; –: contraction. f Heatmap showing the molecular signature of
each lineage. CM cardiomyocyte, FB fibroblast, lEC lymphatic endothelial cell, SMC smooth muscle cell, vEC vascular endothelial cell.
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Wilcoxon rank-sum test; Fig. 2l). In addition, we reana-
lyzed a published snRNA-seq dataset of cardiac tissues
from dilated cardiomyopathy (DCM) patients and healthy
donors18. We found that most of the key genes dysregu-
lated in the cardiomyocytes of HCM such as PROS1,
FGF12, CREB5, TGFB2, and NPPB were also dysregulated
in DCM (Supplementary Fig. S7).

Fibroblast-specific regulatory changes in the pathological
cardiac remodeling of HCM
Four fibroblast subpopulations were identified through

unbiased clustering: KCNMB2 high FB1, NRXN3 high FB2,
CNTNAP2 high FB3, and PCOLCE2 high FB4 (Fig. 3a, b;
Supplementary Table S4). Notably, FB2 expressed the
highest levels of markers for activated fibroblasts (pre-
viously referred to as myofibroblasts19), including FAP,
POSTN, FN1, COL1A1, COL3A1, and MYH1020, thus
representing an activated state of fibroblasts (Fig. 3c).
Hierarchical clustering revealed a close relationship
between FB1 and FB2 (Fig. 3d). FB1 highly expressed
markers for a basal transcriptomic program of cardiac
fibroblasts that were previously described such as SCN7A,
ADGRL3, and TLL29, thus representing a basal state of
fibroblasts (Fig. 3b). Consistent with this, FB2 was greatly
expanded in HCM versus HEALTHY, while FB1 was
greatly contracted (Fig. 3e). Immunofluorescence staining
confirmed the presence of the four subpopulations on
tissue sections from HCM patients (Fig. 3f) and healthy
donors (Supplementary Fig. S8). Next, differentially
expressed genes in fibroblasts were identified between the
two conditions (Supplementary Table S5). In line with the
fibrosis that occurred in HCM, fibrogenesis-associated
terms such as “Extracellular matrix organization” and
“Cellular response to transforming growth factor-beta
stimulus” were found to be enriched in the upregulated

genes (Fig. 3g; Supplementary Table S6). In addition, the
upregulated genes were also enriched for terms related to
protein translation and processing, energy metabolism,
stress response, as well as immune response. Notably,
Hedgehog and G protein-coupled receptor (GPCR) sig-
naling were also enriched (Fig. 3g), which was consistent
with their roles in fibrogenesis reported in other tissues
and disease conditions21,22. In addition, ADAM19
(ADAM metallopeptidase domain 19), RUNX1 (RUNX
family transcription factor 1), CTIF (cap-binding complex
dependent translation initiation factor), MEOX1
(mesenchyme homeobox 1), and FGF7 (fibroblast growth
factor 7) were identified as the top five genes with great
changes in centrality via DRN analysis (Supplementary
Fig. S9 and Table S8).

Transcriptomic dynamics during the activation of cardiac
fibroblasts in HCM
To decipher the transcriptomic dynamics during the

activation of cardiac fibroblasts in HCM, we reconstructed
the trajectory of fibroblast activation through the pseudo-
temporal ordering of the FB1 and FB2 nuclei (Fig. 3h).
Activated fibroblasts FB2 were ordered at the end of the
trajectory (Fig. 3i). The fibroblasts from different condi-
tions had significantly different pseudotime distributions
(Fig. 3i; P-value < 2.2e-16, Kolmogorov–Smirnov test).
Next, the genes exhibiting significantly different expression
patterns along the trajectory between the two conditions
were identified and clustered into 7 gene clusters (Fig. 3j;
Supplementary Table S9; adjusted P-value < 0.05). The
potential key genes were then prioritized according to the
above-mentioned criteria. We prioritized 28 candidate
genes, as shown in Fig. 3k. Notably, TF genes such as
AEBP1 (AE Binding Protein 1), RUNX1,MEOX1, and LEF1
(lymphoid enhancer-binding factor 1) were significantly

(see figure on previous page)
Fig. 2 Cardiomyocyte-specific regulatory changes in the pathological remodeling of HCM. a UMAP plot showing the cardiomyocyte
subpopulations. b Heatmap showing the molecular signatures of each subpopulation. c Relative proportion of each subpopulation in the
cardiomyocytes from each condition. +: expansion; –: contraction. d Immunofluorescence staining confirmed the presence of the subpopulations in
cardiac tissues from HCM patients. Cardiomyocytes are marked by Actin. BNP is encoded by the gene NPPB. Scale bar: 10 μm. e Representative terms
enriched in the significantly upregulated genes in cardiomyocytes from HCM patients compared with those from healthy donors. Adjusted P-
value < 0.05, hypergeometric test. f Cellular trajectory reconstructed for the transition towards failing cardiomyocytes using Slingshot. The arrow
shows the direction of cellular state changes. g Density curves showing the distributions of the two subpopulations along the trajectory. h Density
curves showing the distributions of the cardiomyocytes from two different conditions along the trajectory. **P-value < 2.2e-16, Kolmogorov–Smirnov
test. i Heatmaps showing the expression dynamics of the 216 genes with significantly different patterns along the trajectory between the two
conditions. These genes were detected by differential expression pattern analysis using the “conditionTest” function of tradeSeq and were
categorized into 7 gene clusters by hierarchical clustering. The significance threshold was set to be adjusted P-value < 0.05. j The potential key genes
that were prioritized based on the results of three independent analyses including the difference in expression patterns, the fold change of
expression levels, and the centrality change in GRNs. DRN rank: the gene ranking based on the centrality change in GRNs obtained by differential
regulatory network analysis. Log2FC: log2 fold change of the expression levels in cardiomyocytes. Wald stat: the natural logarithm of the statistics of
differential expression pattern analysis. Only genes encoding TFs, ligands, and receptors were considered. k Smoothed expression curves of
representative candidate genes along the trajectory under both conditions. lWestern blot assays confirmed that the protein levels of FGF12 and BNP
were significantly changed in cardiac tissues from HCM patients (n= 5) compared with those from healthy donors (n= 5). **P < 0.01, Wilcoxon
rank-sum test.
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more upregulated along the trajectory of fibroblast acti-
vation in HCM versus HEALTHY (Fig. 3l). Regulon ana-
lysis confirmed that the regulon activities of four
prioritized TFs including LEF1, RUNX1, RUNX2, and
PBX1 were significantly higher in fibroblasts from HCM
(adjusted P-value < 0.05, Wilcoxon rank-sum test; Supple-
mentary Fig. S10 and Table S11). Moreover, the bulk RNA-
seq results7 showed that some of the genes such as AEBP1,
LEF1, NRXN3, and GLIS1 were significantly upregulated in
the cardiac tissues of HCM (Supplementary Fig. S6).
Western blot assays confirmed that the protein levels of
AEBP1 and RUNX1, two representative candidate TFs,
were significantly higher in cardiac tissues from HCM
patients (n= 5) than healthy donors (n= 5; P-value < 0.05,
Wilcoxon rank-sum test; Fig. 3m). In addition, we found
that most of the key genes dysregulated in the fibroblasts of
HCM such as AEBP1,MEOX1, NRXN3, LEF1, and RUNX1
were also dysregulated in DCM (Supplementary Fig. S7).

The immune and vascular lineage subpopulations and
their changes in relative proportion in HCM
Unbiased clustering identified 8 immune subpopula-

tions (Fig. 4a). Immune_c0, c1, c4, c5, and c6 expressed
high levels of CD68 (Fig. 4b), thus representing five
macrophage subpopulations (referred to as MAC1-5
hereafter). Figure 4c shows that FGF13 high MAC1 and
IGSF21 high MAC2 expressed high levels of LYVE1, indi-
cating that they were vessel-associated resident macro-
phages with M2-like phenotypes23. FCN1, which marks
proinflammatory macrophages24, was found in high levels
in MAC5. The cytokines that are well known to be pro-
inflammatory, such as IL1B and TNF, exhibited the
highest expression in the FCN1 high macrophage sub-
cluster (Supplementary Fig. S11). Comparative analysis of
the relative proportion between conditions revealed an
expansion of MAC2 and a contraction of MAC1 (Fig. 4d)
in HCM, implying that MAC2 was more activated than

MAC1. Immunofluorescence staining confirmed the
presence of MAC2 under both conditions (IGSF21 high

CD68+, Supplementary Fig. S12). Functional enrichment
analysis supported macrophage immune activation in
HCM (Supplementary Fig. S13a). Besides a small cluster
of the nuclei of B cells (marked by CD79A), two other
closely related lymphoid lineage subpopulations were
identified: immune_c2 and immune_c3. Immune_c2
expressed high levels of the T cell marker CD3D (Fig. 4b)
and exhibited high naiveness scores (Fig. 4e), indicating
that it represented nuclei of naive T cells. Immune_c3
expressed high levels of the T cell marker CD3D and the
natural killer (NK) cell marker NCR1, and exhibited high
cytotoxicity scores (Fig. 4e), indicating that it represented
a mixture of the nuclei of effector T/NK cells. As expec-
ted, we observed an expansion of the effector T/NK nuclei
and a contraction of the naive T nuclei (Fig. 4f).
A total of 7 subpopulations within the vEC lineage that

were aligned consecutively in the UMAP space were
identified (Fig. 4g). Based on the established markers9, and
from the left to the right of UMAP1, the subclusters were
assigned to arterial ECs (marked by SEMA3G and DLL4;
arterial EC2 and arterial EC1), capillary ECs (marked by
RGCC and CA4; capEC3, capEC1, immune EC and
capEC2) and venous ECs (marked by ACKR1 and NR2F2;
venousEC; Fig. 4h). Except for capEC1 and venousEC,
most subpopulations were expanded (Fig. 4i). Two sub-
populations of SMCs with distinct expression profiles
were identified: SMC1 and SMC2 (Fig. 4j, k). SMC2
expressed lower levels of contractile markers such as
CNN1 and TAGLN than SMC1 (Fig. 4l) and was closely
linked to pericytes in the UMAP space (Supplementary
Fig. S14). These findings imply that SMC2 may represent
modulated SMCs of the small vasculature in diseased
conditions. Consistent with this, an expansion of SMC2
was observed (Fig. 4m). Immunofluorescence staining
confirmed the presence of SMC2 under both conditions

(see figure on previous page)
Fig. 3 Fibroblast-specific regulatory changes in the pathological remodeling of HCM. a UMAP plot showing the fibroblast subpopulations.
b Heatmap showing the molecular signature of each subpopulation. c Split violin plots showing the expression of the markers for activated
fibroblasts. d Hierarchical clustering of the subpopulations. e Relative proportion of each subpopulation in the fibroblasts from each condition. +:
expansion; –: contraction. f Immunofluorescence staining confirmed the presence of the four subpopulations in cardiac tissues from HCM patients.
Fibroblasts are marked by PDGFRA. Scale bar: 10 μm. g Representative terms enriched in the upregulated genes in fibroblasts from HCM patients
than those from healthy donors. Adjusted P-value < 0.05, hypergeometric test. h UMAP plot showing the subpopulations FB1 and FB2 (left panel),
and the cellular trajectory reconstructed for fibroblast activation using Slingshot (right panel). The arrow shows the direction of cellular state changes.
i Density curves showing the distributions of the two fibroblast subpopulations (left panel) and the fibroblasts from different conditions along the
trajectory (right panel). **P-value < 2.2e-16, Kolmogorov-Smirnov test. j Heatmaps showing the expression dynamics of the 432 genes with
significantly different patterns along the trajectory between the two conditions. These genes were detected by differential expression pattern
analysis using the “conditionTest” function of tradeSeq and were categorized into 7 gene clusters by hierarchical clustering. The significance
threshold was set to an adjusted P-value < 0.05. k The potential key genes that were prioritized based on the results of three independent analyses
including the difference in expression patterns, the fold change of expression levels, and the centrality change in GRNs. l Smoothed expression
curves of representative candidate genes along the trajectory in both conditions. m Western blot assays confirmed that the protein levels of AEBP1
and RUNX1 were significantly changed in cardiac tissues from HCM patients (n= 5) compared with those from healthy donors (n= 5). *P < 0.05,
**P < 0.01, Wilcoxon rank-sum test.
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(RGS5highMYH11+, Supplementary Fig. S12). Three sub-
populations of pericytes were identified: pericyte1, peri-
cyte2, and pericyte3 (Fig. 4n, o), and pericyte2 was found

to be significantly expanded in HCM (Fig. 4p). The
representative pathways upregulated in each of the three
types of vascular lineage are shown in Supplementary

Fig. 4 (See legend on next page.)
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Fig. S13. Notably, energy metabolism and immune
response-related pathways were upregulated in all three
cell types, as they were in cardiomyocytes and fibroblasts.

Changes in intercellular communication in HCM cardiac
tissue inferred from the snRNA-seq data
Intercellular communication in HCM has primarily

been characterized in vitro using coculture methods in
previous studies. We applied CellChat25 to infer ligand-
receptor interactions among subpopulations in vivo for
each condition based on the snRNA-seq data (Supple-
mentary Table S12). The inferred total number (Fig. 5a)
and strength of interactions (Fig. 5b) were significantly
increased in HCM, reflecting an enhanced intercellular
communication in diseased conditions as has been
reported in other diseases26. The number (Fig. 5c) and
strength (Fig. 5d) of interactions for both outgoing and
incoming signals increased significantly in fibroblast
subpopulations, confirming their central roles in the
pathological remodeling of HCM. Notably, neuronal cells
exhibited significantly enhanced incoming signals from
other lineages, e.g., fibroblasts. Remarkably, cardiomyo-
cytes, particularly the failing subpopulation CM2,
demonstrated decreased communication between them-
selves (autocrine) and with some other lineages (para-
crine), such as macrophages. Comparing the relative
positions of cardiomyocytes in the 2D signal space
between HEALTHY (Fig. 5e) and HCM (Fig. 5f) also
suggested a substantial change in communication.
Next, we compared the relative information flow for

each signaling pathway between two conditions (Fig. 5g),
and identified pathways that were greatly enhanced in
HCM (e.g., PTN, ITGB2, CSF, PROS, ICAM, CD46,
TGFb, MHC-1, ESAM, and WNT) or specific to the HCM
condition (e.g., PARs, ANGPTL, and SPP1). The signaling
pathways were grouped based on functional similarity (i.e.,
similarity in senders and receivers) using joint manifold
learning of the inferred communication networks (Fig. 5h).
The changes in the functional similarity between the two

conditions were reflected by the Euclidean distance of each
pathway in the learn joint manifold. The TGFβ pathway
had the largest distance, as shown in Fig. 5i. In line with
this, network centrality analysis confirmed that the TGFβ
pathway greatly changed in senders and receivers in HCM
(Fig. 5j), where the top sender changed from MAC2 in
HEALTHY to effector T/NK cells in HCM, and the top
receiver changed from CM1 to MAC3. Then, we found
that TGFB1-(TGFBR1+TGFBR2) was the ligand-
receptor pair that contributed the most to the TGFβ sig-
naling network in the HCM cardiac tissues (Fig. 5k).
TGFB1-(TGFBR1+TGFBR2) signaling was enhanced in
HCM, and the paracrine signal of TGFB1 received by
fibroblasts, cardiomyocytes, and vECs was predominately
secreted by effector T/NK cells, naive T cells, and proin-
flammatory macrophages MAC5 (Fig. 5l, m).

Spatially resolved determination of the expression of
candidate genes, the activity of HCM-related pathways,
and subpopulations by spatial transcriptomics
The eight tissue sections for spatial transcriptomic

assays contained regions with replacement fibrosis and/or
diffuse (interstitial or perivascular) fibrosis that commonly
occur in HCM, as shown in Supplementary Figs. S15 and
S16. For example, the HCM1225D section was char-
acterized by extensive replacement fibrotic scars and
interstitial fibrosis (also see Fig. 6a, b). Using unbiased
clustering, spatial spots in fibrotic regions could be
separated from those in non-fibrotic regions in all the
sections (Supplementary Figs. S17–S23). For example, on
the section HCM1225D, spot clusters SC0 and SC1 gen-
erally represented spots in fibrotic and non-fibrotic
regions (Fig. 6c, d; Supplementary Fig. S24). We inte-
grated the snRNA-seq data and the spatial transcriptomic
data following the label transfer workflow of Seurat. CM1,
the cardiomyocyte subpopulation in a homeostatic or
compensatory hypertrophy state (marked by FGF12), was
predicted to be located in non-fibrotic regions, whereas
CM2, the cardiomyocyte subpopulation towards a failing

(see figure on previous page)
Fig. 4 The immune and vascular lineage subpopulations and their changes in relative proportion in HCM. a UMAP plot showing the
subpopulations of the immune lineage. b Expression of established markers for macrophages (CD68), T cells (CD3D), Natural killer cells (NCR1), and B
cells (CD79A) in each immune subpopulation. c Expression of the marker for each of the five macrophage subpopulations. d Relative proportion of
each subpopulation in macrophages of each condition. +: expansion; -: contraction. e UMAP plot showing the cytotoxicity and naiveness scores for
each immune nucleus. The cytotoxicity and naiveness scores were calculated by summing the expression of previously reported signatures for T cell
cytotoxicity (PRF1, IFNG, GNLY, NKG7, GZMB, GZMA, GZMH, KLRK1, KLRB1, KLRD1, CTSW, and CST7) and naiveness (TCF7, SELL, LEF1, and CCR7)51.f Relative
proportion of each subpopulation of T/NK cells in each condition. g UMAP plot showing the subpopulations of the vECs. h Expression of the
established markers for venous Ecs (ACKR1 and NR2F2), arterial Ecs (SEMA3G and DLL4), capillary Ecs (RGCC and CA4), and immune Ecs (CX3CL1 and
CCL2). i Relative proportion of each subpopulation in the vECs from each condition. j UMAP plot showing the subpopulations of the SMCs.
k Molecular signature for each SMC subpopulation. l Expression of contractile markers CNN1 and TAGLN in each SMC subpopulation. m Relative
proportion of each subpopulation in the SMCs from each condition. n UMAP plot showing the subpopulations of the pericytes. o Molecular
signature for each pericyte subpopulation. p Relative proportion of each subpopulation in the pericytes from each condition. MAC: macrophage;
SMC: smooth muscle cell; vEC: vascular endothelial cell.
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state (marked by NPPB), was located close to the fibrotic
regions (Fig. 6e, f; Supplementary Figs. S17–S23). The
quiescent fibroblast subpopulation, FB1, was mostly in
non-fibrotic regions, whereas the activated fibroblast
subpopulation, FB2, was mostly found in fibrotic regions
(Fig. 6e; Supplementary Figs. S17–S23). In fibrotic
regions, the candidate genes AEBP1, RUNX1, andMEOX1
were highly expressed (Fig. 6f; Supplementary Figs.
S17–S23). Spatial cell-cell interaction (CCI) analysis by
using stLearn (v0.3.1) revealed that intercellular commu-
nication hotspots were mainly localized in fibrotic or peri-
fibrotic regions across all the sections (Supplementary Fig.
S25). Moreover, the ligand-receptor pairs with enhanced
communication activities in HCM that were predicted by
CellChat based on the snRNA-seq data (Supplementary
Table S13), such as GZMA-PARD3 and EFNA1-EPHA3,
could be spatially verified through spatial CCI analyses
(Supplementary Fig. S26). In addition, spatial pseudotime
analysis through pseudo-temporal ordering of the spots
using Monocle3 identified the transcriptomic dynamics
during the change from non-fibrotic to fibrotic states of
cardiac tissues in HCM (Supplementary Fig. S27 and
Table S14). The expression patterns of representative
markers or candidate genes along the pseudotime (e.g.,
AEBP1, NPPB, FGF12, and RUNX1) were consistent with
those predicted based on the single-nucleus data. There-
fore, the spatial transcriptomic data support the findings
of our snRNA-seq analysis.
Next, for each section, the dysregulated genes and path-

ways in fibrotic versus non-fibrotic regions were identified
(Supplementary Tables S15, S16). The upregulated path-
ways, as shown in Fig. 6g, were mainly involved in ECM
remodeling (e.g., “REACTOME_EXTRACELLULAR_MA-
TRIX_ORGANIZATION”), fibrosis-related signaling (e.g.,

“KEGG_TGF_BETA_SIGNALING_PATHWAY”), and
immune response (e.g., “REACTOME_INTERFER-
ON_SIGNALING”). The downregulated pathways were
mainly involved in contraction (e.g., “KEGG_CARDIAC_-
MUSCLE_CONTRACTION”), energy metabolism (e.g.,
“KEGG_OXIDATIVE PHOSPHORYLATION”), and TP53-
mediated stress response (e.g., “REACTOME_TRAN-
SCRIPTIONAL_REGULATION_BY_TP53”). We also
noticed that the identified dysregulated pathways were
generally consistent among sections from different patients,
between sections from different samples of the same patient
(HCM1220B and HCM1220C), and between neighboring
sections from the same patient (HCM1406B and
HCM1406C; Fig. 6g). The spatial expression activity of
representative pathways that exhibited upregulated activity
in the fibrotic regions, such as the TGFβ signaling pathway,
could be visualized on the tissue sections (Fig. 6h; Supple-
mentary Fig. S28).

In vitro knockdown of AEBP1 promotes the activation of
human cardiac fibroblasts
To explore the role of AEBP1, one of the potential key

TFs during cardiac fibroblast activation, we performed a
siRNA-mediated knockdown of AEBP1 in normal human
cardiac fibroblasts (Fig. 7a, b). Phalloidin staining of actin
filaments showed that the fibroblasts with AEBP1
knockdown became triangular or polygonal, a morphol-
ogy typical for activated fibroblasts, while the fibroblasts
following scrambled siRNA transfection (negative con-
trol) remained a spindle-shaped morphology typical for
unactivated fibroblasts (Fig. 7c). Ki67 (a nuclear antigen
that marks cellular proliferation) staining showed that the
proliferation of cardiac fibroblasts was significantly
reduced by AEBP1 knockdown (P-value < 0.05; Fig. 7d).

(see figure on previous page)
Fig. 5 Intercellular communication changes in HCM cardiac tissues inferred from the snRNA-seq data. a Bar plot showing the total number of
ligand-receptor interactions among the subpopulations of the cardiac tissues in both conditions. b Bar plot showing the total interaction strength
among the subpopulations of the cardiac tissues in both conditions. The total interaction strength was calculated by summing the communication
probability of all inferred interactions. c Heatmap showing the differential number of interactions among subpopulations in HCM versus HEALTHY. In
the color bar, red represents an increase in the number of interactions and blue represents a decrease in the number of interactions. The top bar plot
shows the sum of the changes in the number of incoming signals for each subpopulation. The right bar plot shows the sum of the changes in the
number of outgoing signals for each subpopulation. d Heatmap showing the differential interaction strength among subpopulations in HCM versus
HEALTHY. e Bubble plot showing the incoming and outgoing interaction strength for each subpopulation in HCM. The dot size represents the count
of interactions. f Bubble plot showing the incoming and outgoing interaction strength for each subpopulation in HEALTHY. g Relative information
flow for each signaling pathway in both conditions. The information flow is defined by the sum of the communication probability among all pairs of
subpopulations. h Joint manifold learning of the HCM and HEALTHY communication networks and grouping the signaling pathways based on
functional similarity. A high degree of functional similarity means that the major senders and receivers are similar. i The Euclidean distance of each
pathway in the learn joint manifold. A larger distance means a larger difference in functional similarity (i.e., similarity in senders and receivers)
between the two conditions. Only overlapping pathways between the two conditions are shown. j The major senders and receivers of the TGFβ
signaling pathway inferred through network centrality analysis in HEALTHY (upper panel) and HCM (lower panel). k Relative contribution of each
ligand-receptor pair to the overall signal of the TGFβ pathway in HCM. l Hierarchical plot showing the inferred communication network for TGFB1-
(TGFBR1+ TGFBR2) signaling in HEALTHY.m Hierarchical plot showing the inferred communication network for TGFB1-(TGFBR1+ TGFBR2) signaling
in HCM. In l and m, open and solid circles represent target and source, respectively. Edge width represents the interaction strength and circle size is
proportional to the number of nuclei in each subpopulation. Edges are color-coded based on the signal source.

Liu et al. Cell Discovery             (2023) 9:6 Page 12 of 25



Fig. 6 (See legend on next page.)

Liu et al. Cell Discovery             (2023) 9:6 Page 13 of 25



Through bulk RNA-seq, we identified 484 significantly
upregulated and 644 downregulated genes in AEBP1-
siRNA versus scrambled siRNA (Supplementary Fig. S29
and Table S17). The knockdown of the mRNA expression
of AEBP1 was confirmed by bulk RNA-seq (Fig. 7e).
Notably, ACTA2 (encoding alpha-smooth muscle actin,
αSMA) and TAGLN (encoding smooth muscle protein
22-alpha, SM22α), two markers for activated fibroblasts,
were significantly upregulated in AEBP1-siRNA versus
negative control (Fig. 7e). Genes encoding the ligand
(TGFB1) and receptor (TGFBR1) of TGFβ signaling, the
master pathway in fibroblast activation, were also sig-
nificantly upregulated (Fig. 7e). Functional enrichment
analysis revealed that the upregulated genes were mainly
enriched for extracellular matrix organization and TGFβ
signaling-related pathways (Fig. 7f), while the down-
regulated genes were mainly enriched for cell cycle-
associated pathways (Fig. 7g). Furthermore, we examined
the protein expression changes through western blot
assays and immunofluorescence staining (Fig. 7h–j). The
knockdown of AEBP1 was confirmed at the protein level.
Consistent with the mRNA expression changes, the pro-
tein levels of αSMA and SM22α were significantly
increased. While the protein levels of SMAD2/3 were
decreased by AEBP1 knockdown, the phosphorylated
SMAD2/3 (p-SMAD2/3, the key regulators in the cano-
nical TGFβ pathway) and the ratio of p-SMAD2/3 to
SMAD2/3 were significantly increased. Although the
upregulation of mRNA expression of COL1A1 did not
reach statistical significance (Fig. 7e), the protein level of
Collagen-I was significantly increased by AEBP1 knock-
down (Fig. 7g–i). Together, our results suggest that the
knockdown of AEBP1 can promote the activation of
human cardiac fibroblasts, which implies that AEBP1 may
function as a transcription repressor in cardiac fibroblast
activation.

In vitro overexpression of AEBP1 attenuates TGFβ-induced
activation of human cardiac fibroblasts
The protein level of AEBP1 in cultured cardiac fibro-

blasts was significantly increased by TGFβ treatment (Fig.
8a), which is consistent with the upregulation of AEBP1 in

cardiac fibroblasts of HCM in vivo observed in our
snRNA-seq dataset (Fig. 3l). Therefore, we applied
TGFβ-induced activation of fibroblasts in vitro to further
confirm the role of AEBP1 as a repressor in cardiac
fibroblast activation. Adenoviral-mediated overexpression
of AEBP1 in cardiac fibroblasts was performed and fol-
lowed by TGFβ treatment (Fig. 8b, c). Phalloidin staining
of actin filaments showed that the fibroblasts with TGFβ
treatment exhibited a typical morphology for activation
(Fig. 8d). Ki67 staining showed that AEBP1 over-
expression greatly enhanced the proliferation of cardiac
fibroblasts with or without TGFβ treatment (Fig. 8e),
suggesting its pro-proliferation role. Western blot con-
firmed the overexpression of AEBP1 (Fig. 8f, g). Com-
pared with the negative controls (adenovirus harboring
empty vector), although no significant change was
observed for Collagen-I, the protein levels of αSMA,
SM22α, and pSMAD2/3 were significantly decreased by
AEBP1 overexpression, particularly with TGFβ treatment.
The ratio of p-SMAD2/3 to SMAD2/3 was also sig-
nificantly decreased by AEBP1 overexpression with TGFβ
treatment. Together, our results suggest that the over-
expression of AEBP1 can attenuate TGFβ-induced acti-
vation of human cardiac fibroblasts.

Discussion
Understanding lineage-specific regulatory changes

under diseased conditions is of fundamental importance
for successful drug development. The present study pro-
vided a comprehensive analysis of lineage-specific changes
in expression profile, subpopulation composition, and
intercellular communication in the cardiac tissues of
human HCM patients using snRNA-seq and spatial
transcriptomic assays.
While cardiac remodeling is orchestrated by multiple

lineages, cardiomyocytes act as the most important
determinant of cardiac state. As such, pharmacological
interventions that directly target cardiomyocytes may be
the most promising strategy for alleviating pathological
hypertrophy or mitigating the progression to heart failure
in HCM. The single-nucleus resolution data allowed us to
examine the cardiomyocyte-specific regulatory changes of

(see figure on previous page)
Fig. 6 Spatially resolved determination of the expression of candidate genes, the activity of HCM-related pathways, and the distribution
of subpopulations by spatial transcriptomics. a H&E staining image for the cardiac tissue section HCM1225D. b Masson’s trichrome staining
image of a section adjacent to HCM1225D. c UMAP plot showing the spot clusters identified using unbiased clustering of the spots on HCM1225D.
d Distribution of the spot clusters on the HCM1225D section. e Spatial location of the subpopulations FB1, FB2, CM1, and CM2 on the HCM1225D
section predicted by integrating snRNA-seq data and spatial transcriptomic data. f Expression distribution of representative markers and candidate
target genes on the section HCM1225D. g Dysregulated pathways in fibrotic versus non-fibrotic regions of the cardiac tissue sections of HCM. The
dysregulated pathways were identified based on the pathway activity scores of each spot using the Wilcoxon rank-sum test. The significance
threshold was set to a Bonferroni-adjusted P-value < 0.05 and an absolute of the log2 fold change > 0.25. HCM1220B and HCM1220C are sections
from different samples of the same patient; HCM1406B and HCM1406C are neighboring sections from the same patient. h Activity of representative
upregulated pathways in fibrotic regions on the HCM1225D section.
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HCM in vivo. The functional enrichment analysis (Fig. 2e)
accurately reflected the features known for pathological
cardiac hypertrophy12, such as increased protein transla-
tion, energy metabolism, stress response, immune
response, cell death, and contraction. Some of the genes
that were greatly changed in DRN centrality in HCM have
been implicated in cardiac hypertrophy or heart failure.
For example, CRYAB has been shown to suppress pres-
sure overload-induced cardiac hypertrophy in mice27.
S100A1 has been suggested as a therapeutic target for
heart failure28. However, the involvement of most genes
in the pathogenesis of HCM, such as FGF12 and CREB5,
remains unknown. Cardiomyocytes were clustered into
two subpopulations: FGF12 high CM1 and NPPB high CM2
(Fig. 2a), which represented a homeostatic/compensatory
hypertrophy state and a failing state, respectively. Inter-
cellular communication analysis revealed that cardio-
myocytes, particularly the failing subpopulation CM2,
exhibited reduced communication between themselves
(autocrine) and with some other lineages (paracrine) in
HCM (Fig. 5c, d), indicating communication dysfunction
of cardiomyocytes in HCM. Previous single-nucleus/cell
studies on human cardiac tissues may report different
numbers of cardiomyocyte subpopulations due to differ-
ent resolutions applied for clustering across studies9,18,29.
However, all these studies and ours suggested that the
transcriptomic states of cardiomyocytes in human hearts
were continuous rather than discrete, and an NPPB/NPPA
high cardiomyocyte subpopulation existed especially under
diseased conditions. Our spatial transcriptomics revealed
that the NPPB high cardiomyocyte subpopulation was
close to the fibrotic regions (Fig. 6e), reflecting the det-
rimental effects of cardiac fibrosis on cardiomyocytes.
Pathological cardiac hypertrophy is a common pre-

decessor to heart failure30. A recent study discovered the
transcriptomic differences in cardiomyocytes between
early (hypertrophic cardiomyocytes) and maladaptive
phage (failing cardiomyocytes) of cardiac remodeling in

pressure overload-induced mouse models31. In the pre-
sent study, the transcriptomic dynamics during the tran-
sition towards the failing state of cardiomyocytes in
human HCM patients were identified using pseudo-
temporal ordering (Fig. 2i). A list of potential key genes
during the transition towards a failing state of cardio-
myocytes was obtained based on multiple lines of evi-
dence from independent analyses (Fig. 2j), the majority of
which have not been implicated in heart failure or cardiac
hypertrophy before, such as FGF12 and CREB5. Notably,
the expression of FGF12 in HCM decreased along the
trajectory towards the failing state (Fig. 2k). Recently,
FGF12 has been reported to inhibit the pathological
remodeling of SMCs in pulmonary arterial hyperten-
sion32. Similarly, it may protect cardiomyocytes from
aberrant remodeling and failure in HCM. A recently
published single-nucleus atlas of pressure overload-
induced cardiac hypertrophy (caused by aortic valve ste-
nosis) reported that FGF12 was downregulated in hyper-
trophic cardiomyocytes, and incoming signals from other
lineages had been reduced in hypertrophied cardiomyo-
cytes29. Our findings were consistent with these reports
and implied that some conserved molecular alterations
existed among different types of cardiac hypertrophy.
Cardiac fibrosis is a scarring process that occurs in the

cardiac tissue characterized by excessive ECM deposition
in response to pathophysiological stimuli33. HCM patients
suffer from a high burden of cardiac fibrosis34 which leads
to diastolic dysfunction. Cardiac fibrosis has been sug-
gested to be an independent predictor of adverse out-
comes in HCM patients, including SCD and heart
failure35. Cardiac fibrosis is mediated by fibroblast acti-
vation. Understanding the regulatory mechanism under-
lying fibroblast activation in HCM is critical for
developing effective medical therapies to alleviate cardiac
fibrosis and, as a result, prevent adverse outcomes in
HCM patients. The activated fibroblast subpopulation
FB2 was found to be significantly expanded in HCM (Fig.

(see figure on previous page)
Fig. 7 In vitro knockdown of AEBP1 promotes the activation of human cardiac fibroblasts. a Schematic diagram showing the experimental
procedure of AEBP1 knockdown. Three independent experiments were performed for each group. Normal human ventricular cardiac fibroblasts
(passage 5-7) were used. b Bright-field images showing the cardiac fibroblasts after 48 h of transfection. Scale bar: 200 μm. c Phalloidin staining of
actin filaments showing the morphological changes of cardiac fibroblasts caused by AEBP1 knockdown. Scale bar: 50 μm. d Ki67 staining showing
that AEBP1 knockdown reduced the proliferation of cardiac fibroblasts. In the bar plot, each value represents the mean number of Ki67-positive cells
across five representative fields of view. Scale bar: 20 μm. **P-value < 0.01, Student’s t-test. e mRNA expression of AEBP1 and markers for fibroblast
activation in both groups. The expression level is represented as tags per million reads. f Network plot showing the functional enrichment of the
upregulated genes in AEBP1-siRNA versus scrambled siRNA. g Network plot showing the functional enrichment of the downregulated genes in
AEBP1-siRNA versus scrambled siRNA. In f and g, each node denotes an over-represented Reactome pathway, and the node size reflects the statistical
significance. Functionally associated terms were in the same color. The enrichment significant threshold was set to an adjusted P-value < 0.05.
h Western blot assay showing the changes in protein expression of AEBP1 and representative fibroblast activation markers by the knockdown of
AEBP1. i Immunofluorescence staining of cultured fibroblasts showing an increased protein expression level of Collagen-I by the knockdown of
AEBP1. Scale bar: 50 μm. j Quantitative analysis of the western blot and staining results. For bar plots, the data are presented as means±standard error
of the mean (SEM). For the staining results, each value represents the mean fluorescence intensity across five representative fields of view. *P-
value < 0.05, **P-value < 0.01, ***P-value < 0.001. Student’s t-test.
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Fig. 8 In vitro overexpression of AEBP1 attenuates the activation of human cardiac fibroblasts induced by TGFβ. a The protein level of AEBP1
in cultured cardiac fibroblasts was significantly increased by TGFβ treatment. We chose 6 ng/mL TGFβ for the following experiments. b Schematic
diagram showing the experimental design and procedure of AEBP1 overexpression. AdV-Vector-Vehicle: fibroblasts transfected with adenovirus
harboring empty vector and no TGFβ treatment was performed; AdV-AEBP1-Vehicle: fibroblasts transfected with adenovirus harboring AEBP1 cDNA
and no TGFβ treatment was performed; AdV-Vector-TGFβ: fibroblasts transfected with adenovirus harboring empty vector and followed by TGFβ
treatment; AdV-AEBP1-TGFβ: fibroblasts transfected with adenovirus harboring AEBP1 cDNA and followed by TGFβ treatment. Three independent
experiments were performed for each group. Normal human ventricular cardiac fibroblasts (passages 5-6) were used. c Bright-field images of the
cardiac fibroblasts in each group. Scale bar: 200 μm. d Phalloidin staining of actin filaments showing the cellular morphology of each group. Scale bar:
50 μm. e Ki67 staining showing that AEBP1 overexpression enhanced the proliferation of cardiac fibroblasts. In the bar plot, each value represents the
mean number of Ki67-positive cells across five representative fields of view. Scale bar: 50 μm. f Western blot assay showing the changes in protein
expression of AEBP1 and representative fibroblast activation markers in each group. g Quantitative analysis of the western blot results. For bar plots,
the data are presented as means ± SEM.*P < 0.05, **P < 0.01, ***P < 0.001, n.s.: not significant, one-way ANOVA followed by Turkey post hoc tests.
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3e) and located in fibrotic regions (Fig. 6e) as expected.
Furthermore, a total of 28 potential key genes were
identified for anti-fibrosis medical development based on
multiple lines of evidence from independent analyses (Fig.
3k). Some of the top-ranked TF genes may be major
regulators implicated in cardiac fibroblast activation. For
example, a recent study demonstrated that MEOX1 reg-
ulates the pro-fibrotic function and is implicated in the
fibrosis of multiple human organs, including the heart,
liver, lung, and kidney36. AEBP1 (also named as ACLP)
was first identified as a transcriptional repressor that
regulates adipogenesis37. AEBP1 has been demonstrated
to enhance lung myofibroblast differentiation in mice38.
For cardiac fibrosis, the expression of AEBP1 has been
reported to be associated with fibrosis in DCM39. How-
ever, the roles of AEBP1 in cardiac fibrosis have yet to be
experimentally determined. In this study, we showed that
in vitro knockdown of AEBP1 could promote the activa-
tion of human cardiac fibroblasts (Fig. 7), while over-
expression of AEBP1 could attenuate the TGFβ-induced
activation (Fig. 8). These results suggest that AEBP1 may
function as a transcription repressor in cardiac fibroblast
activation, and reflect a protective role of the upregulation
of AEBP1 in HCM fibroblasts. Thus, overexpressing
AEBP1 in cardiac tissues may provide a novel therapeutic
strategy to attenuate cardiac fibrosis. However, detailed
regulatory mechanisms of AEBP1 remain to be elucidated
and in vivo studies are needed to confirm AEBP1 as a
potential therapeutic target. Moreover, we discovered an
array of candidate genes that have not been explicitly
implicated in cardiac fibrosis before. For example,
NRXN3, which encodes a transmembrane receptor pro-
tein of the neurexin family that is predominantly
expressed in neurons and mostly discussed in mental
diseases40, was found to be highly expressed in activated
fibroblasts (Fig. 3b), and its precise role in cardiac fibrosis
warrants further investigation.
We made a comparison of the results of an snRNA-seq

study on DCM18 and ours on HCM. Despite the large
differences in clinical information of the enrolled patients
(e.g., DCM vs HCM) and tissue sampling sites (left ven-
tricle vs interventricular septum) between the two studies,
we found similar results including the expanded/con-
tracted subpopulations in diseased states and the key
dysregulated genes. For example, ten fibroblast sub-
populations (Fb1-Fb10) were reported in the DCM study,
among which, Fb5 and Fb8 were reported to be expanded
in DCM, while Fb3 and Fb4 were contracted18. We cal-
culated the expression score of the molecular signature
for each fibroblast subpopulations in our HCM dataset as
a proxy of relative proportion. We found that these DCM-
associated subpopulations were also expanded/contracted
in HCM (Supplementary Fig. S7d). In addition, the
expression of the representative dysregulated genes in

DCM fibroblasts was found to be also significantly
changed in HCM (Supplementary Fig. S7e). We also
observed that the expression of the potential key genes in
cardiac fibrosis that we prioritized were significantly
altered in DCM (Supplementary Fig. S7f), for example, the
top candidate gene AEBP1. Likewise, cardiomyocytes
exhibited similar changes between HCM and DCM
(Supplementary Fig. S7a–c). These results reflect con-
vergent changes in cellular states across different types of
cardiomyopathies, particularly at an advanced stage.
Increasing evidence suggests that immune cells coor-

dinate the responses of cardiomyocytes (e.g., hypertrophy)
and other noncardiomyocytes (e.g., fibroblast activation)
during pathological cardiac remodeling41. Therefore,
identifying disease-associated immune cell subpopula-
tions and developing therapeutics to regulate the pheno-
type of cardiac immune cells, for example, targeting
cardiac fibrosis with engineered T cells42, represent
another important treatment option. We investigated the
alterations in the immune microenvironment of HCM
cardiac tissue and found the activation of both innate (e.g.,
tissue-resident macrophages) and adaptive (e.g., T/NK
cells) immunity (Fig. 4). Meanwhile, immune response-
related pathways, for example, antigen processing and
presentation, were found to be upregulated in all the
nonimmune cell types, indicating an enhanced immune
response in HCM. TGFβ signaling has several pleiotropic
effects not only in disease, for example, promoting cardiac
hypertrophy and fibrosis in pathological cardiac remo-
deling, but also in tissue homeostasis43. While TGFβ
blockade may be a promising therapeutic strategy, direct
and excessive TGFβ inhibition may lead to matrix
degradation, cardiac dilation, and dysfunction44. Through
intercellular communication analysis, we found that the
top sender of TGFβ changed from MAC2 in HEALTHY
to effector T/NK cells in HCM (Fig. 5j), implying that
inhibiting T/NK cell activation may attenuate TGFβ sig-
naling and thus alleviate pathological remodeling in HCM
while avoiding the deleterious effects of direct TGFβ
blockade.
The HEALTHY group (n= 2; 3 samples) had fewer

subjects than the HCM group (n= 10; 10 samples) for
snRNA-seq in the current study, which may reduce the
power of comparative analyses if the HEALTHY group
had much fewer nuclei. To overcome this limitation, we
increased the number of sequenced nuclei (15,939) in the
HEALTHY group and expanded the sample size of the
HEALTHY group (n= 5) in the western blot validation.
Nevertheless, given the heterogeneity of human tissue
samples, the current study was still limited by a relatively
small sample size. Although the transcriptomic dynamics
during the progression of pathophysiological changes
could be inferred through pseudotime ordering, the
information derived in this study was mainly related to
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the advanced stage of HCM. Only TFs, ligands, and
receptors were considered in the prioritization of poten-
tial key genes for subsequent functional studies in our lab.
However, other types of molecules may also serve as ideal
targets for drug development. Analysis results for all the
genes are supplied in supplementary tables for further
prioritization. In addition, extensive in vivo and in vitro
experiments are needed to confirm the roles of the
prioritized key genes.
In conclusion, the present study provides a compre-

hensive analysis of the lineage-specific regulatory changes
in HCM. Our analysis identified potential key genes
during the transition towards a failing state of cardio-
myocytes or during the activation of fibroblasts in HCM.
We showed experimental evidence supporting that
AEBP1 functions as a transcription repressor in cardiac
fibroblast activation. The datasets constitute a valuable
resource to investigate cell type-specific expression in
HCM at single-nucleus and spatial resolution.

Materials and methods
Ethics approval
All study procedures complied with the ethical regula-

tions approved by the Ethics Committee of Fuwai Hos-
pital, the Chinese Academy of Sciences (No. 2020-1315).
Written informed consent was received from each patient.

Study subjects and cardiac tissue collection
We enrolled HCM patients (n= 16) who had under-

gone surgical myectomy in Fuwai Hospital between 2015
and 2021. The inclusion criteria were as follows: (i)
patients who met the diagnostic criteria45 for HCM with a
maximal left ventricular wall thickness ≥15 mm or
≥13mm in patients with a family history of HCM; (ii)
patients with the basal septum subtype, the most common
and severe morphological subtype4, in which cardiac
hypertrophy mainly confines to the basal IVS adjacent to
the aortic valve; (iii) patients exhibited left ventricular
outflow tract (LVOT) obstruction (LVOT gradient
≥ 30mm Hg at rest or on provocation). The exclusion
criteria were as follows: (i) patients with cardiac hyper-
trophy caused by secondary factors, including systemic
hypertension, myocardial infarction, valvular disease, or
hemodynamic obstruction ascribed to left-sided obstruc-
tive lesions (e.g., valvular stenosis); (ii) patients with
myocarditis and systemic disorders such as RASopathies,
mitochondrial myopathies and storage diseases. For
snRNA-seq, cardiac IVS tissues isolated from HCM
patients (n= 10) during surgical resection were immedi-
ately frozen and stored in liquid nitrogen until use for
nuclei isolation. For spatial transcriptomic assays, fresh
cardiac IVS tissues from HCM patients (n= 6) were
concurrently frozen in isopentane precooled by liquid
nitrogen and embedded in the optical cutting tissue

(OCT) compound. Cardiac IVS tissues obtained from
healthy donors of heart transplants (n= 2) were used as a
control for snRNA-seq.

Human cardiac fibroblast culture
Normal Human Ventricular Cardiac Fibroblasts

(NHCF-V, CC-2904, Lonza) were cultured according to
the recommended protocol. In brief, cells were grown in
FBMTM Basal Medium (CC-3131, Lonza) supplemented
with FGMTM-3 SingleQuot (CC-4525, Lonza) and 1×
penicillin-streptomycin (Life Technologies) at 37 °C in a
humidified atmosphere containing 5% CO2.

Nucleus isolation
Frozen myocardial tissue was thawed on ice and dis-

sected into small pieces, and washed once using cold PBS
(20012050, Gibco). Tissue pieces were then transferred
into a 50 mL Falcon tube containing 30mL of lysis buffer
(0.32M sucrose, 5 mM CaCl2, 3 mM C4H6MgO4, 0.5 mM
EGTA, 10mM Tris-HCl 8.0, 2 mM EDTA, 1 mM PMSF,
1 mM DTT, and 80 U/mL RI). Tissues were homogenized
with a T-25 Ultra-Turrax probe homogenized (IKA) at
24,000 rpm for 15 sec. A glass douncer (40 mL) with a
tight pestle was used to homogenize the tissue with
10 strokes. After a 10min-incubation on ice, the crude
nucleus suspension was passed through a 100 μm and
70 μm nylon mesh cell strainer (BD Biosciences) and
subsequently spun down with a centrifuge (700× g for
10 min at 4 °C). The supernatant was removed carefully.
The crude nucleus isolated was suspended in 30 mL
sucrose buffer (2.1 M Sucrose, 3 mM C4H6MgO4, 10 mM
Tris-HCl 8.0, 1 mM PMSF, 1 mM DTT, and 80 U/mL RI),
and centrifuged (13,000 rpm for 60min) at 4 °C (Beckman
Avanti S-25). The supernatant was carefully removed, and
the nucleus pellet was dissolved in 10mL nucleus sus-
pension buffer (1% BSA, 200 U/mL RI in PBS), and cen-
trifuged (500× g for 10 min) at 4 °C. The nucleus pellet
was suspended in nucleus suspension buffer (1 mL) and
used in further experiments. All procedures were per-
formed at 4 °C. RNA inhibitor (80 U/mL, 2313B, Takara)
was added to all buffers.

Library preparation for snRNA-seq
The prepared single nuclei suspension was loaded on

the Chromium Controller (10× Genomics). We prepared
3' gene expression libraries using Chromium Next GEM
Single Cell 3' GEM, Library & Gel Bead Kit v3.1 according
to the manufacturer’s protocol. The libraries were
sequenced on an Illumina NovaSeq 6000 system.

Preprocessing and quality control of the snRNA-seq data
To count the exonic and intronic reads captured by

snRNA-seq, we built a custom “pre-mRNA” reference
package based on the human reference genome dataset
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(version: refdata-gex-GRCh38-2020-A) following the
protocol for 10× Genomics. The raw sequencing reads
were aligned to the “pre-mRNA” reference using the
official toolkit Cell Ranger (v4.0.0). For further data pre-
processing, the output nucleus-gene expression matrix
was imported into Seurat (v3.2.3)46. Genes with counts in
fewer than 3 nuclei were filtered out to exclude genes
likely detected due to random noise. Nuclei were filtered
for unique molecular identifier (UMI) counts (500 <
nCount_RNA < 50,000), genes (300 < nFeature_RNA <
7000), the proportion of mitochondrial genes (percent.-
mito < 0.05) and the proportion of ribosomal genes
(percent.ribo < 0.05) to remove poor-quality nuclei
potentially ascribed to doublets or other technical noise.
To further remove possible doublets, nuclei with the
doublet scores > 0.35 predicted by Scrublet47 were filtered
out. In addition, nuclei enriched in the expression of
marker genes for multiple lineages were excluded from
further analyses.

Normalization, feature selection, integration, scaling, and
clustering of the snRNA-seq data
For each sample, the sum of the UMI counts for each

nucleus was normalized to 10,000, and then log-
transformed. Using the “FindVariableFeatures” function
of Seurat, we selected 2000 genes for each sample. Nuclei
of all samples were integrated via canonical correlation
analysis implemented in Seurat to correct for potential
batch effects and identify shared cell states across sam-
ples. We also mitigated the effects of unwanted sources of
variation by regressing out the proportion of mitochon-
drial genes, UMI count, gene number, the proportion of
mitochondrial genes, and the proportion of ribosomal
genes with linear models using the “ScaleData” function.
Subsequently, the data were centered for each gene by
subtracting the average expression of that gene across all
nuclei and then scaled by dividing the centered expression
by the standard deviation. The scaled data were subjected
to linear dimensional reduction through principal com-
ponent analysis (PCA). Using the first 30 PCA compo-
nents, we computed a shared nearest neighbor graph of
the nuclei. The SNN graph was embedded in two-
dimensional space using a non-linear dimensional
reduction method, that is, UMAP. All nuclei were clus-
tered using the Louvain algorithm.

Identification of the differentially expressed genes in a
specific cell type based on the snRNA-seq data
The differentially expressed genes in a specific cell type

between HCM and HEALTHY were detected through
differential expression analysis using a method imple-
mented in the R package DEsingle13 employing a zero-
inflated negative binomial model to estimate the fraction
of dropout and real zeros in snRNA-seq data. A gene was

significantly differentially expressed if it met the following
criteria: the absolute of log2 fold change > 1, adjusted P-
value < 0.05, and being categorized as “general differential
expression”, which means that the gene is significantly
different in both the expression abundance and the frac-
tion of real zeros between HCM and HEALTHY.

Pseudobulk RNA-seq analysis
For each cell type, the raw UMI count matrix of the

snRNA-seq data was summed per gene for each sample
into a pseudobulk RNA-seq dataset. Differential expres-
sion analysis of the pseudobulk RNA-seq dataset was
performed using the R package DESeq2 under default
settings. The statistical significance was set to a P-value
adjusted for multiple tests < 0.05.

GSEA based on the snRNA-seq data
Before GSEA, all the genes expressed in the snRNA-seq

data were pre-ranked by Signal2Noise (the difference of
means between HCM and HEALTHY scaled by the
standard deviation). The ranked gene list was imported
into the GSEA software (version: 4.0.1). An FDR q-value <
0.05 were set to be statistically significant. The pre-
compiled canonical pathway gene sets (“c2.cp”) in
MSigDB (version: 7.2) were used in this analysis.

Differential gene regulatory network analysis based on the
snRNA-seq data
GRNs in a specific lineage were built based on the

single-nucleus datasets and a comparative analysis of the
GRNs between HCM and HEALTHY was performed
using the method implemented in bigScale214. Briefly, the
GRN of a specific lineage was inferred with the ‘compu-
te.network’ function separately for each condition. The
‘homogenize.networks’ function was applied to homo-
genize the number of edges of the inferred GRNs
throughout the networks. Changes in node centralities
(the relative importance of genes in the network) in HCM
versus HEALTHY were identified using the ‘compar-
e.centrality’ function. Gene rankings based on the changes
in centrality were output separately for each of the four
measures of centrality (degree, betweenness, closeness,
and pagerank). The networks were visualized with
Cytoscape (version: 3.7.1).

Trajectory inference based on the snRNA-seq data
Trajectory inference was performed to order the nuclei

along a biological process of interest, e.g., fibroblast acti-
vation, using Slingshot (v1.4.0)15 under default settings.
The combined snRNA-seq data of HCM and HEALTHY
was considered to increase the robustness of the infer-
ence. Using the Kolmogorov–Smirnov test, we assessed
whether differences existed between the pseudotime dis-
tributions of the two conditions. Subsequently, genes with
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different expression patterns along the trajectory between
the two conditions were identified by tradeSeq (v1.6.0)16.
For each condition, a negative binomial generalized addi-
tive model (the function “fitGAM”, nknots= 5) was
applied to estimate a smoothed expression profile along the
inferred trajectory for each gene. The fitted model acted as
an input to the “conditionTest” function to test whether
genes exhibited different expression patterns along the
trajectory between conditions (referred to as differential
expression pattern analysis). The significance threshold
was set to a P-value adjusted for multiple testing < 0.05.

Ligand-receptor interaction analysis based on the snRNA-
seq data
CellChat (v0.5.5)25 was used to infer ligand-receptor

interactions among subpopulations separately for each
condition and to identify the signaling changes in HCM via
comparative analysis by following tutorials of the software.
Briefly, following the detection of overexpressed ligands or
receptors for each subpopulation, each potential commu-
nication between any two subpopulations was quantified
using a communication probability (interaction strength)
value, modeled by the law of mass action. Significant
interactions (P-value < 0.05) were determined via a per-
mutation test by randomly permuting the subpopulation
labels and recalculating the communication probability.
Through leveraging pattern recognition approaches,
dominant incoming and outgoing signal patterns for each
subpopulation were detected in HCM or HEALTHY.
Major signaling sources and targets of the signaling net-
work for a specific pathway were inferred through network
centrality analysis. Joint manifold learning of the commu-
nication networks of HCM and HEALTHY was performed
to group the signaling pathways according to functional
similarity (a high degree of functional similarity implied
that the major senders and receivers are similar). Signaling
pathways with pronounced changes in terms of functional
similarity in HCM versus HEALTHY were identified based
on the Euclidean distance in the learned joint manifold.
The conserved or greatly changed signaling pathways in
HCM were identified by comparing the overall information
flow (the sum of communication probability among all
pairs of cell groups in the inferred network) of each sig-
naling pathway in HCM versus HEALTHY.

Sample preparation for spatial transcriptomic assays
The RNA quality of the OCT-embedded cardiac IVS

tissue block was evaluated using an Agilent 2100 bioa-
nalyzer. Tissue blocks with an RNA integrity number
greater than 6 were used for 10× Visium spatial tran-
scriptomic assays. Cryosectioning was performed on a
Leica CM3050S cryostat to generate 10 μm tissue sec-
tions. Brightfield images were captured using a Leica
Aperio VERSA whole-slide scanner at 20× resolution.

Tissue optimization for spatial transcriptomic assays
The conditions for tissue permeabilization were opti-

mized according to the 10× Visium Spatial Tissue Opti-
mization User Guide (CG000238, 10× Genomics). Briefly,
tissue sections placed on the capture areas of a tissue
optimization slide were fixed, stained, and permeabilized.
mRNA released during permeabilization bound to oligo-
nucleotides on the capture areas. Images of the fluor-
escent cDNA synthesized on the slide were taken. The
optimal permeabilization time contributed to the max-
imum fluorescence signal and the lowest signal diffusion.

Preparation of sequencing libraries for spatial
transcriptomic assays
Sequencing libraries were constructed using the Visium

Spatial Gene Expression Slide & Reagent kit (1000187,
10× Genomics) following the manufacturer’s instructions.
Briefly, a frozen tissue section (10 μm) was placed on a
capture area (6.5 × 6.5 mm with ~5000 barcoded spots) of
a gene expression slide, then stained with hematoxylin
and eosin (H&E). Brightfield images were taken. The tis-
sue was permeabilized for the optimal time as described
above. Then, reverse transcription was done and
sequencing libraries were prepared. Sequencing was
conducted using an Illumina NovaSeq 6000 system.

Processing of the spatial transcriptomic data
Sequencing read alignment, fiducial/tissue detection,

and spot barcode/UMI counting of the spatial tran-
scriptomic data were performed separately for each sec-
tion using the 10× Genomics official tool kit Space Ranger
(v1.2.2) with an H&E-stained brightfield image and fastq
files as inputs. The same version of the human reference
genome dataset as that used to process snRNA-seq data
was applied, i.e., refdata-gex-GRCh38-2020-A. The out-
put gene-spot matrix was imported to Seurat for down-
stream analysis and visualization. Only spots that have
been determined to be over tissue were retained. To
suppress technical artifacts while preserving biological
variance in UMI counts across spots, data were normal-
ized using the method sctransform48. Linear dimensional
reduction with PCA was performed using the “RunPCA”
function. An SNN graph was constructed according to the
first 30 PCA components using the “FindNeighbors”
function. The SNN graph allowed for the clustering of
spots by the Louvain algorithm (resolution: 0.4) using the
“FindClusters” function. Lastly, UMAP dimensional
reduction was performed using the “RunUMAP” function
to visualize the spots in a 2D space.

Identification of the molecular signature for each nucleus
cluster/spot cluster
The molecular signature of each nucleus/spot cluster

was obtained by comparing the transcriptome of each
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cluster with that of the other clusters using a likelihood-
ratio test (test.use: “bimod”) implemented in the “Find-
Markers” function of Seurat. The significance threshold
was set to an adjusted P-value < 0.05 and a log2 fold
change > 0.25.

Pathway activity scoring in each nucleus/spatial
transcriptomic spot
The expression activity of a given gene set/pathway in

each nucleus/ST spot was quantified by calculating the
gene set/pathway activity score for each nucleus or spot
using the method implemented in Single Cell Signature
Explorer49. The precompiled canonical pathway gene sets
(“c2.cp”) in MsigDB were applied in this analysis. In each
sample, the expression activity of a pathway was repre-
sented by the mean of the computed scores across the
nuclei/spots in the sample. According to the calculated
pathway activity score of each spatial transcriptomic spot,
the differentially regulated pathways of the spots in
fibrotic versus non-fibrotic regions of cardiac tissue sec-
tions were detected using the Wilcoxon rank-sum test
implemented in the “FindMarkers” function of Seurat
under default settings. The significance threshold was set
to a Bonferroni-adjusted P-value < 0.05 and an absolute of
the log2 fold change > 0.25.

Integration of the spatial transcriptomic data with the
snRNA-seq data
To integrate the spatial transcriptomic data with the

snRNA-seq data and predict the underlying cellular
composition for each spot that contained multiple nuclei,
we applied the label transfer workflow of Seurat to assign
each spot prediction score for the subpopulations
obtained from the snRNA-seq data analysis.

Spot-level cellular composition visualization
Following the label transfer, the spot-level cellular

composition of the spatial transcriptomic data was
visualized with the st.pl.deconvolution_plot function of
stLearn (v0.3.1, https://stlearn.readthedocs.io/en/latest/
index.html). Noise labels were filtered for better visuali-
zation based on quantile (threshold = 0.5).

Spatial pseudotime analysis
To decipher the transcriptomic dynamics during the

change from non-fibrotic to fibrotic states of cardiac tis-
sues in HCM, pseudotime ordering of the spots of the
spatial transcriptomic data was performed using Monocle3
(https://cole-trapnell-lab.github.io/monocle3/). Spatial spot
cluster enriched with hemoglobin genes was excluded from
this analysis. The spots were subjected to dimension
reduction with UMAP, and trajectory inference using the
order_cells function. Then, the spots were ordered in
pseudotime with the order_cells function. The plotSurface

function of SPATA2 (https://themilolab.github.io/
SPATA2/index.html) was used to visualize the pseudo-
time in a spatial context. Lastly, the graph_test of Mono-
cle3 was used to identify genes that significantly change as
a function of the pseudotime. Only genes that met the
following threshold were considered as significantly chan-
ged genes: q value < 0.05 and morans I > 0. Only the sec-
tion HCM1225D was considered for spatial pseudotime
analysis because it represents a typical section with a clear
separation of fibrotic and non-fibrotic regions.

Spatial cell-cell interaction analysis
CCI analysis was performed using stLearn (v0.3.1) by

integrating known ligand-receptor pair information, spa-
tial cell-type distribution, and spatial gene expression.
Tissue regions with high cellular diversity and ligand-
receptor co-expression activities were considered as hot-
spots with high CCI activities. A CCI score was calculated
(the “st.tl.cci.merge“ function) to measure the CCI activity
of each spot, which combines cellular diversity and
ligand-receptor co-expression among neighboring spots
(between-spots mode) or within spots (within-spots
mode). To find hotspots, all 475 ligand-receptor pairs that
were expressed in the cardiac tissues of HCM predicted
by CellChat were considered.

Regulon analysis
Regulon analysis was performed using the R package

SCENIC under default settings (https://github.com/
aertslab/SCENIC). Briefly, gene co-expression modules
in a specific cell type were detected. Then, only the
modules with significant motif enrichment of TFs
were retained and referred to as regulons. For the TF
motif enrichment analysis, two databases were
used: “hg38__refseq-r80__500bp_up_and_100bp_down
_tss.mc9nr.feather” and “hg38__refseq-r80__10kb_u-
p_and_down_tss.mc9nr.feather”. Lastly, the activity of
each regulon was scored for each nucleus. Activity
scores were compared between HCM and HEALTHY
for each regulon, and the statistical significance
threshold was set to a Bonferroni-adjusted P-value of
Wilcoxon rank-sum test < 0.05.

Functional enrichment analysis
Functional enrichment analyses of a list of genes were

performed using ClueGO with a Bonferroni corrected P-
value threshold of 0.05. Databases, including Gene
ontology biological process, REACTOME, and KEGG
were considered in this analysis.

Bulk RNA-seq analysis
Bulk RNA-seq data analysis was performed by following

the procedure described in a previous study50. Briefly, the
differential expression analysis was performed using the R
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package sleuth. The statistical significance threshold was
set to a q-value < 0.05, and the biological significance
threshold was set to an absolute log2 fold-change > 0.5.

Masson’s trichrome staining
To histologically assess cardiac fibrosis, Masson’s tri-

chrome staining was performed on the tissue sections adja-
cent to those used for spatial transcriptomic assays. Masson’s
Trichrome stain kit (NO.850, Beijing Yili Fine Chemicals
Co., Ltd.) was used by following the manufacturer’s protocol.
Briefly, the frozen sections were incubated in 0.5% hydro-
chloric acid alcohol for 5 s and then stained inWeigert’s Iron
Hematoxylin Solution for 2min. Next, the sections were
stained in Ponceau Fuchsin for 5min and incubated in the
phosphomolybdic acid solution for 2min. Subsequently, the
sections were stained in Brilliant Green solution for 2 s,
incubated in 1% Glacial acetic acid for 1min, and then
placed in xylene for 5min. Images were captured using a
Pannoramic SCAN II scanner (3DHISTECH).

Western blot assays
The myocardium tissue in liquid nitrogen was ground

into powder and then transferred to a 1.5 mL centrifuge
tube. After that, four volumes (μL/mg) of lysis buffer (1%
Triton X-100, 1% protease inhibitor, and 1% phosphatase
inhibitor) were added to the powder and incubated for 1 h
on Rotater at 4 °C. For cultured cells, cells were lysed in
lysis buffer for 30min. Supernatants were collected by
centrifugation (12,000× g × 15min at 4 °C). Then, the
protein concentration was determined with BCA Protein
Assay Kit according to the manufacturer’s instructions
(23225, Thermo Fisher Scientific). Protein samples (20 µg/
lane) were electrophoresed on a 4%–20% SDS poly-
acrylamide gel (P0468S and P0469S, Beyotime), and
transferred onto a nitrocellulose membrane (66485,
PALL). Membranes were blocked with 5% milk in TBST
for 1.5 h and incubated with primary antibody (Supple-
mentary Table S18) overnight at 4 °C. Membranes were
washed 3 times with TBST and then incubated with HRP-
labeled species-specific secondary antibodies (Supple-
mentary Table S18) for 1 h. Then, membranes were
washed 3 times with TBST. Blots were developed using
BeyoECL HRP substrate (P0018AM, Beyotime) in a
ChemiDoc XRS (Bio-Rad) image acquisition system.
Quantitative densitometry analysis of each band using
Image J processing software.

Immunofluorescence staining
Myocardial tissue was fixed in 10% formalin, and pro-

cessed for paraffin sectioning. 4 µm sections were
dewaxed by immersion in xylene and hydrated by serial
immersion in ethanol and deionized water. Antigen
retrieval was performed by incubating sections in a
pressure cooker for 15min in Antigen Retrieval Buffer

(ZLI-9069, ZSGB-BIO) at pH 9.0. Sections were washed
with PBS (three times for 5 min), and then a blocking
buffer (ZLI-9056, ZSGB-BIO) was added. Primary anti-
body dilutions were prepared in antibody diluent (ZLI-
9028, ZSGB-BIO) and incubated overnight at 4 °C in a
moist chamber. Secondary antibodies (Supplementary
Table S18) diluted in 1% PBS were then added (1:200
dilution). Sections were mounted with a fluorescent
mounting medium with DAPI (ZLI-9557, ZSGB-BIO).
Slides were viewed with a Pannoramic SCAN II scanner
(3DHISTECH) using suitable filter combinations pro-
vided by the manufacturer.
For cultured cells, cells were fixed in 4% paraf-

ormaldehyde and then permeabilized in 0.2% Triton-1×
PBS. Subsequently, cells were blocked with 3% BSA in
PBS for 1 h at room temperature and then incubated
overnight at 4 °C with primary antibodies. Then the cells
were stained with primary antibodies targeting Collagen-I
(ab138492, Abcam). Nuclei were stained with DAPI
(4083S, Cell Signaling Technology). Fluorescence inten-
sity was analyzed by ImageJ.

siRNA transfection
Human cardiac fibroblasts (passage 5–7, 8 × 104) were

seeded before the day of transfection in 6-well plates. On
the day of transfection, cells were transfected with 50 nM
human AEBP1 siRNA or 50 nM scramble siRNA as a
negative control according to the manufacturer’s
instruction (stB0002601A, Ribobio). Briefly, 6 μL Dhar-
mafect 1 transfection reagent (T-2001-01, GE Healthcare
Dharmacon) was used for each well. Six hours after
transfection, the cells were cultured in a maintenance
medium with 2% FBS. Total RNA was isolated 48 h post-
transfection and mRNA was prepared for bulk RNA-Seq
analysis. Proteins were extracted 72 h post-transfection
and the protein levels were analyzed by western blot.

Adenoviral-mediated gene overexpression
Human cardiac fibroblasts (passage 5-6, 8 × 104/well)

were seeded before the day of transfection in 6-well or 24-
well plates. Cells (30%–50% confluent) were infected with
adenovirus-vector-GFP or adenovirus-AEBP1-GFP (Han-
Bio, HH20220630GX-AD02) in half volume medium at a
multiplicity of infection (MOI) 400 or 300, respectively at
37 °C for 4 h. Then, the medium was changed to a full-
volume fresh culture medium. Eight hours later, cells were
starved in 0.5% FBS for 12 h. Subsequently, cells were
treated with TGFβ (6 ng/L, 100-21C-50UG, Peprotech) or
vehicle for 48 h. Then protein was extracted and the pro-
tein levels were analyzed by western blot assay.

Phalloidin staining
Cells were treated with rhodamine-phalloidin (1:400,

R415, Thermo Fisher) for 40min at room temperature.
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Nuclei were stained with DAPI (4083S, Cell Signaling
Technology).
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