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Abstract

Characterizing neuropsychiatric disorders is challenging due to heterogeneity in the

population. We propose combining structural and functional neuroimaging and geno-

mic data in a multimodal classification framework to leverage their complementary

information. Our objectives are two-fold (i) to improve the classification of disorders

and (ii) to introspect the concepts learned to explore underlying neural and biological

mechanisms linked to mental disorders. Previous multimodal studies have focused on

naïve neural networks, mostly perceptron, to learn modality-wise features and often

assume equal contribution from each modality. Our focus is on the development of

neural networks for feature learning and implementing an adaptive control unit for

the fusion phase. Our mid fusion with attention model includes a multilayer feed-

forward network, an autoencoder, a bi-directional long short-term memory unit with

attention as the features extractor, and a linear attention module for controlling

modality-specific influence. The proposed model acquired 92% (p < .0001) accuracy

in schizophrenia prediction, outperforming several other state-of-the-art models

applied to unimodal or multimodal data. Post hoc feature analyses uncovered critical

neural features and genes/biological pathways associated with schizophrenia. The

proposed model effectively combines multimodal neuroimaging and genomics data

for predicting mental disorders. Interpreting salient features identified by the model

may advance our understanding of their underlying etiological mechanisms.
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1 | INTRODUCTION

Schizophrenia (SZ) is a psychotic disorder that causes impairment in

people's thoughts, feelings, and behaviors. In general, people with SZ

interpret reality atypically. Since the mental condition overtly mani-

fests in adolescence and early adulthood, it is also considered a neuro-

developmental disorder (Mäki et al., 2005). People with SZ often

experience hallucinations, delusions, social withdrawal, and disordered

thinking. These can affect daily functioning and be highly disabling.

Early identification of the disorder improves outcomes, and low-dose

antipsychotic medications may delay the onset of full-blown psychosis

(Mäki et al., 2005; Martin et al., 2017). However, SZ diagnosis is chal-

lenging for a few reasons. First, symptoms vary from person to person

and change over time. Moreover, identification primarily depends on
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the self-acknowledged behavioral changes in the affected individual.

Another reason is that many preclinical symptoms during the prodro-

mal period before a first episode overlap with life changes observed in

healthy individuals and those who may develop other psychiatric dis-

orders. Since diagnosis involves ruling out other disorders with similar

symptoms, sole dependence on symptoms may be unreliable. Besides,

the inferences are strongly modulated by the heterogeneity in the

individual's psychological condition and treatment (Aboraya

et al., 2006; Ward et al., 1962; Yassin et al., 2020). Therefore, research

to discover the disorder's putative biological or neural substrates,

which may contribute to more confident predictions or point to treat-

ment targets, is warranted. SZ has also been linked to widespread var-

iation at genetic loci (Jones & Cannon, 1998; Owen et al., 2004). This

study aims to develop a flexible approach to link genomics and multi-

modal neuroimaging data to identify putative biological markers of

brain disorders. We use structural and functional magnetic resonance

imaging (sMRI and fMRI) and genome-wide polymorphism collected

from individuals with SZ and controls. We aim to probe the data to

discover features (concepts) relevant to the disorder. Clinically, the

expected insights could be neural activation patterns, structural aber-

rations, or genetic modifications. Strategically, we propose a model

that can accurately discriminate the subjects to learn these attributes

from the data. The urge for a reasonable accuracy is to provide

dependable assertion about the pathophysiological mechanisms of

the disorder—which result from the attributes learned by the model.

Studies provide evidence for linkage between genetic risk factors for

SZ and brain functional and structural changes (Passchier et al., 2020;

Richards et al., 2020). Researchers suggest the shared genetic risk for

SZ and SZ-associated gray matter deficiency (Adhikari et al., 2019).

Learning different modalities through a joint learning framework is

promising and subject to maximizing the complementarity in the data.

This shared learning approach conceivably provides crucial neuroge-

netic alliances for analyzing SZ. For multimodal learning, it is cardinal

to incorporate a rational fusion technique to fuse multiple data modes.

The proposed scheme maps the features to a common latent space to

ensure a consistent fusion. We studied multiple neural networks to

perform the latent space mapping and selected the best fit for each

modality.

Deep neural networks (DNN) have shown considerable prom-

ise in learning features from input data in supervised and unsuper-

vised settings (Chen et al., 2017; Tian et al., 2017; Yan et al., 2022;

Zhong et al., 2016). Deep learning (DL)-based studies have shown

tremendous performance in discriminating SZ from controls (Lei

et al., 2020; Oh et al., 2020; Patel et al., 2016; Qureshi et al., 2019;

Yan et al., 2017; Yan et al., 2019). Using multiple (each complemen-

tary and incomplete) sources of information for classification can

potentially improve the performance of the DL model. Further-

more, an optimal blending of modalities can help overall conver-

gence and provide additional information about which aspects of

each source are most relevant for the prediction. Such joint analy-

sis can also provide a comparative significance analysis of the

modalities. Multimodal DL enhances the robustness of inferences

from a DL model since a learning task can explain distinct aspects

of a system under investigation (Liu et al., 2018; Rashid &

Calhoun, 2020). Researchers have started using multiple modalities

for better prediction, which includes using structural MRI (sMRI)

and resting-state fMRI for SZ versus healthy control

(HC) classification (Qureshi et al., 2017). Other studies focus on

only multimodal neuroimaging fusion for SZ classification (Cetin

et al., 2015; Cetin et al., 2016; Salvador et al., 2019). Our dataset

includes sMRI, resting-state fMRI, and genomic (single nucleotide

polymorphism [SNP]) data in a multimodal framework to classify SZ

versus HC. We first decompose the sMRI and fMRI images using

independent component analysis (ICA) (Calhoun et al., 2009; Du

et al., 2020). The method generates independent brain components

and passes through the DL network to map the features from three

modalities into a shared intermediate space. A linear attention

module (Vaswani et al., 2017) is incorporated to guide the signal

fusion from all modalities. The intuition behind attending to the

modality-specific signal is to scrutinize the influence of each

modality on the prediction since all the modalities may not be

equally critical for sample prediction. Attention controls the blend-

ing and always allows the better performer to influence the final

prediction more. Results show that multimodal data fusion with

attention improves classification accuracy, and the saliency model

extracts highly discriminative features for characterizing SZ. The

genetic information synergizes the imaging features, at both indi-

vidual gene level and pathway level, to contribute to prediction.

The analysis of groupwise saliency distributions reveals distinct

patterns of modality-specific influence on the decision-making pro-

cess between SZ and HC subjects. The model shows sMRI features

contribute more to SZ predictions than other modalities. But the

HC predictions are more influenced by fMRI and SNPs features. In

general, we find that adding different modalities extends our per-

spective of the disorder and augments our knowledge of SZ's

effects on the brain and its genetic linkages.

2 | DATA PREPROCESSING

2.1 | Structural MRI

sMRI scans are preprocessed by using statistical parametric mapping

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/). The preprocessing steps

include unified segmentation and normalization of sMRI scans into

gray matter, white matter, and cerebrospinal fluid (CSF). The segmen-

tation step uses a modulated normalization algorithm to generate gray

matter volume (GMV). Then a Gaussian kernel with a full width at half

maximum (FWHM) = 6 mm is used to perform the smoothing on

the GMV.

2.2 | Functional MRI

We also use the SPM12 toolbox for preprocessing fMRI data. Before

applying the preprocessing steps, we discard the first five time points
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of the fMRI to ensure a steady-state magnetization. We perform rigid

body motion correction using the INRI-Align robust M-estimation

approach and apply the slice-timing correction. fMRI imagery is then

spatially normalized into the standard space Montreal Neurological

Institute, using an echo-planar imaging template, and is slightly

resampled to 3 � 3 � 3 mm3 isotropic voxels. Images were then

smoothed with a Gaussian kernel with FWHM = 6 mm like the

sMRI data.

2.3 | Genomics

The preprocessing steps for the genetic data are described in our

prior work (Adhikari et al., 2019; Chen et al., 2013). There are sev-

eral standard preprocessing tools for genomics data, and we used

Plink (Purcell et al., 2007) for preprocessing and imputation. Link-

age disequilibrium (LD) pruning was administered at r2 < .9. The

psychiatric Genomics Consortium (PGC) for SZ suggested genome-

wide association study (GWAS) (Cantor et al., 2010) score is used

to select the features. The analysis selects 1280 SNPs distributed

across 108 risk loci. The PGC study (He et al., 2015) reveals these

SNPs express statistically significant linkage with SZ at

p < 1 � 10�4.

3 | PROPOSED ARCHITECTURE

The proposed hybrid framework comprises two major submodules

(i) Parcellation of MRI images and selection of risk genetic variables

and (ii) DNN to learn multimodal features for SZ classification. Each

submodule is comprised of multiple subnetworks. The subnetwork

selection for distinct modalities is experimental and is driven by pri-

mary intuition based on the characteristic of input data. We initially

selected subnetworks that we thought would be suitable for the

modality-specific subnetworks. Next, we ran the experiments using

several state-of-the-art models applicable for identical purposes, that

is, carrying out the feature extraction and selecting the best per-

formers for the final subnetworks. Figure 1 illustrates different parts

of our framework. The submodules are elaborated in the Sections 3.1

and 3.2. The first submodule decomposes the MRI data using group

ICA. It selects risk SNPs from genomic variables, and the subnetworks

in submodule (ii) take features for three modalities and feed them

through a modality-specific deep subnetwork. Submodule

(ii) generates the latent representations for the input features. Then,

the representations are aggregated and used as input to the predic-

tion network for classifying the subject. The DNN incorporates three

neural networks designed for each modality with modality-wise speci-

fications. The prediction layer consists of multiple fully connected

F IGURE 1 Our multimodal architecture. It has two submodules, (i) group independent component analysis (gICA) and genetic variable
selection (ii) deep neural networks (DNN) for learning the modality features. The submodule (i) runs two separate gICA for structural and
functional magnetic resonance imaging (sMRI and (fMRI) with distinct settings, for example, number of independent components expected. Then

it computes the static functional network connectivity (sFNC) matrix for each subject from fMRI gICA and collects the ICA loading matrix from
sMRI. Then, the genotyping on the genomics sequence generates single nucleotide polymorphism (SNPs). The DNN submodule consists of four
subnetworks. sFNC features are extracted and learned by an AE with mean square error loss. The next subnetwork is a multilayer feed forward
network for learning the ICA loading features. For genomics, we use a bi-directional long short-term memory (LSTM) unit with attention
mechanism. After that, a fusion mechanism is applied to combine the latent features from three modalities using an attention model. The latent
features are weighted by the attention score. Finally, the joint features are sent through a series of fully connected layers followed by a SoftMax
prediction layer. The overall model is optimized using an Adam optimizer.
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(FC) linear layers. The architectural details are provided in the follow-

ing paragraphs. We use subject and sample interchangeably to

address the input data in the description.

3.1 | Group ICA and selection of genetic variables

We use a fully automated ICA-based pipeline from the GIFT toolbox

called Neuromark (Du et al., 2020) on sMRI and fMRI to extract func-

tional and structural components of the brain. Neuromark is a robust

analysis pipeline that can capture image features while retaining

individual-level variability. To construct spatial templates, we used

two large HC datasets, collected by the human connectome project

(HCP; http://www.humanconnectomeproject.org/) and the genomics

superstruct project (GSP; https://www.nitrc.org/projects/gspdata).

After that, we run the spatially constrained ICA from the NeuroMark

pipeline on the combined subjects from three datasets, including

FBIRN (Keator et al., 2016), COBRE (Aine et al., 2017), and MPRC

(Adhikari et al., 2019). The selection of intrinsic connectivity networks

(ICNs) in this study is based on the Neuromark template. The con-

struction of Neuromark template is described as Group ICA with

model order as 100 was performed on the GSP and HCP—HC data-

sets respectively, and the identified independent components (ICs)

from the two datasets were then matched by comparing the corre-

sponding group-level spatial maps. Those pairs are considered as con-

sistent and reproducible across GSP and HCP datasets if their spatial

correlation ≥0.4. A correlation value ≥0.25 has been shown to repre-

sent a significant correspondence (p < .005, corrected) between com-

ponents and here we used a higher threshold because we would like

to identify more reliable and consistent ICs. The reproducible ICs pairs

were further evaluated by examining their peak activations and low-

frequency fluctuations of their corresponding time courses. In total,

53 pairs of ICs were selected, arranging into 7 functional networks

based on their anatomic and functional prior knowledge. The ICA with

priors from NeuroMark (Du et al., 2020) resulted in 53 ICNs from the

fMRI data after quality control. The quality-controlled ICA results and

various extensions have been implemented in several previous studies

(Fu, Iraji, et al., 2021;Gupta et al., 2019; Saha et al., 2022). A similar

approach was used for source-based morphometry (ICA on gray mat-

ter maps) (Gupta et al., 2019; Saha et al., 2022), resulting in 30 struc-

tural components along with their loading values. The total number of

connectivity networks extracted was 53 covering the whole brain.

These ICNs were distributed into seven functional domains (Fu, Iraji,

et al., 2021; Fu, Sui, et al., 2021): subcortical (SC), auditory (AD), sen-

sorimotor (SM), visual (VS), cognitive-control (CC), default-mode (DM),

and cerebellar domain (CB). After back reconstruction, we computed

the static functional network connectivity (sFNC) matrix for each sub-

ject. The square matrix (53 � 53) represents the Pearson correlation

between the time course of ICNs. We vectorize the sFNC matrix

using the upper diagonal entries to ease the encoder's training pro-

cess. Likewise, the sMRI ICs are extracted from the ICA on sMRI data.

The provided priors are estimated from 6500 subjects used in this

study (Abrol et al., 2017). The ICA on sMRI yields individual-level

structural networks and corresponding loadings. For the confidence

of the structural networks, the network approximation scheme (info-

max) was repeated 20 times in ICASSO, in which the best run was

selected to ensure stability. The process extracted 30 structural com-

ponents along with their loading values. For the sMRI modality, we

used the loadings of the structural networks as the structural features.

The third modality includes the set of SNPs selected from genomic

data based on GWAS-significant SZ risk SNPs identified by the large

PGC study.

3.2 | Deep multimodal neural networks

• We use an autoencoder (AE) (Goodfellow et al., 2016) for the fMRI

modality consisting of encoder and decoder subnetworks. The AE

has been a successful neural network for a pattern learning task (Li

et al., 2017; Zhuang et al., 2015). We also experimented with feed-

forward network (FFN), but AE outperforms FFN by a significant

margin. The encoder subnetwork consists of five linear layers, and

the decoder also has the same number of layers. The decoder

reconstructs the input from the encoded features map. The

encoder compresses the input sequence to reduce the dimensions

and generate latent embeddings sequentially. We use a loss func-

tion to measure how well the decoder reconstructs the inputs, that

is, reconstruction loss. In our case, we use the mean squared error

loss for training the encoder and decoder. This network has been

established as a consistent performer in representation learning

(Chen et al., 2016; Kodirov et al., 2017; Kusner et al., 2017; Liou

et al., 2014). The weights for the linear layers are uniformly initial-

ized using the Xavier initialization function in Pytorch (Paszke

et al., 2019). A dropout layer follows each layer to minimize the

overfitting with a probability of 0.2. The subnetwork used rectified

linear units (ReLU) (Agarap, 2018) activation function for capturing

the nonlinearity in the data.

• The sMRI subnetwork was constructed as a FFN with five FC

layers. FFN is an easy-to-implement neural network effective for

learning the representation from linear data streams (Ruck

et al., 1990; Zhao et al., 2012). Also, it reduces model complexity

and saves considerable running time on the model. The FC layers

mostly have 30 hidden nodes followed by a dropout layer with a

probability of 0.2 except for the last layer. We avoid compression

in this network because the input dimension is shallow compared

with the other modalities. The last layer of the subnetwork has

100 hidden nodes to match up with the latent feature size from

other modalities.

• We tried both compression networks as fMRI and a bi-directional

long short-term memory (bi-LSTM) unit for the genetic modality.

The bi-LSTM unit is incorporated with the attention mechanism

(Vaswani et al., 2017). Although the SNP data are not temporally

dependent, the neighboring SNPs may show LD. So, a potential

neighborhood structure is present in the data, and we intend to

capture it to help the prediction. We apply light pruning to the

SNP data and use bi-LSTM to capture these localized semantics
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which might help differentiate the disorder. The attention weights

are used to help learn the representations of the neighborhood.

However, we observed that the neighborhood information did not

support the predictor and yielded a similar performance as MLP.

Intuitively, we focused on MLP because of its less complex imple-

mentation and considerably faster runtime than other approaches.

• Attention module: This subnetwork performs the fusion between

embeddings generated from modality-wise subnetworks. It con-

sists of one linear layer followed by a SoftMax layer. It takes a

concatenated two-dimensional tensor (number of modalities-by-

embedding sizes). The first dimension represents the number of

modalities and the second one is the size of embeddings. The mod-

ule attends the embeddings and learns an attention weight for

each modality iteratively. Then, it multiplies the input tensor with

the attention weights and expands as the input tensor's shape.

• Prediction model: The final subnetwork is a stack of three FC

layers followed by a SoftMax layer. The FC layers have 100 hidden

nodes, and the dropout is set to 0.2. It takes the attended com-

bined data and predicts the subject's label.

We run the multimodal network for hyperparameter tuning and

prediction stability over multiple repetitions. We determined these

parameters by running random search (Bergstra & Bengio, 2012)

hyperparameter optimization and nested cross-validation.

3.3 | Fusion

Several data fusion techniques have been introduced in the literature

(Ramachandram & Taylor, 2017). The fusion methods are primarily

divided into three subcategories early, mid/intermediate, or late

fusion. These provide distinct pros and cons depending on their appli-

cation domains. We developed several baseline models to implement

those data fusion. Early fusion integrates multiple input modalities

into a standard feature vector; late fusion combines the predictions

from various models, and mid fusion fuses the latent features (inter-

mediate states) of modality-wise subnetworks to perform the down-

stream task. We propose mid fusion administered by an attention

module for modality amalgamation.

3.3.1 | Mid fusion/intermediate

We incorporate intermediate fusion that combines the learned feature

representations from intermediate layers of modality-specific subnet-

works. A linear attention module governs the fusion process by learning

a significance score for each modality. It weighs the contributions of each

information source for generating an optimal mixture of relevant insights.

In our case, this controlled aggregation is imperative to any downstream

task, for example, classifying a subject's label. This study uses distinct sub-

networks to extract latent compressed features from each input stream.

The fusion submodule collects complementary information among differ-

ent data modes to maximize the knowledge about the sample. Thus, we

aggregate the latent features from sMRI, fMRI, and SNPs for the fusion

and send them to the final subnetwork. The process assists the model in

capturing the relation/interaction between multiple modalities. The

fusion architecture primarily maps the input to a latent space by comput-

ing the modality-wise embeddings. Then use this joint embedding for the

prediction. The notable advantages of attentive fusion are (1) it provides

a joint training of all available modalities, (2) the joint learning leverages

the synergies between distinct sources of information, and (3) with the

influence of neighboring subnetworks, the multimodal framework shows

a faster convergence. The aggregation is performed following this

equation:

u¼ w1h1 t1ð Þ,w2h2 t2ð Þ,…,wmhm tmð Þ½ � ð1Þ

where h is a modality-specific neural network, we can describe it as

hm: ℝ
dm ! ℝd (m represents the modalities, m = 1, …, M and d is the

dimension). The joint feature u is defined as u ϵ ℝd. The w's are the

learnable scaler for each modality. The final prediction value is

p where:

p ¼ y uð Þ ð2Þ

and y is a neural network described as y: ℝd ! ℝc, and c is the number

of classes.

3.3.2 | Early fusion

The input modalities are aggregated in early fusion before running it

through a DNN. Our early fusion baseline includes a stack of linear

layers—multilayer perceptron (MLP) as a DNN unit. We concatenate

the input data from three modalities for each sample and send them

through the MLP. The training and validation scheme is consistent

with the mid fusion training described below.

3.3.3 | Late fusion

Late fusion uses a distinct network for each modality. Each modality-

specific DNN predicts the subject's label separately, and at the end,

the predictions are merged using max-voting (Morvant et al., 2014) to

determine the final label of the subject. The modality-specific subnet-

works are trained separately and validated for the best performance

in terms of the evaluation metric. We capture the predictions of the

best-performing subnetwork on the test data. Then the predictions

are combined through a max-voting technique where the samples are

assigned with labels predicted by majority modalities.

3.4 | Training scheme for the joint fusion model

In our study, we explore all three fusion techniques. The performance

analysis evident mid/intermediate fusion as the best performing
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model. The parameters and built-in model selections are consistent

across three fusion techniques. The framework uses a cross-entropy

loss and the Adam (Kingma & Ba, 2014) optimizer with a learning rate

of 1 � 10�4 and a batch size of 32 for training in Pytorch. The Adam

optimizer updates the weights in the proposed DNN by back-

propagating the cross-entropy loss computed from the final layer's

prediction and the subject's label. All the FC layers are followed by

the dropout layer with p = .2 to minimize the overfitting. Our experi-

mentations include a variety of p values for dropout layers yet; multi-

ple experiments suggest a p = .2 value for the dropout layers provides

the best performance. We also added early stopping for balancing

training and validation loss, which eventually regularizes the model.

The dataset is divided into training, testing, and validation set. We

first partition the data into 80% for train and 20% for evaluation. The

evaluation data is divided into two equal sets testing and validation.

The test set is held out from the training and validation phase. The

model never comes across those samples in their training phase. In

the training and validation phase, the splits are randomly selected.

Then, the training and validation run for 300 epochs, saving the best

model based on accuracy. We loaded it back for computing the test

accuracy by applying the previously saved model to test data. To

avoid the fluctuation of the results, we ran the model multiple repeti-

tions (10 times) on the same data splits and reported the average per-

formance of the model. This joint training scheme allows modalities to

interact and facilitates modality-specific subnetworks to converge

properly by leveraging the learning from other subnetworks. More-

over, we implement a multimodal regularization technique for the

completeness of the experiments, which focuses on removing bias by

maximizing functional entropies (Gat et al., 2020). We designed our

implementation based on the existing regularizer and utilities.

4 | RESULTS

4.1 | Experiments

We used subjects selected from three different datasets, COBRE (Aine

et al., 2017), fBIRN (Keator et al., 2016), and MRPC (Adhikari et al., 2019).

Our deep model uses sMRI, fMRI, and genome-wide polymorphism data

for the classification. The combined dataset has 437 subjects with

275 HC and 162 SZ subjects. Due to heterogeneity in data preprocessing

and the lack of consistent datasets used in previous studies, we generate

several unimodal, bi-modal baselines to compare the performance of our

proposed multimodal classification framework. The analysis covers several

data fusion techniques such as joint fusion, late fusion, additive, multipli-

cative, and a weighted combination of latent features.

4.2 | Evaluation

The evaluation metrics we use to compare the model's performance

are described below. The variables are true-positive rate (TPR), false-

positive rate (FPR), and accuracy (ACC), which are defined as:

i. TPR = TP/(TP + FN).

ii. FPR = FP/(TP + FP), and.

iii. ACC = (TP + TN)/(TP + FP + FN + TN).

Here, TP stands for true positives: no. of SZ subjects classified as

SZ; FN stands for false negatives: no. of SZ classified as HC, TN (true

negatives): no. of HC subjects classified as HC, FP (false positives):

no. of HC classified as SZ. The performance of different architectures

we evaluated on our datasets is given in Table 1. Our proposed mid

fusion with the attention model has shown the best performance with

an accuracy of 92%, an average precision of 0.568, and an F1 score of

0.573 (boldface). It outperforms other baselines and other approaches

to classifying SZ. The unimodal and bimodal performances are evident

in the complementary information among these biological information

sources. A modality like genomics shows inadequate efficacy solely.

However, when the source is mixed up with other modalities, it

improves the overall performance. The observation reinforces the

intuition behind proposing a multimodal exploration. Thus, the weaker

or less informative modalities are also useful in the presence of other

active sources in the joint learning framework. For reference, we

added results from all three fusion techniques early, late, and mid

fusion. However, mid fusion with attention shows significant improve-

ment compared with other fusion techniques.

4.3 | Model interpretation

The secondary goal of our study is to introspect the model's learning.

The intuition is to explore the insights learned by the model for pre-

dicting the disease. These insights are potentially informative about

the disorder and can be transmuted as crucial biomarkers for the

group distinction. Furthermore, interpreting the modality-wise knowl-

edge gathered by the framework helps extract which structural and

functional components of the brain and genes are consistently playing

a significant role in characterizing a subject as SZ or HC. The analysis

may create new focuses for further research by providing reliable

sources of dichotomy. We implement a saliency analysis of the fully

trained model to explore the feature-wise contribution from each

modality. Saliency explains individual predictions by attributing each

input feature according to how much it changed the prediction (nega-

tively or positively; Ismail et al., 2021; Simonyan et al., 2013). For the

experiments, we use the Captum library (Kokhlikyan et al., 2020).

Saliency is defined as Sc xð Þ¼ ∂Yc

∂x

�
�

�
�, or the gradients of the prediction

of the correct class with respect to the input. Captum's attribution

modules are divided into three subcategories based on the applied

component of a DNN, namely primary, neuron, and layer attributions.

Primary attribution is the traditional feature importance algorithms

that attribute output predictions to model inputs. Layers attribute

output predictions to all neurons in a hidden layer, and neuron attribu-

tion methods allow us to attribute a hidden neuron to the inputs of

the model. However, both neuron and layer attributions are slight

modifications of the primary attribution algorithms (Kokhlikyan

et al., 2020). It is a widely used method for interpreting neural
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TABLE 1 Our experiments and comparisons with baselines

No. Fusion type Modalities Acc AP F1 score

1 Unimodal fMRI 0.81 0.481 0.451

2 Unimodal sMRI 0.78 0.441 0.431

3 Unimodal Genetic (SNPs) 0.68 0.339 0.310

4 Bimodal sMRI + fMRI 0.83 0.470 0.438

5 Bimodal SNPs + sMRI 0.78 0.411 0.402

6 Bimodal SNPs + fMRI 0.81 0.423 0.387

7 Early fusion fMRI + sMRI + SNPs 0.73 0.401 0.395

8 Late fusion fMRI + sMRI + SNPs 0.78 0.426 0.411

9 Functional entropies (Kingma & Ba, 2014) fMRI + sMRI + SNPs 0.72 0.369 0.335

10 Mid fusion fMRI + sMRI + SNPs 0.88 0.495 0.432

11 Mid fusion with attention fMRI + sMRI + SNPs 0.92 0.568 0.573

Note: Our proposed mid fusion with the attention model has shown the best performance with an accuracy of 92%, an average precision of 0.568, and an

F1 score of 0.573 (boldface).

Abbreviations: fMRI, functional magnetic resonance imaging; sMRI, functional magnetic resonance imaging; SNPs, single nucleotide polymorphisms.

F IGURE 2 The figure
visualizes the saliency analysis of
functional magnetic resonance
imaging features—static
functional network connectivity
(sFNC) pairs. (a) Each cell of the
matrix represents the saliency
score for a pair of static
functional networks
(connections). It illustrates
saliencies for all the sFNC pairs
(1378). (b) The figure represents
the 10 best salient pairs for
schizophrenia prediction.
(c) Overlaid the salient
connections on the AAL brain
template. We observe the salient
pairs mainly include components
from the subcortical region; thus,

the predominant connectivity's
between subcortical and other
domains, for example, subcortical
(SC), auditory (AD), sensorimotor
(SM), visual (VS), cognitive-
control (CC), default-mode (DM),
and cerebellar domain (CB), and
so forth. However, we do not
observe any significant
connections (pairs) within the
subcortical domain: The most
influential connections are
interdomain.
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networks and has been shown to be an effective measure under scru-

tiny (Adebayo et al., 2018; Ismail et al., 2021). Saliency maps are

essentially heat maps of each input sample, indicating the relevancy of

each feature to the sample's true class. The saliency experiments com-

pute a scalar weight for each input attribute from different modalities.

This weight is known as the saliency score or importance weight. We

calculated the mean saliency values across the subjects and the folds

for consistency.

4.3.1 | Saliency analysis on fMRI features

Figure 2 illustrates the mean saliency score for each static FNC pair.

We print the mean saliency score for each pair of components (con-

nection) in a square matrix annotated with their corresponding neuro

domain. We threshold the connection-wise saliency score to extract

the highly salient pairs. These 10 most salient pairs of components

illustrate the most contributing functional connections in the brain.

TABLE 2 Salient pairs of
components (connections) are observed
from the saliency analysis of fMRI data
and their neuro domains

ID Comp. I Dom. I Comp. II Dom. II HC-SZ direction

1 Para central lobule SMN Insula CON HC > SZ

2 Putamen SCN Superior frontal gyrus CON HC < SZ

3 Putamen SCN Precentral gyrus SMN HC < SZ

4 Caudate SCN Posterior cingulate cortex DMN HC < SZ

5 Putamen SCN Superior medial frontal gyrus CON HC < SZ

6 Caudate SCN Superior temporal gyrus ADN HC < SZ

7 Thalamus SCN Left inferior parietal lobule CON HC < SZ

Note: Comp. I and comp. II represent the pairs of components portraying functional connectivity. Dom. I

and II demonstrate the domain the components belong to.

Abbreviations: fMRI, functional magnetic resonance imaging; HC, healthy control; SZ, Schizophrenia.

F IGURE 3 Connectogram for the 10 most salient static functional network connections. The figure illustrates the connections and
participating functional networks along with their neural domains. The color of connections represents the strength of the connectivity. The
corresponding domains are also presented using distinctive colors. The blue and red lines stand for negative and positive functional connectivity,
respectively.
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We observe at least one endpoint of salient connection is sourced

from the subcortical region of the brain (Figure 2b). Therefore, the

highly contributing links are between subcortical and other brain

regions. Moreover, those pairs' average sFNC strength is consis-

tently higher in the SZ subjects than in HC. The observations indi-

cate SZ subjects have consistent interactions between subcortical

to other domains, which might be related to impaired cognition,

and the subject's experience of unusual information processing

systems. It perhaps infers the development of necessary associa-

tions with other domains by allocating significant resources of

brain circuitry to the subcortical. It also encourages domain-

specific future studies. For instance, a subcortical-focused connec-

tivity study is justifiable to further experiment with our observed

connections—steady connectivity in SZ. Table 2 summarizes the

components involved in the salient static functional connections of

the brain. The connectogram in Figure 3 illustrates the connectivity

strength between the salient component pairs. We observe a

strong positive connection between IC 14, IC 3. A strong negative

connection between IC 6 and IC 1. Figure 4 shows the mean con-

nectivity strength in HC and SZ subgroups. We observe that

patient-control connectivity differences in six pairs were statisti-

cally significant at p < .01.

4.3.2 | sMRI features saliency analysis

From the average saliency scores for sMRI features, some of the com-

ponents show significantly higher saliency than others. We select the

most salient 5 out of 30 components for further investigation. The

components are (i) caudate, (ii) anterior cingulate cortex and medial

frontal cortices (mpFC), (iii) inferior and mid frontal gyrus,

(iv) precuneus and posterior cingulate cortex, and (v) calcarine.

Figure 5a shows the mapping of the structural components on the

brain marked with their corresponding saliency score. Figure 5b is the

bar plot for the component's saliency, and Figure 5c shows the mean

loading value of these components across HC and SZ subgroups. The

group differences are tested using a two-sample t-test controlled for

age, sex, and site. sMRI components (i), (ii), (iii), and (v) show statisti-

cally significant HC-SZ difference at a p < .01 and denoted by an

asterisk sign. HC subjects have a stronger expression (loading) of com-

ponents (ii), (iii), and (v) and a weaker of the caudate than SZ. It might

result from lower gray matter in these structural components in SZ (ii,

iii, and v) versus control subjects. Similarly, the caudate seems to be

having weaker expression in the sMRI of HC subjects. Structural com-

ponents' prominence (loading) in SZ and HC subjects are different.

The group differences in distinct components are indicative of the dis-

tinct expression patterns of SZ and HC subjects on these salient struc-

tural components are probably relatable to the disorder's symptoms.

In that case, they will potentially help advance our understanding of

SZ pathophysiology.

Saliency analysis of genetic features (SNPs)

From the saliency map computed on SNPs, we select SNPs showing

higher importance scores across at least six folds of cross-validation

(total folds = 10). The higher importance score indicates a saliency

value greater than the mean saliency of a particular fold. It returns

430 SNPs out of 1280, which consistently influences the prediction.

These SNPs are annotated into 92 unique genes, and we conducted

pathway analysis on these genes using the David functional analysis

tool (Huang et al., 2007). We noted two clusters of genes involved in

the dopaminergic synapse (p = .03) and postsynaptic density

(p = .008), respectively shown in Table 3. The genes included in these

clusters are well documented to be associated with SZ (Föcking

et al., 2015; Roberts et al., 2009). The mentionable genes involved in

these pathways are the GRIN2A—glutamate receptor that contributes

to the slow phase of excitatory postsynaptic current, long-term synap-

tic potentiation, and learning by similarity. CACNA1C is related to cal-

cium signaling. GRM3 is also a glutamate receptor, CHRNA3 is the

cholinergic receptor; these are important in neurotransmitter signaling

and involved in SZ (Fujii et al., 2003; Mössner et al., 2008; Petrovsky

et al., 2010). Figure 6 visualizes the joint and marginal distributions of

saliency in HC and SZ subjects. Figure 6a–c represents the joint con-

tour plot estimated by the kernel density estimator using the data

points. The marginal distribution on the top illustrates the data on the

x-axis and the distributions on the right-hand side represent the y-axis

data. From the distributions, we observe the HC saliencies follow a

light-tailed distribution for fMRI and genetic modalities but are com-

paratively fat-tailed for sMRI information. That means the saliency

values are higher and low variance in fMRI than in sMRI and SNPs. In

other words, HC prediction uses more fMRI information than other

modalities. However, the saliencies in SZ subjects show light-tailed

(low variance) distribution for sMRI and competitively higher variance

for fMRI and SNPs. It indicates sMRI source of information influences

F IGURE 4 The boxplot demonstrates the max, min, and median
of static functional connectivity strength in the 10 most salient static
functional network connectivity (sFNC) pairs. The pairs are sorted in
terms of their saliency score. We ran a two-sample t-test to test the
statistical significance of healthy control (HC)-schizophrenia

(SZ) group differences. Pairs 1, 3, 6, 8, 9, and 10 were found to be
statistically significant at p < .01 (asterisks)

RAHAMAN ET AL. 517



these samples' predictions more. It does not suggest the absence of

other classification tasks. The attention values are normalized across

the modalities, and we collected them after finishing the training

process for all the specified epochs. Figure 7 demonstrates the results.

The boxplot has three boxes (modalities) for each modality: instead, it

explains how the predictor uses the contributions from different

F IGURE 5 The saliency analysis of structural magnetic resonance imaging (sMRI) features. (a) Overlaying the structural components on the
brain map annotated by their corresponding saliency. The subfigure includes five different views of the brain and the red colored features are the
most salient for the schizophrenia (SZ) prediction. (b) We visualize the feature-wise saliency on a bar plot, the x-axis represents 30 sMRI features/
components. We compute the mean saliency of each component across the subjects and found a subset of components ICN 3, 2, 26, 7, and
28 (sorted high to low saliency) are distinctively more salient than the others. (c) We picked the best five salient sMRI components here and the
boxplot shows the max, min, and median loading values in the SZ and healthy control (HC) groups. We run a two-sample t-test to check the
statistical significance of the HC-SZ group differences. Four components (asterisks) show statistically significant differences at p < .01, which
include the caudate, anterior cingulate (ACC) and medial prefrontal (mpFC) cortices, inferior and mid frontal gyrus, and calcarine sulcus

TABLE 3 The cluster of genes or the most salient pathways associated with schizophrenia

Cluster Relevance p-value Genes
List
total

Pop
hits

Pop
total

Fold
enrichment

KEGG_PATHWAY Dopaminergic

synapse

.028748 GRIN2A, AKT3, PPP2R3A, and

CACNA1C

37 128 6879 5.809966

GOTERM_CC_DIRECT Postsynaptic

density

.007676 GRM3, CHRNA3, GRIN2A, CACNA1C,

and NRGN

78 184 18,224 6.348941

F IGURE 6 Visualization of joint and marginal distributions of subject wise saliency for functional magnetic resonance imaging (fMRI),
structural MRI (sMRI), and single nucleotide polymorphisms (SNPs) modalities (a) The subfigure shows the distribution of saliency by sMRI vs
SNPs. The subfigure also plots the joint kernel density of saliency scores. (b) Between fMRI versus SNPs saliency, and (c) fMRI versus sMRI
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modalities while classifying the distinct samples. We analyze the

attention weights from all three modalities while training to investi-

gate the phenomena more precisely. We used an attention model to

weigh the latent features from each modality before concatenating

them in backpropagation. The results show a consistent pattern in

modality-specific information usage. We plot the attention weights

from three modalities for all 437 subjects. The attention values por-

tray the contribution of modalities in the group (SZ/HC). The bars rep-

resent the mean and SD for the attention values. We observe the

mean attention for the HC group is higher in fMRI, and for SZ, it is sig-

nificantly higher in sMRI. The observation could be interpreted as a

distinctive distribution of information mounted in these modalities rel-

evant to the disorder. The model consistently relies on structural

modality rather than others for classifying the SZ samples, which

might indicate a greater impact on structural features of SZ. In other

words, structural features better differentiate the samples (SZ and

HC), making them a better predictor of the disorder. Figure 8 repre-

sents the interaction between the modalities throughout the training

process and the effect of modality coupling and decoupling on classifi-

cation. We analyze the interaction between modalities through the

connection between their latent space representations. For each sub-

ject, we measure the correlation among the latent space representa-

tion of its sMRI, fMRI, and genomic feature. Increasing similarities

(correlation) between modalities could be seen as coupling those

information sources—maneuvering towards similar data distributions.

We observe that the correlation between fMRI and genetic informa-

tion consistently increases as the model learns. With the learning from

the data �50 epochs, these two modalities become coupled and keep

expanding their inter-relationship throughout the training processes.

The coupling might represent these sources are uniformly descriptive

about the subject. The sMRI and genetic modality show a reasonable

positive correlation across the epochs. We also observe that the sMRI

and fMRI coupling has a negative correlation after a few epochs, but

fMRI and genetics are in the opposite direction. The intermodality

coupling and decoupling nature for characterizing the disorder sug-

gests complementary and overlapping links between the neural and

genomic systems. The uniformity or nonuniformity of data sources

can be leveraged in cases where all data modalities are unavailable or

may not be convenient for acquisition. The knowledge base could be

exploited for handling missing modality issues common in multimodal

data frameworks.

5 | CONCLUSION

The physiological data sources can carry differential information about

a disease. So, integrating multiple disease effect sites helps perform a

more comprehensive study of the disorder. In this analysis, our goal is

to develop a unified framework that can process the data from dis-

tinct biological sources and provide a generalized understanding of

the disease. We aim to discover relevant patterns in the brain's struc-

tural features, functional mechanisms, and genomic pathways that

lead to a coherent deciphering of the psychosis. We employ DL

models to learn the attributes and design experiments to characterize

the disorder. The neural network extracts unimodal/multimodal con-

cepts that are relevant to SZ. We implement several DL techniques to

achieve a legitimate model performance. That validates the neurobio-

logical relevance of the signal the model used to characterize the

health condition. Moreover, our post hoc analysis aspires to explain

those concepts through saliency analysis. It provides a relevant subset

of features from each modality based on their contribution score. Fur-

ther analysis of those subsets of crucial features provides distinctive

patterns between HC and SZ. A subgroup of sMRI and fMRI features

are reported, which exhibit substantial HC/SZ group differences

across distinct brain regions. Besides, the analysis of modality-specific

contributions for SZ classification helps understand how these various

biological domains are impacted. It will help future studies select the

F IGURE 7 Box plots depicting modality-wise attention weights
for healthy control (HC) and schizophrenia (SZ)

F IGURE 8 The line plots demonstrate the correlation between
the subject's feature embedding from different modalities. It depicts
Pearson's correlation between structural magnetic resonance imaging
(sMRI), functional MRI (fMRI), and genetic data across all train epochs.
Also, it includes epoch-wise accuracies for reference
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SZ-effected physiologies in limited availability. The communication

pattern between these modalities is primarily explained in modality

coupling and decoupling across the learning curve. The curves demon-

strate how the effects in sMRI, fMRI, and genomics complement each

other. Also, the reported neurogenetic features might be related to

psychosis-associated clinical and cognitive symptoms. The proposed

data fusion model can discover impeccable biomarkers for the disor-

der, and the preceding interpretation recommends features that can

potentially explain the underlying mechanism of the disease.
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