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Purpose: Recently, the Connective Tissue Oncology Society
published consensus guidelines for recognizing ultrarare sarcomas
(URS), defined as sarcomas with an incidence <1 per 1,000,000. We
assessed the outcomes of 56 patients with soft tissue, and 21 with
bone sarcomas, enrolled in Phase 1 trials.

Experimental Design: In this Sarcoma-Matched Biomarker
Analysis (SAMBA-102 study), we reviewed records from patients
on Phase 1 trials at the University of Texas MD Anderson Cancer
Center between January 2013 and June 2021.

Results: Among 587 sarcomas, 106 (18.1%) were classified as
URS. Fifty (47%) were male, and the median age was 44.3 years
(range, 19-82). The most common subtypes were alveolar
soft part sarcoma (ASPS), chordoma, dedifferentiated chondro-
sarcoma, and sclerosing epithelioid fibrosarcoma. Compared
with common sarcomas, median OS was similar 16.1 months

Introduction

Sarcomas are a rare cancer of the tissue or bones of which an
estimated 13,460 soft tissue and 3,610 bone sarcomas will be diagnosed
in 2021 in the United States (1). Drug development in sarcoma has
been challenging given the rarity and heterogeneity. The recent failure
of olaratumab, a PDGFRo antagonist that received accelerated
approval for advanced soft tissue sarcoma (STS) but was later with-
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[95% confidence interval (CI), 13.6-17.5] versus 16.1 (95% CI,
8.2-24.0) in URS (P = 0.359). Objective response to treatment
was higher in URS 13.2% (n = 14/106) compared with common
sarcomas 6.9% (n = 33/481; P = 0.029). Median OS for those
treated on matched trials was 27.3 months (95% CI, 1.9-52.7)
compared with 13.4 months (95% CI, 6.3-20.6) for those not
treated on matched trials (P = 0.291). Eight of 33 (24%)
molecularly matched treatments resulted in an objective
response, whereas 6 of 73 unmatched treatments (8.2%) resulted
in an objective response (P = 0.024). Clinical benefit rate was
36.4% (12/33) in matched trials versus 26.0% (19/73) in
unmatched trials (P = 0.279).

Conclusions: The results demonstrate the benefit of genomic
selection in Phase 1 trials to help identify molecular subsets likely to
benefit from targeted therapy.

drawn from the market due to disappointing Phase 3 findings in the
ANNOUNCE trial, has been a setback as well (2).

The olaratumab/doxorubicin combination missed the trial’s pri-
mary endpoint of overall survival (OS). The treatment could not
confirm a clinical benefit compared with standard doxorubicin
in patients with advanced or metastatic STS. However, this was a
non-biomarker-driven study in all types of STS. The increasing
availability of clinical next-generation sequencing (NGS) has altered
the landscape of many common and rare tumors. Biomarker-driven
drug approvals in rare indications like BRAF and MEK inhibition in
anaplastic thyroid cancer or BRAF inhibitor in Erdheim-Chester
disease in a dataset of fewer than 30 patients gives us the enthusiasm
to design studies in rare indications (3, 4).

Because more than 150 different sarcoma subtypes exist, the
Connective Tissue Oncology Society recently published consensus
guidelines for recognizing ultrarare sarcomas (URS; ref. 5). Fifty-six
STS and 21 bone sarcoma types were defined as URS based on an
incidence <1 per 1,000,000. These ultrarare soft tissues and bone
sarcoma histologies comprise up to 20% of the total sarcoma popu-
lation and often lack approved histology-driven treatments. Currently,
only three therapies are FDA-approved among URS subtypes. This
includes tazemetostat for advanced epithelioid sarcoma with INI/
SMARCDI loss (6) and nab-sirolimus, an mTORCI inhibitor that
has demonstrated activity in metastatic malignant perivascular epi-
thelioid cell tumors that often harbor mTOR-activating TSC1/2
mutations. In this single-arm, multi-center, Phase II trial, 34 patients
at 9 centers were treated with nab-sirolimus. The overall response rate
(ORR) was 39% (12 of 31), with a clinical benefit of 52% (n = 16/31;
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Translational Relevance

Ultrarare sarcomas (URS) are a newly defined category of rare
sarcomas for which histology-driven treatments are limited. Indi-
vidually, these cancer types are scarce, but when combined, they
comprise 20% of all bone and soft tissue sarcomas. Genomic
sequencing of rare tumors may identify actionable alterations
amenable for molecularly targeted therapies. A review of all URS
from a large Phase 1 clinic treated on molecularly matched treat-
ments found an improved response rate (24% vs. 8.2% P = 0.024)
when URS were treated on matched to unmatched treatments. This
translated to a clinically meaningful but not statistically significant
improvement in progression-free survival and overall survival and
outcomes non-inferior to more common sarcoma subtypes in
Phase 1 trials. Therefore, genomic sequencing is essential to
unlocking all potential therapeutic avenues for advanced or met-
astatic URS.

ref. 7). Histology-specific or biomarker-driven trials in rare sarcoma
subtypes should be considered when testing investigational anticancer
therapeutics (8). Most recently, crizotinib was approved for ALK-
positive inflammatory myofibroblastic tumors (IMFT) following 7
adult patients with responses [7 complete response (CR) and 1 partial
response (PR)] in a Phase 1b trial (9).

Enrollment in histology/subtype-driven trials requires a large
and arduous effort given the rarity of these malignancies (10). Given
the paucity of evidence-driven guidelines and limited treatment
options, patients with URS are often referred for consideration of
early-phase clinical trials (11, 12). Incorporation of NGS, and earlier
matching of patients to biologically targeted therapies or immu-
nomodulatory agents, has provided an expanded menu of novel
treatment options to offer patients battling rare cancer types,
including sarcoma (13-16).

In this Sarcoma-Matched Biomarker Analysis 102 (SAMBA 102)
study, we evaluated the clinical outcomes of URS versus common
sarcomas in early-phase clinical trials and among genomic alterations,
which yielded clinical benefits in our cohort.

Materials and Methods

Data collection and eligibility

All patients treated in Phase 1 trials at the Department of
Investigational Cancer Therapeutics at the University of Texas MD
Anderson Cancer Center between January 2013 and June 2021, were
included in analysis. We reviewed clinical and demographic data,
including age, sex, cancer type, prior lines of treatment, number of
trials treated, and type and target of agent used. In addition, we
reviewed the CLIA-certified next NGS data and molecular testing
performed on histologic samples during clinical care.

Endpoints and statistical methods

We reviewed each patient’s chart for documentation of response via
radiologic review. We reviewed the endpoints: specifically, ORR,
disease control rate (DCR), progression-free survival (PFS), and OS.
ORR was defined as CR plus PR. DCR was defined as ORR plus stable
disease (SD). The best response was determined by individual trial
protocol data using the RECIST (version 1.1) or immune-related
RECIST (irRECIST). PFS and OS for each patient were calculated on
the basis of their individual trial participation. Clinical benefit was
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defined as the sum of objective responses and SD that lasted for
26 months on treatment. OS was defined as the time from the first dose
of the Phase 1 study drug until death. PFS was defined as the period
between the first dose of Phase 1 drug and the date of documented
radiologic or clinical progression or death. The Kaplan-Meier method
was used to estimate OS and PFS, and a log-rank test was used to
compare between groups. Descriptive variables were compared by the
x* method. Statistical analysis was performed using SPSS version 25
and R software.

AACR GENIE database

For mutational targets associated with clinical benefit, we reviewed
the incidence of the mutation in the histologic URS subtype in our
Phase 1 cohort and the incidence in the AACR Project GENIE
(Genomics Evidence Neoplasia Information Exchange). AACR Proj-
ect GENIE is an international data-sharing consortium of clinical
genomic data (17). Version 11.0, released in January 2022, contains
136,096 samples from 19 cancer institutions. cBioPortal was used to
access and analyze data (18, 19).

The MD Anderson Institutional Review Board (IRB) independently
reviewed and approved each clinical trial, and the MD Anderson IRB
also approved this retrospective review with a waiver of informed
consent.

Informed written consent was obtained from patients for each
Phase 1 trial they were enrolled to. Each Phase 1 trial was conducted
in accordance with the Declaration of Helsinki and separately
approved by the IRB at the University of Texas MD Anderson Cancer
Center.

Data availability
The data generated in this study are available upon reasonable
request from the corresponding author.

Results

Overall characteristics

Between January 2013 and June 2021, 587 patients with sarcomas
were enrolled in Phase 1 trials. Among them, 481 (81.9%) were
common sarcoma histologies, and 106 (18.1%) were classified as
URS (Fig. 1). Table 1 summarizes demographic data for URS patients.
Supplementary Table S1 summarizes the histologic make-up of com-
mon sarcomas. The median age at the first trial was 44 years (SD, 16y;
range, 19-82y), mean prior lines of therapy = 2 (range, 0-8), the mean
number of Phase 1 trials = 1.5 (range, 1-6), and 47% were male. The
most common URS were alveolar soft part sarcoma (ASPS; n = 12),
dedifferentiated chondrosarcoma (n = 9), chordoma (n = 9), and
sclerosing epithelioid fibrosarcoma (n = 9). Table 2 shows the
distribution of URS histologies. Thirty-four different URS types were
treated in trials, 7 bone URS and 24 soft tissue URS.

URS versus common sarcomas

Compared with common sarcomas, median OS from time of Phase
1 enrollment was similar 16.1 months [95% confidence interval (CI),
13.6-17.5] versus 16.1 (95% CI, 8.2-24.0) in URS (P = 0.359) as
in Fig. 2A. Median PFS were similar at 3.1 months (95% CI, 2.63-3.51)
for common sarcomas and 2.97 months (95% CI, 1.87-4.06) for URS
(P = 0.184). Objective response to Phase 1 treatment was significantly
higher in URS at 13.2% (n = 14/106) compared with 6.9% (n = 33/481)
in common sarcomas (P = 0.029). Tumor genomics with NGS or
multi-gene panel was performed for 87% (n = 417/481) of common
sarcomas and 89% (n = 94/106) of URS. Thirty-three of 106 (31%)
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URS were treated on matched trials when compared with 188/481
(39%) of common sarcomas (P = 0.126).

Landscape of genomic alterations in URS

Among the 94 patients who had molecular profiling completed, 69%
(n = 73) had mutations present, 16% (n = 17) had no mutations
identified, 4% (n = 4) had limited molecular analysis performed, and
2% (n = 2) failed NGS.

The most common alterations were EWSR1 fusions 13.2% (n = 14),
TP53 11.3% (n = 12), CDKN2A loss 9.4% (n = 10), KIT 7.5% (n = 8),
BRCA1/23.4% (n=7), AR6.6% (n =7), CDKN2B loss 5.7% (n = 6),
IDH1/2 5.7% (n = 6), mTOR/RAPTOR 6.0% (N = 5), PIK3CA 4%
(N =15), met4% (n = 4), and NTRK 1/2/3 fusions 1.9% (n = 2). DNA
damage repair (DDR) pathway genes (e.g., ATM, ATR, BRCA1/2,
RAD51, PALB2) were altered in 13.2% (n = 14). Non-EWS fusions

Table 1. Demographic data.

Median age (range; y)
Male gender

Soft tissue sarcomas
Bone sarcomas

44 (19-82)
47% (50)

74.5% (79)
25.5% (27)

Molecular testing 89% (94)
Median prior lines of therapy 2.0 (0-8)
Median # of Phase 1 trials 1.0 (1-6)

AACRJournals.org

with approved drugs (e.g., ALK, NTRK1/2/3, ROS1) were present in
4% (n = 4) of cases. A complete list of alterations in the dataset is listed
in Supplementary Table S2.

Molecularly matching in URS

NGS was performed on 94 of 106 (89%) patients. Thirty-three (31%)
patients were treated on molecularly selected trials. Median OS for those
treated on matched trials was 27.3 months (95% CI, 1.9-52.7) compared
with 13.4 months (95% CI, 6.3-20.6) for those not treated on matched
trials (P = 0.29). PFS for those treated on matched trials was 4.6 months
(95% CI, 1.0-8.2) versus 3.0 months (95% CI, 2.6-3.3) for unmatched
trials (P = 0.073). Figure 2B and C shows Kaplan-Meier curves.

Among 14 responses seen in URS, 13 were PR and one CR, among
which targeted biomarker-matched therapies resulted in one CR and
seven PR. Eight of 33 (24%) molecularly matched treatments resulted
in an objective response, whereas 6 of 73 (8.2%) unmatched treatments
resulted in objective responses (P = 0.024). Clinical benefit rate was
36.4% (12/33) in matched trials versus 26.0% (19/73) in unmatched
trials (P = 0.279). Table 3 summarizes these results.

Objective responses in matched treatments were seen in clear cell
sarcomas with c-met inhibitors (n = 2), NTRK inhibitors in NTRK-
rearranged sarcoma (n = 2), EZH2/EED inhibitor in epithelioid
sarcomas (n = 1), MDM2 inhibitors in chordomas (n = 1), combi-
nation VEGFR inhibitor + mTOR inhibitor in epithelioid heman-
gioendothelioma (n = 1), and ALK in IMFT (n = 1). In addition,
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Table 2. Histology breakdown among URS in Phase 1 population.

Multiple cases

Only one case

ASPS

Chordoma

De-differentiated chondrosarcoma
Sclerosing epithelioid fibrosarcoma
Clear cell sarcoma

PEComa

Desmoplastic small round cell tumor
Epithelioid sarcoma

Alveolar rhabdomyosarcoma
Embryonal rhabdomyosarcoma
Epithelioid hemangioendothelioma
Extraskeletal myxoid chondrosarcoma
Endometrial stromal sarcoma
Inflammatory myofibroblastic tumor
Mesenchymal chondrosarcoma
Malignant giant cell tumor of bone
NTRK-rearranged sarcoma

Ossifying fibromyxoid tumor
Rhabdomyosarcoma

Round cell sarcoma with EWSR1-non-ETS fusion
Sarcoma with BCOR genetic alterations

N}

NNNNNNNNNMNNWNW®WNDANDNUCTO 0O OO

Adamantinoma

BCOR-rearranged endometrial stromal sarcoma
Clear cell chondrosarcoma

Giant cell tumor of soft tissue

High-grade undifferentiated pleomorphic sarcoma of bone
Histiocytic sarcoma

Low-grade fibromyxoid sarcoma

Metastatic phyllodes tumor

Parosteal osteosarcoma

Periosteal osteosarcoma

Pleomorphic rhabdomyosarcma

Small round cell sarcoma NOS

Spindle cell rhabdomyosarcoma

clinical benefit was seen for matched treatments with Sonic Hedgehog
(SHH) pathway inhibitor in sclerosing epithelioid fibrosarcoma (n =
1), MET/VEGFR2 inhibitor in clear cell sarcoma (n = 1), EGFR
inhibitor in clear cell sarcoma (1 = 1), and CDK4/6 inhibitor in
low-grade fibromyxoid sarcoma (n = 1). Table 4 summarizes the
response and target in the MD Anderson Phase 1 population and the
AACR GENIE v11.0 populations. Supplementary Table S3 sum-
marizes non-responders in matched trials.

Immunotherapy

Forty (37.7%) patients received investigational immunotherapy
regimens. Four of 40 (10%) experienced objective responses, all PR.
Fourteen of 40 (35%) experienced a clinical benefit. Responses are
summarized in Supplementary Table S4. A TLR7/8 agonist resulted in
a PR in one embryonal rhabdomyosarcoma, as did checkpoint inhi-
bitors in 3 ASPS. Clinical benefit was seen with checkpoint inhibitors
alone and in combination in chordoma (n = 2), clear cell sarcoma (n =
1), fibromyxoid sarcoma low grade (n = 1), ossifying fibromyxoid
tumor (n = 1), epithelioid hemangioendothelioma (n = 1), sarcoma
with BCOR genetic alterations (n = 1), periosteal osteosarcoma (n =
1), and ASPS (n = 2); however, it should be noted that several of these
tumor types are traditionally slow growing sarcoma subtypes. Eight of
12 (67%) ASPS in our cohort received checkpoint inhibitors alone or in
combination. Five of 8 (63%) ASPS experienced a clinical benefit with 3
PR (38%) when given checkpoint inhibitors.

Discussion

We have reported the largest dataset of patients with URS
to specifically characterize the clinical and molecular features
and outcomes of patients with URS who are referred to early-
phase clinical trials. We found potential benefits to enrolling in
an early-phase clinical trial with an ORR of 24.2%, PFS of
4.6 months, and median OS of 27.3 months in this heavily pre-
treated patient population with limited options before referral for
consideration of Phase 1 trials. Patients clinically benefited from a

404 Clin Cancer Res; 29(2) January 15, 2023

matched therapy, whether in a dose-escalation cohort or a dose-
expansion cohort.

Sarcoma treatments are often developed on the basis of clinical trials
for other cancers and often involve diverse sarcoma subtypes (20).
However, drugs are making their way into later-phase trials for
sarcoma, increasingly using targeted mechanisms of action or with
immunotherapy (21). Many genomic alterations have been identified
in sarcomas, and the number of clinical trials targeting them has
expanded significantly (22, 23).

One of the patients in our cohort with epithelioid sarcoma
was treated with tazemetostat, the only approved drug for URS. The
ezh2/eed inhibitor, approved in advanced epithelioid sarcoma with
INI/SMARCD1 loss following an open-label Phase 2 basket study,
achieved a response rate of 15% (n = 15/62; ref. 6).

MDM?2 is one of the most frequently altered genes in sarcomas and
is an attractive target for inhibitors (24). However, MDM2 antagonists
have been developed to interact through a different mechanism
causing interaction with p53 to activate DDR mechanisms of which
sarcoma subtypes have been known to harbor alterations in
DDR (25, 26). A chordoma with a DDR alteration in our cohort
experienced a PR following treatment with an MDM2 antagonist.

Clear cell sarcomas are characterized by the chimeric transcription
factor, EWS-ATFI translocation. The EWS-ATF1 activates melano-
cyte-inducing transcription factor, thereby promoting c-MET tran-
scription (27). The EORTC trial 90101 showed a benefit for crizotinib
in MET-amplified clear cell sarcoma, though a low ORR of 3.8% (n =
1/28) and DCR of 69.2% (28). STS have also been included in basket
trials of c-Met inhibitors with varying responses (29-31).

One patient with an IMFT responded to ALK-targeted therapy,
specifically crizotinib in combination with pazopanib (32). Approx-
imately half (47%; 9/22) of myofibroblastic tumors have been reported
to harbor ALK gene rearrangements, which we also observed in 50%
(n = 15/30) of the AACR GENIE population (33, 34). Indeed, on the
basis of the frequency of this gene rearrangement and report of
successful use of crizotinib, a non-randomized Phase 2 trial was
undertaken in IMFT with and without ALK gene rearrangements for
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A, Kaplan-Meier curve for overall survival (OS) between common and ultrarare sarcomas. B and C, Kaplan-Meier curve for OS (B) and progression-free survival (C)

for matched versus unmatched trials in URS.

whom no surgical option existed (35). Crizotinib showed an ORR of
50% (n = 6/12) in ALK-rearranged and 14% (n = 1/7) in ALK non-
rearranged tumors (36). On the basis of these data, crizotinib is now
recently FDA approved for IMFT.

Although NTRK fusions are rare in the broader soft-tissue sarcoma
patient population (approximately 0.66% of the AACR GENIE popu-
lation), those harboring NTRK fusions can exhibit extraordinary
responses to the two approved NTRK inhibitors, larotrectinib and
entrectinib. Among the 11 patients with STS who received larotrectinib,
10 were shown to have objective responses (37). Likewise, objective
responses to entrectinib have also occurred in STS (38). Similarly, RET
fusions have also emerged as tissue agnostic targets with sensitivity to
selective RET inhibitors with reports of sarcoma-harboring RET fusions
benefiting from matched therapies. Selpercatinib recently received FDA
approval for all RET-positive cancers, including sarcomas (39, 40).

The clinical benefit of checkpoint inhibition in patients with ASPS
has already been noted in the MD Anderson Phase 1 population and is

Table 3. Objective response rate (CR + PR) and clinical benefit
rate (CR + PR + =6 months of SD) between matched and
unmatched patients with URS on Phase 1 clinical trials.

Matched Unmatched

treatment treatment P
Total patients 33 73
Objective response rate (n) 24% (8) 8.2% (6) 0.024
Clinical benefit (n) 36.4% (12) 26% (19) 0.279

AACRJournals.org

accepted as a potential line of treatment for advanced ASPS (41-43). A
single-center, single-arm, Phase 2 study by Wilky and colleagues (44)
enrolled 12 patients with ASPS in which they saw a 72.7% 3-month PES
and response rate of 54.5% (n = 6/11) with pembrolizumab with
axitinib. Preliminary data exhibiting single-agent activity of atezoli-
zumab have additionally been presented from a Phase 1/2 trial with
28% (n = 5/7) experiencing a confirmed PR (45). Furthermore, dual
checkpoint inhibition with durvalumab plus tremilimumab in a single-
center Phase 2 study showed ORR of 40% (n = 4/10) for ASPS cohort
by irRECIST (46).

In addition, we found that patients with URS responded similarly or
better than patients with more common sarcoma diagnoses. This may
be in part due to URS subtypes defined by an actionable target (e.g.,
NTRK-rearranged soft tissue and bone sarcomas). As more agents
come to fruition, more URS sarcomas defined by a molecular target,
may join the list of current URS diagnoses.

Limitations

Our study is a retrospective single-institution study, so broad
characterizations cannot be made. In addition, given the limited
numbers of patients with URS in our cohort, analysis of specific
sarcoma subtypes survival and response characteristics subtypes can-
not be performed. In addition, due to the heterogeneous growth rate
patterns in sarcomas, clinical benefit in sarcomas with slow growth rate
may not represent clinically beneficial treatments.

Future directions

Drug development for rare sarcoma subtypes will likely continue to
rely on histology/subtype-driven treatments and histology-agnostic

Clin Cancer Res; 29(2) January 15, 2023
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17 1M 42%

27

100%
0.3%
60%
10%

ALK fusion

ALK inhibitor

PR

Inflammatory myofibroblastic tumor
NTRK-rearranged sarcoma

Clear cell sarcoma

0.66%

64%
2%
6%

1%

4,036
45

587

2
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methods appropriate for sarcomas as a generic class of mesenchymal
tumors. Thus far, the sarcoma subtype-specific FDA approvals (e.g.,
tazemetostat, nab-sirolimus, and crizontinib) relied upon multicenter
early-phase trials conducted at large tertiary referral cancer centers
with expertise in the care and treatment of patients with sarcoma (6, 7).
However, tumor agnostic trials testing checkpoint inhibitors paved the
way for regulatory approval in tumors with high tumor mutational
burdens and NTRK-rearrangement (37, 47). Basket trials allow inves-
tigators to evaluate novel agents in diverse cancer types and can allow
for testing of low-incidence alterations, but must ensure that the
targeted alteration is an oncogenic driver across multiple can-
cers (48, 49). Given the success of each strategy, both approaches are
likely to be used, taking into account the prevalence of the targeted
alteration and subtype prevalence.

When treated on Phase 1 trials, patients with URS experienced
similar survival and response rates compared with those diagnosed
with more common sarcoma subtypes. In molecularly matched trials,
patients with URS experienced a significantly improved ORR, with a
trend toward improved OS and PFS. Given the paucity of approved
options or data to guide treatment choice, treating in an “n of 1” fashion
with molecularly matched agents or enrollment in Phase 1 trials
remains an important treatment option for these newly classified
“URS.” Clinical NGS, and early referral for consideration of early-phase
clinical trials, may offer an additional line of therapy for patients with
URS that urgently need better treatment options.
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