
Original Article

Mol Syndromol 2022;13:496–510

Delving into the Genetic Causes of 
Language Impairment in a Case of Partial 
Deletion of NRXN1

Antonio Benítez-Burraco 

a    M. Salud Jiménez-Romero 

b     

Maite Fernández-Urquiza 

c

aDepartment of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain; 
bDepartment of Education, University of Córdoba, Córdoba, Spain; cDepartment of Spanish Philology, University of 
Oviedo, Oviedo, Spain

Received: February 19, 2022
Accepted: April 22, 2022
Published online: June 14, 2022

Correspondence to: 
Antonio Benítez-Burraco, abenitez8 @ us.es

© 2022 S. Karger AG, BaselKarger@karger.com
www.karger.com/msy

DOI: 10.1159/000524710

Keywords
2p16.3 deletion · NRXN1 · Cognitive impairment · Language 
deficits · Pragmatic impairment · Language-related gene 
networks

Abstract
Introduction: Copy-number variations (CNVs) impacting on 
small DNA stretches and associated with language deficits 
provide a unique window to the role played by specific 
genes in language function. Methods: We report in detail on 
the cognitive, language, and genetic features of a girl bear-
ing a small deletion (0.186 Mb) in the 2p16.3 region, arr[hg19] 
2p16.3(50761778_50947729)×1, affecting exons 3–7 of 
NRXN1, a neurexin-coding gene previously related to schizo-
phrenia, autism (ASD), attention deficit hyperactivity disor-
der (ADHD), mood disorder, and intellectual disability (ID). 
Results: The proband exhibits many of the features com-
monly found in subjects with deletions of NRXN1, like ASD-
like traits (including ritualized behaviors, disordered sensory 
aspects, social disturbances, and impaired theory of mind), 
ADHD symptoms, moderate ID, and impaired speech and 
language. Regarding this latter aspect, we observed altered 
speech production, underdeveloped phonological aware-

ness, minimal syntax, serious shortage of active vocabulary, 
impaired receptive language, and inappropriate pragmatic 
behavior (including lack of metapragmatic awareness and 
communicative use of gaze). Microarray analyses point to 
the dysregulation of several genes important for language 
function in the girl compared to her healthy parents. Discus-
sion: Although some basic cognitive deficit – such as the im-
pairment of executive function – might contribute to the lan-
guage problems exhibited by the proband, molecular evi-
dence suggests that they might result, to a great extent, 
from the abnormal expression of genes directly related to 
language. © 2022 S. Karger AG, Basel

Introduction

Copy number variants (CNVs) found in individuals 
with language and pragmatic deficits provide a unique 
window to the genetic foundations of the human ability 
to learn and use languages. This is particularly true for 
CNVs affecting a reduced number of genes and resulting 
in a common phenotypic profile. In this paper, we report 
on a girl with a microdeletion in the 2p16.3 region affect-
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ing the NRXN1 gene. This gene encodes a neurexin [Row-
en et al., 2002]. Neurexins are polymorphic cell surface 
proteins implicated in synapse development and mainte-
nance [Missler and Südhof, 1998]. The NRXN1 protein 
has been shown to regulate synaptic activity, neuritogen-
esis, and neuronal network assembly during neocortical 
development [Südhof, 2008; Gjørlund et al., 2012; Jenkins 
et al., 2016]. Genomic losses involving NRXN1 have been 
associated with different neurocognitive conditions, in-
cluding schizophrenia (SZ), autism spectrum disorders 
(ASD), attention deficit hyperactivity disorder (ADHD), 
seizures, mood disorder, or intellectual disability (ID) 
[for recent reviews, see Lowther et al., 2017; Hu et al., 
2019; Castronovo et al., 2020; Tromp et al., 2021]. Where-
as, as noted, the clinical profile of patients with deletions 
in this gene is pretty variable, language and communica-
tion deficits are commonly reported in most of them 
[Béna et al., 2013; Curran et al., 2013; Al Shehhi et al., 
2019]. To date, the most detailed report on language and 
speech problems in subjects with deletions in NRXN1 is 
that of Brignell et al. [2018], who observed that children 
(aged 1.8–17 years) with NRXN1 deletions affecting ex-
ons 1–3 or 1–5 of the gene exhibited a pretty variable phe-
notype with regards to language deficits. Speech sound 
problems were frequent, but not severe, whereas many 
children also had difficulties with receptive language. 
Language use in social settings was impaired too.

The reported heterogeneity in the severity and the type 
of speech and language problems associated with deletions 
in this gene urges to find and characterize in detail the clin-
ical presentation of new CNVs affecting the gene. More-
over, as genes work in a coordinated way, it is well possible 
that changes in the dosage of NRXN1 resulting from CNVs 
affect downstream genes with a more direct/profound im-
pact on speech and language. Having all this in mind, in this 
paper we provide a detailed characterization of the speech, 
language, and communication deficits observed in our pa-
tient. Additionally, we build on our current knowledge of 
the genetics of language development and language evolu-
tion, as well as on the observed changes in the expression 
pattern of selected genes in the blood of our proband, for 
hypothesizing about the molecular causes of language dys-
function associated with NRXN1 deletions.

Materials and Methods

Linguistic, Cognitive, and Behavioral Assessment
The global developmental profile of the proband was assessed 

with the Spanish version of the Battelle Developmental Inventory 
[de la Cruz and González, 2011], which consists of 341 items aimed 

to evaluate the subject’s personal/social development, adaptive ca-
pabilities, gross and fine motor abilities, receptive and expressive 
communication skills, and cognitive development. In addition, the 
proband’s language features and communication skills were exam-
ined in detail through the analysis of a 10-min sample of an inter-
action between the child and her sister while playing in a room at 
her speech language therapist’s place under her mother's surveil-
lance. The conversation was video-recorded and then transcribed 
and coded using the CHAT (Codes for the Human Analysis of 
Transcripts) software, a tool of the CHILDES Project [MacWhin-
ney, 2000]. CHAT allows to code for speech production phenom-
ena on the main lines of the transcript, and for phonological, mor-
phological, syntactic, and pragmatic phenomena on dependent 
lines. Information about prosody, dialectal articulation, commu-
nicative gestures, and communicative use of gaze can be included 
within square brackets in the main lines. Pauses are also coded in 
the main lines following CHAT conventions for estimated dura-
tion. We tagged every language error or anomaly with an indica-
tion of the structural components of language affected. We then 
evaluated their impact on communication and labelled them ac-
cording to PREP-CORP (PRagmatic Evaluation Protocol for the 
analysis of oral CORPpora) [Fernández-Urquiza et al., 2017a]. 
This protocol has been previously used for outlining the pragmat-
ic profiles of several neurodevelopmental disorders [e.g., Fernán-
dez-Urquiza et al., 2015, 2016, 2017b; Shiro et al., 2016, 2019; Diez-
Itza et al., 2018, 2022].

Molecular Analyses
Microarrays for Whole-Genome CNV Search and 
Chromosome Aberration Analysis
Peripheral venous blood lymphocytes were grown following 

standard protocols and collected after 72 h. DNA from the patient 
and her parents was extracted from 100 μL of EDTA-anticoagulated 
whole blood using MagNA Pure (Roche Diagnostics, West Sussex, 
UK). The DNA was then hybridized on a CGH platform (Agilent 
Technologies). The derivative log ratio spread value was 0.13. The 
platform included 60.000 probes. Data were analyzed with the Agi-
lent Genomic Workbench 7.0, and the ADM-2 algorithm (threshold 
= 6.0; aberrant regions had more than 5 consecutive probes).

Microarrays for Whole-Genome Expression Analysis
In order to determine the genes that could be differentially ex-

pressed in the proband compared to her healthy parents, microar-
ray analyses of blood samples from the 3 of them were performed. 
Total RNA was extracted with the PAXgene Blood RNA Kit IVD 
(Cat. No./ID: 762164). RNA quality and integrity were confirmed 
with a Bioanalyzer RNA 6000 Nano. All samples had RNA integ-
rity number values >9. An Affymetrix® Scanner 3000 7G was then 
used for analyzing transcriptome changes. The resulting raw data 
were processed with the Affymetrix® GeneChip® Command Con-
sole® 2.0 program. Next, *.CEL files were checked to certify the 
RNA integrity and the suitability of the labeling and the hybridiza-
tion processes. Finally, the raw data from the different arrays were 
normalized with the SST (Signal Space Transformation)-RMA 
(Robust Microarray Analysis) tool [Irizarry et al., 2003]. Normal-
ized data (*.CHP files) were subsequently used to search for dif-
ferentially expressed genes in the proband compared to her par-
ents. Statistical analyses were conducted with the LIMMA (Linear 
Models for Microarray Analysis) package of BioConductor, using 
the TAC 4.0 software.
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In silico Analyses
In order to delve into the molecular causes of the speech and 

language problems exhibited by the girl, we used String 11.0 (www.
string-db.org) for finding putative functional links between 
NRXN1 and the products of genes important for language. We fo-
cused on 2 types of genes. A first group of genes encompasses can-
didates for highly prevalent (specific) language disorders, in par-
ticular, developmental dyslexia (DD) and specific language im-
pairment (SLI). For DD, we relied on the list provided by 
Paracchini et al. [2016], which includes genes resulting from can-
didate association studies, genome-wide association analyses 
(GWAs), quantitative GWAs, CNV studies, and next-generation 
sequencing (NGS) analyses; but we also surveyed the literature via 
PubMed (https://pubmed.ncbi.nlm.nih.gov/), looking for addi-
tional candidates. For SLI, we made use of the lists published by 
Pettigrew et al. [2016] and Chen et al. [2017], which include can-
didates resulting from linkage analyses, GWA studies, and NGS 
analyses; but we also surveyed the literature via PubMed for find-
ing other strong candidates for SLI. A second group of genes en-
compasses candidates for language evolution, as discussed by 
Boeckx and Benítez-Burraco [2014a, b] and Benítez-Burraco and 
Boeckx [2015]. These genes are primarily expected to account for 
the recent globularization of the human skull/brain and ultimate-
ly, for the cognitive changes resulting in our species-specific abil-
ity for acquiring and using languages. These genes fulfil several of 
the following criteria: (1) they have changed (and/or interact with 
genes that have changed) after our separation from extinct homi-
nins, particularly from Neanderthals, these changes including ei-
ther changes in their coding regions, in their regulation, or in both; 
(2) they play a role in brain development, wiring, and/or function; 
and/or (3) they are candidates for language deficits in broader, 
highly prevalent cognitive disorders, particularly ASD and SZ [for 
further details, see Benítez-Burraco and Murphy, 2016; Murphy 
and Benítez-Burraco, 2016, 2017]. A potential limitation of this 
approach is that not all the genes within these 2 sets result from 
GWAs based on large samples. Both sets of genes are listed in on-
line supplementary File 2 (for all online suppl. material, see www.
karger.com/doi/10.1159/000524710). String 11.0 predicts physical 
and functional associations between proteins relying on different 
sources (genomic context, high-throughput experiments, con-
served coexpression, and text mining) [for details, see Szklarczyk 
et al., 2015]. Because we were interested in finding robust func-
tional links, we limited our search to protein-protein interaction 
databases and curated databases of protein interactions (Biocarta, 
BioCyc, GO, KEGG, and Reactome).

Results

Clinical History
The proband was born by caesarean section after an 

uncomplicated pregnancy. She weighed 2.6 kg at birth 
and presented with congenital torticollis that required a 
year of rehabilitation. She was fed with artificial lactation, 
and the transition to solid feeding went smoothly. At 9 
months of age, she was referred to the Paediatric Neurol-
ogy Unit, because her parents reported that the girl’s de-

velopment was delayed compared to her older sister. She 
was diagnosed with global psychomotor developmental 
delay. At 13 months of age, a cranial MRI was performed. 
Results were suggestive of an increase in extra-axial spac-
es, supratentorial ventriculomegaly, and mega cisterna 
magna. At that age, the girl also began to attend day care. 
At 15 months of age, she seemed to evolve favourably de-
spite her maturational delay. At 17 months of age, urine 
and metabolic studies were required, as the girl suffered 
from anemia. At 21 months of age, her verbal compre-
hension abilities seemed to have slightly improved, but 
her expressive impairment was still dramatic, as she was 
only able to produce a few single words. Regarding her 
family history, it is of interest that her paternal uncle suf-
fered from SZ and ID, her father presented with motor 
tics, and her paternal great-grandmother suffered from 
cognitive and motor impairment.

Language and Cognitive Development
At 27 months of age, the proband was assessed with the 

Battelle Developmental Inventory (see Fig. 1). At this mo-
ment, the girl exhibited a 16-month delay in her adaptive 
abilities and her expressive communication skills, and a 
14-month delay in her receptive communication abilities. 
She also presented with a 10-month cognitive delay. By 
contrast, her personal social skills and her gross motor 
abilities were less impaired.

At 42 months of age, when the proband began to at-
tend school, she was diagnosed with a severe develop-
mental delay. Regarding her cognitive (dis)abilities, the 
girl showed scattered attention, problems with making 
associations, poor imitation capacity, absence of symbol-
ic play, and difficulties with normal social interaction. She 
also experienced difficulties expressing and identifying 
emotions, although she did not present with behavioral 
problems. Concerning her language development, the 
girl exhibited a severe mixed language delay. She was un-
able to construct simple sentences and her speech was 
barely intelligible.

At 60 months of age, the proband’s language abilities 
had improved only slightly. On the expressive domain, 
she occasionally uttered 2-word phrases, and her speech 
difficulties persisted. At that age, the girl started to receive 
speech therapy.

At the age of 72 months, when the girl entered the pri-
mary school, her cognitive and behavioral abilities were 
examined again. The girl was reported to exhibit moder-
ate ID, emotional and behavioral deficits, as well as learn-
ing difficulties: for succesfully achieving and performing 
specific activities, she needed a very structured learning 
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environment with constant monitoring and aid from 
adults. Overall, she showed a notable developmental de-
lay compared to her peers.

At 85 months of age, the proband was assessed again 
with the Battelle Developmental Inventory. As shown in 
Figure 1, the gap between the girl’s chronological age and 
her developmental age had increased in all the assessed 
areas, being expressive language the most impaired do-
main. At that moment, the proband presented with ID 
and significant problems in the areas of social interaction 
and verbal communication. She also exhibited ritualized 
and disordered behaviors, such as smelling objects, as 
well as high levels of impulsivity and attention deficit. Her 
broad independence and adaptive skills were also below 
expectations for her chronological age.

At 97 months of age, a third evaluation with the Bat-
telle Developmental Inventory was carried out, which 
showed a significant setback with respect to the 2 previ-
ous assessments, the proband’s personal/social and adap-
tive skills being the most affected domains, along with her 
expressive language (Fig. 1).

In addition, at that age, we also examined in detail the 
structural and functional features of the child’s language, 
as well as her communication skills through the analysis 
of a naturally occurring interaction with her mother and 

sister. The full record can be found in online supplemen-
tary File 1. The proband’s speech featured frequent omis-
sions of initial consonants (e.g., siguiente > iguiente* “fol-
lowing”; quita > ita* “remove”; ventana > entana* “win-
dow”), as well as consonant clusters simplification (e.g., 
verde > vele* “green”; espejo > epejo* “mirror”; pastel > 
fafé* “cake”; armario > ababio* “closet”), and sound sub-
stitutions (e.g., ducha > lucha* “shower/fight”; roja > 
doja* “red”; armario > armadio* “closet”; aquí > adí* 
“here”; música > muzita* “music”; pastel > fafé* “cake”). 
Consonant frontalization was also frequently observed 
(e.g., aquí > adí* “here”; armario > ababio* “closet”; pastel 
> fafé* “cake”), particularly, of alveolar /s/ into interden-
tal /θ/ (e.g., silla > zilla* “chair”; esto > ezto* “this”; eso > 
ezo* “that”; sí > zí* “yes”; música > muzita* “music”). Ad-
ditionally, the mean length of utterance in words of the 
girl’s discourse was very low, of 0.981. This roughly cor-
responds to a restricted holophrastic (i.e., one-word) lan-
guage, which is typically found in children from 1 to 2 
years of age. Although the proband did not produce truly 
syntactic structures, a hallmark of her discourse was the 
avoidance or the phonetic alteration of definite and in-
definite articles (e.g., la ropa > e dopa* “the clothes”; las 
manos > a mano* “the hands”).
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With regards to the pragmatic component, the child 
did not seem able to properly engage in conversation. 
Most of her turns at talk, even being verbal by nature 
(Fig. 2), were reactive, in response to her interlocutor’s 
requests. Usually, the interlocutor needed to repeat the 
question twice or 3 times in order to obtain a minimal 
answer (verbal or nonverbal). In the infrequent cases 
when the child took the floor, she could generate echo-
lalic utterances only.

Furthermore, the pragmatic skills needed for under-
standing the logic of conversation as described by Grice 
[1975] were seriously impaired. Specifically, transgres-
sions of the maxim of relation (i.e., say things relevant to 
the topic under discussion) were pervasive (e.g., when 
asked to name a music player, she might say “dance”; 
when asked about a picture, she might reply “paper”; or 
when asked about some windows in the room, she might 
reply by counting them: “one, two, etc.”), as well as trans-
gressions of the maxim of quantity (i.e., provide the right 
amount of information), so that the child might refer to 
the majority of the things around by means of demonstra-
tive pronouns like “this” and “that”, which are not infor-
mative enough. Finally, her communicative use of gaze 
was also impaired. Usually, she did not establish visual 
contact with her conversational partner, and she experi-
enced difficulties with joint attention when asked to name 

an object. No compensatory strategies aimed to improve 
her communication deficits were observed (e.g., asking 
for help when she was unable to find a word).

To sum up, our proband exhibits severe speech and 
language deficits, with her expressive skills being dramat-
ically affected, to the point that she is unable to pronounce 
words correctly, to build up simple sentences, and to 
name familiar things around her. These deficits hinder 
the intelligibility of her discourse and preclude from suc-
cessfully communicating. Language comprehension is 
also seriously impaired, as well as pragmatic abilities: she 
shows no metapragmatic awareness (i.e., she is unable to 
realize which of her utterances are problematic or failed, 
and she is unable to generate compensatory strategies 
aimed to improve communicative success); she frequent-
ly produces non-related, tangential and/or insufficiently 
informative answers; she is not able to properly engage in 
conversation according to the turn-taking rules [Sacks et 
al., 1974], and she makes no communicative use of gaze.

Cytogenetic and Molecular Analyses
An array comparative genomic hybridization (array-

CGH) was performed when the proband was 5 years and 
1 month old. The array confirmed the presence of a dele-
tion of 0.186 Mb in the 2p16.3 region (arr[hg19] 
2p16.3(50761778_50947729)×1), predicted to be patho-
logical, and affecting exons 3–7 of the NRXN1 gene 
(Fig.  3a, b). The deletion was inherited from the pro-
band’s healthy father.

We then used String 11.0 (https://www.string-db.org) 
for finding functional links between NRXN1 and the 
products of genes important for language, specifically, 
candidates for DD and SLI, but also candidates for lan-
guage evolution. Because String did not predict any func-
tional link of interest between NRXN1 and the products 
of these genes (data not shown), we conducted addition-
al in vitro analyses. Specifically, we performed microarray 
analyses of blood samples from the proband to determine 
whether she exhibited altered patterns of gene expression 
that may account for the observed deficits. We used her 
healthy carrier father and her healthy non-carrier mother 
as controls. The results of the microarrays are shown in 
online supplementary File 3. We found that NRXN1 was 
only slightly upregulated in the proband (1.27-fold change 
[FC] compared to her healthy non-carrier mother; 1.1 FC 
compared to her healthy carrier father). Additionally, we 
checked whether the candidate genes for language disor-
ders and/or evolution used in our in silico analyses were 
differentially expressed in the girl compared to her par-
ents. For most of the candidates for language disorders, 

■ empty ■ non-verbal ■ paralinguistic ■ holophrastic

Fig. 2. Nature of the conversational turns provided by the child 
during a spontaneous conversation with a peer. Empty turns: the 
child provided no answer at all, ignoring her interlocutor and fo-
cusing on the objects she was playing with. Non-verbal turns: the 
child produced a gestural action in response to her interlocutor’s 
request. Paralinguistic: the child tried to take the turn but was only 
able to produce fillers, such as non-verbal vocalizations. Holo-
phrastic: the child generated single-word responses.
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a

b

Fig. 3. Chromosomal alterations found in the proband. a Screen capture of the array-CGH of the proband’s chro-
mosome 2 showing the microdeletion at 2p16.3. b Screen capture of the UCSC Genome Browser (https://genome.
ucsc.edu/) showing the extension of the deletion in NRXN1.
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es >5 in the proband compared to both healthy parents. c Fold changes in the expression levels of candidates for 
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we found no significant differences (i.e., FC > 1.5 com-
pared to both healthy parents). However, some of them 
(CNTNAP2, ROBO1, and SETBP1) were significantly 
downregulated in the proband, whereas some others 
(KIAA0319, KANSL1, NFXL1, and S100B) were signifi-
cantly upregulated (Fig.  4a). Regarding candidates for 
language evolution, we found that most genes that were 
differentially expressed genes (FC > 1.5 compared to both 
healthy parents) were upregulated in the proband (in-
cluding DYRK1A, ASPM, NCAM1, BAZ2A, SLIT2, 
DUSP1, FLNA, PLAUR, CDC42, SLIT1, RUNX2, and 
TLE3) (Fig. 4c). Finally, we searched for additional can-
didates for the proband’s language deficits, looking for 
genes exhibiting the strongest FC in our subject (i.e.,  
FC > 5 compared to both unaffected parents). We found 
that several genes of interest were strongly downregulat-
ed (KIAA1324, GSTM1, PDZK1IP1, and LIN7A), where-
as only 1 gene (RAP1GAP) was strongly upregulated 
(Fig. 4b).

We then checked the expression patterns in the brain 
of genes of interest using the Genotype-Tissue Expression 
(GTEx) project interface   (https://www.gtexportal.org/
home/). Our results are summarized in Figure 5. With 
regards to the candidates for language disorders and/or 
evolution that are significantly down- or upregulated in 
the blood of our proband, we found that around 50% are 
more expressed in the brain than in the blood. These in-
clude S100B (strongly expressed in the spinal cord, the 
substantia nigra, the hypothalamus, and the hippocam-
pus), NCAM1 (highly expressed across the whole brain), 
SLIT1 (expressed throughout the brain), CNTNAP2 
(more expressed in the cortex), and KIAA0319 (highly 
expressed in the cortex and parts of the basal ganglia). Fi-
nally, with regards to the genes that are strongly down-
regulated in the proband, we found that LIN7A is ex-
pressed at similar levels in the nervous system and in the 
blood, although it is upregulated in the cerebellum.  
PDZK1IP1 is expressed at lower levels in the brain than 
in the blood. Transcripts of this gene are preferentially 
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String, version 11.0 [Szklarczyk et al., 2015] license-free software 
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Colored nodes symbolize genes/proteins included in the query. 
The color of the lines represents different kind of evidence, as 

shown in the legend. Stronger associations between proteins are 
represented by thicker lines. The medium confidence value was 
0.0400 (a 40% probability that a predicted link exists in a particular 
database). The diagram only represents the potential connectivity 
between the involved proteins, which has to be mapped onto par-
ticular biochemical networks, signaling pathways, cellular proper-
ties, aspects of neuronal function, or cell types of interest.
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found in the spinal cord. GSTM1 is expressed at similar 
levels in the blood and in the brain, where it is mostly ex-
pressed in the frontal cortex and the basal ganglia. 
KIAA1324 is expressed at higher levels in the brain, par-
ticularly in the cortex, the hypothalamus and parts of the 
basal ganglia. Lastly, RAP1GAP is expressed at higher lev-
els in the brain than in the blood, particularly in the cortex 
and the basal ganglia.

Finally, we used String 11.0 for knowing more about 
functional interactions of interest between the proteins 
encoded by the genes found strongly dysregulated in the 
proband and the proteins encoded by candidate genes for 
language disorders and/or evolution. We found predicted 
functional links between LIN7A and GRIN2B, ERBB4, 
and EGFR, as well as between RAP1GAP and CDC42 and 
HRAS (Fig. 6).

Discussion

The widespread application of NGS facilities, particu-
larly array-CGH, to people with conditions featuring cog-
nitive and language deficits has resulted in an increasing 
list of candidate genes for these problems. Nonetheless, it 
is usually difficult to obtain robust genotype-to-pheno-
type links, particularly in the case of complex, multifacto-
rial traits like language. In this paper, we provide a de-

tailed characterization of the language problems exhib-
ited by a girl with a microdeletion in 2p16.3 affecting part 
of the NRXN1 gene. Mutations or genomic losses in this 
gene have been associated with diverse cognitive and be-
havioral problems, including language and communica-
tion deficits [Béna et al., 2013; Curran et al., 2013; Brignell 
et al., 2018; Al Shehhi et al., 2019], although we still lack 
a mechanistic account of these problems.

Our proband exhibits most of the cognitive, behav-
ioral, and neurological anomalies observed in patients 
with losses of NRXN1. This is specifically true for her 
speech, language, and communication (dis)abilities (Ta-
ble 1).

From our detailed analysis of the proband’s speech 
problems, we conclude that they are indicative of child-
hood apraxia of speech (CAS), a condition characterized 
by inconsistent errors on consonants and vowels in re-
peated productions of words and inappropriate prosody. 
Nonetheless, we have also found evidence of impaired 
phonological awareness. Our results are thus in line with 
findings by Brignell et al. [2018], who suggest that articu-
lation and phonological problems co-occur in children 
with NRXN1 deletions.

We also found that besides her severe expressive lan-
guage delay, the receptive skills of our proband are also 
notably affected. This finding is also in line with previous 
research [e.g., Ching et al., 2010; Gregor et al., 2011; Béna 
et al., 2013; Curran et al., 2013; Dabell et al., 2013].

Finally, we report for the first time on the pragmatic 
impairment associated with deletions of NRXN1. This 
pragmatic deficit consists of an inability to properly en-
gage in turn-taking during conversation together with a 
reduced metapragmatic awareness, which impedes per-
ceiving the violation of the logic and the rules of conver-
sation. All this results in different abnormal behaviors 
during conversation, like producing tangential or perse-
verating answers to new questions, or interpreting utter-
ances in a literal way. These pragmatic problems seem-
ingly become exacerbated by other co-occurring prob-
lems, like her reduced vocabulary, her altered expressive 
language/grammatical skills, her attention deficit, and 
her ASD-like features.

Overall, this language and communication profile par-
tially overlaps with the deficits found in other neurode-
velopmental disorders, such as ASD, ADHD, and moder-
ate to severe ID, which are commonly comorbid condi-
tions in children with NRXN1 deletions (ASD: 43–65% 
[Schaaf et al., 2012; Béna et al., 2013; Dabell et al., 2013; 
González-Mantilla et al., 2016]; ADHD: 9–41% [Schaaf et 
al., 2012; Lowther et al., 2017]; ID: 77–92% [Schaaf et al., 

Table 1. Summary table with the most relevant clinical features of 
our proband compared to patients with deletions of NRXN1 
according to Brignell et al., 2018 and DECIPHER

Cognitive/behavioural features

Intellectual disability +
Autism spectrum disorder +
Attention deficit hyperactivity disorder +
Schizophrenia
Anxiety
Speech impairment +
Expressive language impairment +
Receptive language impairment +
Impaired pragmatics (social communication difficulties) +
Brain/neurological findings
Childhood apraxia of speech +
Dysarthria
Hypotonia +
Epilepsy
Complex neurodevelopmental disorder +

+, features present in our proband.
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2012; Béna et al., 2013; Dabell et al., 2013]). In fact, as 
pointed out by Lowther et al. [2017], around 46% of indi-
viduals with NRXN1 deletions present with dual neuro-
developmental disorder diagnoses, as it is the case of our 
proband, who was diagnosed with a moderate ID, but 
who also exhibits ADHD features, as well as ASD-like 
traits, including problems with social interactions, some 
ritualized behaviors, and altered sensory experience. Bri-
gnell et al. [2018] have suggested that the speech and lan-
guage problems of individuals with NRXN1 deletions 
could result from their ID and ASD features, a possibility 
that is supported by several studies pointing to a correla-
tion between ID, ASD, and language difficulties [Levy et 
al., 2010; Liao et al., 2015].

For this reason, besides providing a more detailed pro-
file of the problems with language exhibited by our pro-
band, as well as some hints about their cognitive causes, 
we also aimed to advance an alternative hypothesis about 
the causes of the language problems resulting from losses 
of the NRXN1 gene. The known roles of NRXN1 in syn-
apse development and maintenance, and neuron network 
assembly during cortical development [Missler and Süd-
hof, 1998; Südhof, 2008; Gjørlund et al., 2012; Jenkins et 
al., 2016], are compatible with a putative role in the de-
velopment and maintenance, specifically, of brain cir-
cuits underlying language function. This possibility is re-
inforced by the fact that the gene is expressed in areas 
involved in language processing, particularly, the cerebel-
lum, which contributes significantly to motor planning, 
but also to many aspects of language processing [Vias and 
Dick, 2017; Mariën and Borgatti, 2018], along with the 
prefrontal cortex region, which is a core region for speech 
and language [Jenkins et al., 2016]. Deficits in the frontal 
cortex are known to impact on executive function, and 
problems with executive function have been hypothe-
sized to contribute to diverse neurodevelopmental disor-
ders, including ASD, ADHD, and SZ [Ozonoff and Jen-
sen, 1999; Martos-Pérez and Paula-Pérez, 2011]. As we 
have repeatedly pointed out, our proband exhibits ASD- 
and ADHD-like features. Additionally, her paternal un-
cle, who was also a carrier of the NRXN1 deletion inher-
ited by our proband, presented with SZ. Furthermore, ex-
ecutive dysfunction has been claimed to account for the 
generativity deficit observed in ASD (i.e., the lack of new 
ideas, behaviors, and utterances tailored to new contexts) 
and ultimately, for the stereotypies, echolalic utterances 
and restrained interests typical of this condition [Turner, 
2000; Gilotty et al., 2002]. Additionally, some studies 
[e.g., Perner and Lang, 2000; Russell, 2000; Ibáñez-Baras-
si, 2005] have associated executive dysfunctions with an 

impaired theory of mind. Overall, one could hypothesize 
that the NRXN1 deletion found in our proband may im-
pact on her executive function, thus affecting a wide range 
of cognitive abilities, such as attention (which plays a cen-
tral role in learning and communication), theory of mind 
(necessary for the development of adequate communica-
tion skills) and, of course, speech and language.

Brignell et al. [2018] support the view that there is no 
specific linguistic profile for deletions of NRXN1. We 
agree that the speech, language, and communication def-
icits found in our proband can be expected to result to a 
great extent from the impairment of more basic cognitive 
functions, which are also affected in other high-prevalent, 
co-morbid neurodevelopmental conditions in children 
with NRXN1 deletions. Nonetheless, we think that it is 
possible to identify and characterize a specific molecular 
pathway accounting for the speech and language prob-
lems observed in deletions of NRXN1. Accordingly, our 
hypothesis is that changes in NRXN1 dosage might im-
pact on strong candidates for language development and 
evolution. In our proband,  NRXN1 is not significantly 
dysregulated compared to her healthy parents. We  did 
not find either in silico evidence of a functional connec-
tion between the protein NRXN1 and the products of 
candidates for language development, impairment, and/
or evolution. Nonetheless, we have found that several 
candidates for language disorders and/or language evolu-
tion are indeed dysregulated in the proband’s blood. 
While as noted we have no evidence of a direct effect of 
the loss of NRXN1 on the dysregulation of these genes, 
these changes can be expected to contribute to the lan-
guage deficits observed in the proband. Among the genes 
found downregulated, we wish to highlight the DD can-
didates ROBO1 and SETBP1. The former encodes a pro-
tein involved in thalamocortical axon development and 
plays a critical role in the establishment of vocal learning 
pathways in many species [Pfenning et al., 2014]. Muta-
tions in the latter give rise to Schinzel-Giedion syndrome, 
a clinical condition entailing occasional epilepsy and se-
vere developmental delay [Ko et al., 2013; Miyake et al., 
2015], as well as behavioral and social deficits [Coe et al., 
2014]. Also the DD candidate CNTNAP2 is found strong-
ly downregulated in our proband. This gene encodes a 
protein associated with K+ voltage-gated channels in the 
pyramidal cells of the temporal cortex [Inda et al., 2006], 
which contributes to regulate brain connectivity and 
morphology [Scott-Van Zeeland et al., 2010; Tan et al., 
2010; Dennis et al., 2011], dendritic arborization and 
spine development [Anderson et al., 2012], and axono-
genesis in conjunction with ROBO factors [Banerjee et 



Benítez-Burraco/Jiménez-Romero/
Fernández-Urquiza

Mol Syndromol 2022;13:496–510506
DOI: 10.1159/000524710

al., 2010]. CNTNAP2 has been also associated with lan-
guage and speech regression [Strauss et al., 2006; Mar-
chese et al., 2016; Smogavec et al., 2016], SLI [Newbury et 
al., 2011], ASD [Alarcón et al., 2008; Bakkaloglu et al., 
2008], CAS [Worthey et al., 2013], and language impair-
ment in SZ [Poot, 2015]. As noted, CAS is a core symp-
tom in our proband, whereas one of her relatives has been 
diagnosed with SZ. Moreover, several candidates for DD 
are upregulated in the proband, including KIAA0319, 
KANSL1, and S100B. KIAA0319 encodes a membrane 
protein contributing to the interactions between neurons 
and radial glial cells during neuronal migration [Parac-
chini et al., 2006; Velayos-Baeza et al., 2008]. Mutations 
in KANSL1, which encodes a component of the NSL1 
complex, important for chromatin organization and gene 
transcription regulation, result in Koolen-de Vries syn-
drome (OMIM #610443). This clinical condition features 
epilepsy, developmental delay, and moderate ID, which 
impacts mostly on expressive language development 
[Koolen et al., 2016]. Finally, S100B encodes a calcium-
binding protein involved in neurite extension, axonal 
proliferation, and synaptic plasticity and learning [Sorci 
et al., 2013].

Among the candidates for language evolution (many 
of them resulting in cognitive disorders like ASD or SZ 
when mutated) that are found dysregulated in the pro-
band, we wish to highlight SLIT1, SLIT2, and HES1. The 
SLIT/ROBO pathway is thought to play a crucial role in 
the externalization of language (i.e., speech) [for details, 
see Boeckx and Benítez-Burraco, 2014b]. Several other 
genes related to (the evolution of) speech are upregulated 
in the girl, including DUSP1, involved in vocal learning 
in songbirds [Horita et al., 2010, 2012]; PLAUR, part of 
FOXP2’s interactome [Royer-Zemmour et al., 2008; Roll 
et al., 2010] and a candidate for speech dyspraxia [Roll et 
al., 2006]; TLE3, a target of FOXP2 in the inferior prefron-
tal cortex [Spiteri et al., 2007]; and FLNA, which encodes 
an actin-binding protein needed for cytoskeleton remod-
eling and neuronal migration [Fox et al., 1998], and that  
interacts with CDC42, which is also found upregulated in 
our proband. CDC42 regulates cortical interneuron mi-
gration [Katayama et al., 2013] and dendritic spine growth 
and function [Datta et al., 2015]. In mice, SLIT2 reduces 
CDC42 activity in living growth cones [Myers et al., 
2012], whereas depletion of ROBO1 prevents SLIT2 inhi-
bition of CDC42 activity [Yiin et al., 2009]. The abnormal 
expression pattern of these candidates for DD and speech-
related genes might account for the speech and phono-
logical problems exhibited by our proband.

Also of interest for explaining the language deficits ob-
served in the proband is the upregulation of NCAM1, a 
gene related to working memory performance [Bisaz et 
al., 2013], but also to neuropsychiatric conditions like SZ, 
bipolar disorder, and Alzheimer disease [Atz et al., 2007]. 
NCAM1 is a target of FOXP2 [Konopka et al., 2009], but 
also of RUNX2 [Kuhlwilm et al., 2013]. RUNX2 is strong-
ly upregulated in the proband. This is a key gene hypoth-
esized to account for some of the changes in the human 
brain morphology and configuration resulting in our 
cognitive uniqueness, particularly, our cross-modal 
thinking [for a detailed discussion, see Boeckx and 
Benítez-Burraco, 2014a]. Also ASPM is found upregulat-
ed in our proband. This is a strong candidate for micro-
cephaly, but also for the increase in brain size in the hu-
man lineage [Bond et al., 2002; Zhang, 2003]. Finally, the 
finding that DYRK1A is upregulated in the girl is of inter-
est too. Mutations in this gene result in microcephaly, as 
well as in ID and absence of speech [Van Bon et al., 2011; 
Courcet et al., 2012]. The gene seems to play a role in 
learning and memory [Hämmerle et al., 2003] via its ef-
fects on synaptic plasticity and on the balance between 
excitation and inhibition [Souchet et al., 2014]. Overall, 
the abnormal expression patterns of these genes can also 
contribute to the speech problems of the proband through 
their effects on the FOXP2 interactome, but also to her 
problems with grammar through their effect on the 
RUNX2 network.

Lastly, it is worth considering the biological roles 
played by the genes that are strongly dysregulated in the 
blood of the girl compared to her healthy parents. The 
most promising genes for explaining her language deficits 
are LIN7A (found strongly downregulated) and  
RAP1GAP (found strongly upregulated). Both genes are 
expressed in the brain, particularly in the cerebellum 
(LIN7A) and the striatum (RAP1GAP), which are 2 re-
gions that are crucially involved in language processing 
[Silveri, 2020], particularly, in speech production [Ko-
nopka and Roberts, 2016]. Deletions in LIN7A, a gene en-
coding a scaffold protein important for synaptic function, 
impact on the development of the cerebral cortex and re-
sult in ID [Matsumoto et al., 2014]. Regarding RAP1GAP, 
it encodes a GTPase-activating-protein acting as a nega-
tive regulator of RAP1, which is involved in cell prolifera-
tion, adhesion, differentiation, and embryogenesis and, 
specifically, in neuronal migration [Yang et al., 2019] and 
the regulation of dendritic spine morphology in the stria-
tum [McAvoy et al., 2009] and the cortex [Chen et al., 
2005]. RAP1GAP mediates aversive behaviors in the nu-
cleus accumbens [Lin et al., 2020]. Interestingly, we have 
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found that the products of these 2 genes interact with the 
products of several candidates for language impairment 
and/or evolution, particularly, GRIN2A, GRIN2B, HRAS, 
and ERBB4. GRIN2A and GRIN2B are two of the compo-
nents of the NR2 subunit of a receptor for N-methyl-D-
aspartate (NMDA), involved in long-term potentiation 
and ultimately in memory and learning. Mutations in 
GRIN2A give rise to speech impairment and language re-
gression, as part of epileptic syndromes like Landau-Klef-
fner syndrome, continuous spike and waves during slow-
wave sleep (CSWSS) syndrome, or rolandic epilepsies 
[Carvill et al., 2013; Lesca et al., 2013; Dimassi et al., 2014]. 
The speech problems observed in patients include syllable 
repetitions, imprecise articulation, and problems with 
pitch and prosody, which are usually labelled as dyspraxia 
or dysarthria [Turner et al., 2015], and which parallel the 
speech deficits observed in our proband. By contrast, mu-
tations in GRIN2B are mostly related to behavioral prob-
lems, but also to motor and cognitive problems [Freun-
scht et al., 2013; Hu et al., 2016; Smigiel et al., 2016]. Con-
cerning HRAS, it is a candidate for DD and ASD, and 
encodes a GTPase that contributes to regulate neural 
growth and differentiation, long-term potentiation, and 
synaptic plasticity [Comings et al., 1996]. Lastly, ERBB4 is 
involved in the regulation of interneuron migration and 
in synchronizing neural oscillations in the cortex [Li et al., 
2012; Hou et al., 2014]. Mutations in ERBB4 result in ID 
and speech delay [Kasnauskiene et al., 2013]. In our view, 
the strong dysregulation of these genes could contribute 
as well to explain the speech, language, cognitive, and be-
havioral problems exhibited by our proband.

Conclusions

Although the exact molecular causes of the speech and 
language problems observed in our proband remain to be 
fully elucidated, we think that they might result from the 
dysregulation of several known candidates for language 
impairment and/or evolution with a known function on 
brain development and with a role in cognitive diseases 
impacting on speech and language, particularly, ASD, ID, 
and DD. This hypothesis needs to be properly tested. Par-
ticularly, the link between the loss of NRXN1 and the dys-
regulation of these genes needs to be probed in vitro and 
in vivo. Still, we hope that our findings contribute to a 
better understanding of the speech, language, cognitive, 
and behavioral phenotype resulting from mutations and 
CNVs of this key neurexin. More detailed accounts of the 
neurobiological basis of the deficits (and strengths) ex-

hibited by patients are necessary for improving (psycho)
pedagogical strategies aimed to ameliorate their prob-
lems.
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