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Abstract

Computational approaches for drug discovery such as quantitative structure–activity relationship 

(QSAR) rely on structural similarities of small molecules to infer biological activity, but are often 

limited to identifying new drug candidates in the chemical spaces close to known ligands. Here 

we report a biological activity-based modeling (BABM) approach, in which compound activity 

profiles established across multiple assays are used as signatures to predict compound activity 

in other assays or against a new target. This approach was validated by identifying candidate 

antivirals for Zika and Ebola based on high throughput screening data. BABM models were then 

applied to predict 311 compounds with potential anti-SARS-CoV-2 activity. 32% of the predicted 

compounds had antiviral activity in a cell culture live virus assay, the most potent compounds 

showing an IC50 in the nanomolar range. Most of the confirmed anti-SARS-CoV-2 compounds 

were found to be viral entry inhibitors and/or autophagy modulators. The confirmed compounds 

have the potential to be further developed into anti-SARS-CoV-2 therapies.
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Activity profiles generated from quantitative high-throughput screening improve drug candidate 

prediction

Introduction

The early-stage drug discovery process relies on target identification, assay development, 

and high throughput screening (HTS) to identify lead compounds for chemical optimization 

and further preclinical development. Traditional HTS campaigns are often limited to 1-2 

million compounds due to the high costs and operational bottle necks that limit the 

chance for lead identification.1,2 However, recent advances in computational technologies 

have made it possible to virtually screen millions of compounds for potential biological 

activity.2 Existing virtual screening (VS) methods can be grouped into two broad categories: 

ligand-based VS and target structure-based VS. Both methods depend on chemical structure 

information to make predictions while the target-based approach in addition requires the 

availability of detailed target protein information. These severe dependencies have tended to 

limit the applicability of such methods to querying only in the close structural vicinity of 

already known ligand structures and drug targets.

A critical advance that enabled the development of activity rather than structural paradigm 

described here was the large-scale application of quantitative HTS (qHTS)3, where every 

compound is tested in a broad concentration response format. The high-quality data from 

qHTS are thus substantially richer for use in computational modeling to predict activities 

of large compound libraries against new assays or new drug targets. In the past 15 years, 

our in-house collections of over half a million compounds have been screened in a wide 

spectrum of biological assays in qHTS format,4 resulting in compound activity profiles 

that enabled the development of a biological activity-based modeling (BABM) approach 

complementary to traditional structure-based approaches. Among our in-house libraries, the 

NCATS Pharmaceutical Collection (NPC)5 and the Library of Pharmacologically Active 

Compounds (LOPAC) have been screened in nearly every one of our ~2,000 assays 

providing the most comprehensive set of activity profiles that comprise an ideal training 

dataset for machine learning models.

Unlike traditional QSAR approaches (part of the ligand-based VS category),6,7 where 

similarity in chemical structure is used to infer biological activity, BABM builds on the 

hypothesis that compounds that show similar activity patterns tend to share similar targets 

or mechanisms of action.8,9 In this approach, each assay is treated as an independent 

descriptor. Analogous to structure descriptors, where the presence and absence of certain 

structure features or properties are used to represent a compound, the presence and absence 

of activities against a panel of assays form the activity profile or signature of a compound. 

If extracted from across multiple screening campaigns each at massive scale, such activity 
signatures can then be applied to infer compound activity in a completely new assay or 

against a completely new target.

A fundamental difference compared to traditional QSAR modeling is thus that BABM does 

not require any chemical structure information to make predictions, such that its application 

domain is not limited to small molecules with well-defined structures. In fact, BABM can 
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be applied to any substances with available biological profiling, including macromolecules 

and mixtures (e.g. natural products). Of particular note is that compounds showing similar 

activities do not necessarily share similar structures.10 Thus the BABM approach has no 

intrinsic limitations in discovering new chemical scaffolds.11 These new scaffolds can then 

serve as starting points for lead identification efforts and be used to construct new QSAR 

models for lead optimization.

The global pandemic of the highly contagious coronavirus disease 2019 (COVID-19), 

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),12 presented an 

urgent need for new methods that can quickly and systematically screen large compound 

libraries for new drug candidates. In this context, we first applied BABM to generate 

prediction models for two infectious diseases, Zika13 and Ebola,14 to test the robustness 

of BABM and its applicability to different assay and data types, and to benchmark against 

traditional QSAR methods. The BABM model identified actives that were experimentally 

verified with high confirmation rates (~50-80%). The approach was then applied to build 

prediction models for SARS-CoV-2. To build prediction models for these disease targets, 

we selected training data that included both qHTS assay data (SARS-CoV-2 and Zika virus 

(ZIKV) non-structural protein NS115) and data collected from published literature (SARS-

CoV-2 and Ebola virus (EBOV)16). These models, mostly trained on the qHTS activity 

profiles of the NPC and LOPAC library compounds, were applied to predict the activity of 

all ~0.5 million compounds in our in-house library. Models were constructed using BABM 

and the performances were compared with those of traditional QSAR models as well as a 

combination of both activity and structural features. A little over 300 compounds identified 

by the BABM models as potential anti-SARS-CoV-2 leads were then tested in a live virus 

assay with ~100 confirmed (>30%), validating the utility and accuracy of the BABM 

approach. The confirmed anti-SARS-CoV-2 compounds were further investigated for their 

potential antiviral mechanisms in terms of viral entry inhibition,17 SARS-CoV-2 main 

protease inhibition,18 and autophagy modulation.19 Some of the experimentally confirmed 

lead compounds may have the potential to be further developed into new antiviral therapies.

Results

Model performance and validation

Table 1 provides an overview of the three viral targets (SARS-CoV-2, ZIKV, EBOV) used 

for modeling. The entire model training, testing and validation process is illustrated in 

Figure 1. Model performance was measured by the area under the ROC curve (AUC-ROC; 

see Online Methods section for details). The majority of the models performed well on their 

corresponding test sets with mean AUC-ROC values >0.8 (Figure 2A and Supplementary 

Table 1). The structure-activity combined models (CM) showed the best performances 

compared to the models built on activity (BABM) or structure (SBM) alone with mean 

AUC-ROC values >0.83. Of the BABM models using data from different assay panels and 

compound libraries, the BABM-S and BABM-M models all showed good performances 

with mean AUC-ROC values of 0.79 and 0.84, respectively (Supplementary Table 1). The 

BABM-G models with the smallest assay panel for training showed the lowest AUC-ROC 

values averaging 0.75. The structure-based models generally showed lower performances 
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than the CM and BABM models with a mean AUC-ROC of 0.72. Supplementary Figure 1 

shows example ROC curves from each of the three types of models.

To further validate the models and identify new compounds with antiviral activity, a subset 

of model predicted actives was selected for each viral target for experimental validation 

(see Online Methods for details). For ZIKV, 1,676 selected actives predicted by the model 

were tested in the original NS1 assay15 that generated the data to train the models. To 

validate the EBOV models, the EBOV-eGFP infection assay15,20 was applied to test 96 

selected model predicted EBOV actives. All 96 compounds were first inspected at 30 

μM for potential cytotoxicity, resulting in 62 compounds with <50% cell killing, which 

were further tested for EBOV infection inhibition. The EBOV inhibition activity of these 

62 compounds were used to evaluate model performance. The positive predictive value 

[PPV = TP/(TP+FP)], i.e., the fraction of model predicted actives that are experimentally 

confirmed, was calculated for each model (Figure 2B and Supplementary Table 1). The 

model PPVs ranged from 30% (SBM for NS1) to 89% (CM-G for EBOV). The EBOV 

models showed higher PPVs (~80%) than the NS1 models (~40%). Compared to the active 

rates in their corresponding training datasets (i.e. original assay hit rate), all model predicted 

active sets were significantly enriched with true active compounds (two-tailed Fisher’s 

exact test: p<10−10) (Supplementary Table 1). For example, the active rate of the EBOV 

BABM-S model training set was 11.8% and the corresponding model PPV (i.e. experimental 

validation set active rate) was 80%. Thus the enrichment of actives by the EBOV BABM-S 

model was 6.8-fold (80/11.8). The enrichment of actives for all models (Table 1) ranged 

from 2.7-fold (BABM-S for NS1; p<10−20) to 27.5-fold (SBM for NS1; p<10−20).

Most models showed enrichments between 5- and 10-fold when compared to the active 

rates in the training set. The potency ranges of the experimentally confirmed actives are 

summarized in Table 1 and Figure 3. The models identified potent compounds for all three 

disease targets with IC50s in the nanomolar range (Figure 3). Experimental validation data 

for all models are provided as Supplementary Data 1.

Identification of anti-EBOV and anti-ZIKV compounds

Of the 50 compounds with anti-EBOV activity confirmed at 30 μM, we selected 27 that 

showed >90% inhibition of EBOV infection with minimal cytotoxicity (>80% cell viability) 

to test in concentration-response format (0.17 nM to 30 μM; 1:3 fold dilution; triplicate) 

to determine their EBOV inhibition potency. All 27 compounds showed concentration 

dependent inhibition of EBOV infection with IC50s ranging from 25 nM to 25 μM (Figure 

3A; Supplementary Data 2). Seven of these compounds were potent with IC50 ≤5 μM and 

were not apparently cytotoxic or at least six times more potent in the EBOV inhibition 

assay compared to the cell viability counter assay. Two of the seven compounds, umifenovir 

and difeterol, are known drugs (see Supplemental Information for details). The other five 

compounds have no previously reported anti-EBOV activity.

A subset (170) of the experimentally confirmed NS1-assay active compounds with relatively 

potent NS1 signal inhibition activity (IC50 <10 μM) and no apparent cytotoxicity were 

selected for secondary confirmation with compounds tested at 11 concentrations in triplicate 

(Figure 3B; Supplementary Data 2). Ten of the 170 compounds did not show activity in 
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the secondary confirmation assay yielding a confirmation rate of 94% for the NS1 assay. 

29 compounds showed potent inhibition with IC50 <1 μM, 17 of which were not apparently 

cytotoxic or at least three times more potent in the NS1 assay. A number of these potent 

compounds are known drugs or bioactive compounds (see Supplemental Information for 

details). The other eight potent compounds can potentially be developed into new antiviral 

therapies.

Identification of anti-SARS-CoV-2 compounds

The activity of 311 compounds predicted by the SARS-CoV-2 BABM models were tested 

in the live virus CPE assay, 99 of which were confirmed as active, yielding a hit rate of 

32% (Figure 2B and Supplementary Table 1). The model PPVs ranged from 32% (CM-S) 

to 38% (BABM-S). Compared to the active rates in their corresponding training datasets, 

all model predicted active sets were significantly enriched with true active compounds 

(two-tailed Fisher’s exact test: p<10−3) (Figure 3C and Supplementary Table 1). Compared 

to the hit rate of the original NPC screen (11%), the models were able to improve the hit 

rate by 2.8- to 3.3-fold (Table 1). The SBM was not used for compound selection because 

its performance (average AUC-ROC = 0.71) during model training and testing did not meet 

the 0.75 cutoff. Nonetheless, the SBM predictions made on the 311 compounds were used to 

assess the performance of the SBM on the experiment validation set in comparison with the 

BABM models (Figure 2B and Supplementary Table 1). The PPV of the SBM was 31.6%, 

lowest of all SARS-CoV-2 models. The potency ranges of the experimentally confirmed 

actives are summarized in Table 1 and Figure 3. Experimental validation data for all 311 

compounds are provided in Supplementary Data 1 and 3. The structures and WFS scores of 

~5,000 compounds predicted as active by at least one of the SARS-CoV-2 BABM models 

are provided as Supplementary Data 4.

The experimentally confirmed SARS-CoV-2 active compounds were further tested at 8 

concentrations (instead of 3 concentrations in the primary screen) to get more accurate 

potency measures (Supplementary Data 2 and 5). Nine of the 94 compounds became 

inactive in the secondary confirmation assay yielding a confirmation rate of 90% for the 

SARS-CoV-2 CPE assay. The most potent compound (MLS000699212-03; Benzaldehyde, 

3-methyl-, 2-(2,6-di-4-morpholinyl-4-pyrimidinyl) hydrazone) had an IC50 of 500 nM. This 

compound showed slight cytotoxicity inhibiting 55% cell viability with an IC50 of 14 μM, 

indicating a large therapeutic window (selectivity index or SI = 28). This compound has 

only one published study, which is a patent on a compound series described as autophagy 

modulators for treating neurodegenerative diseases.21 Autophagy has been implicated in 

the entry of coronavirus into host cells, including SARS-CoV, MERS-CoV and SARS-

CoV-222,23. Another potent compound with IC50 <1 μM (800 nM) is a synthetic compound 

with no previous literature report (NCGC00100647-01; N2,N4-bis(3-methylphenyl)-6-(4-

morpholinyl)-1,3,5-Triazine-2,4-diamine). In addition, 13 compounds had IC50 <5 μM, 8 of 

which are known drugs or bioactives (see Supplemental Information for details), and the 

other 5 are compounds without any well annotated biological activity. Some of the known 

anti-SARS-CoV-2 compounds reported in the literature, especially those currently in clinical 

trials for COVID-19, were also screened in our CPE assay with varying potencies,24 for 

example, remdesivir (10 μM), chloroquine (6.5 μM), lopinavir (12.6 μM), azithromycin 
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(48 μM), apilimod (23 nM), and emetine (46 nM). In comparison, the potencies of the 

anti-SARS-CoV-2 compounds identified by our models fall within the range of the known 

anti-SARS-CoV-2 compounds.

Antiviral mechanism of anti-SARS-CoV-2 compounds

There are multiple targets for therapeutics intervention against SARS-CoV-2 infection 

including viral entry into host cells, proteolysis of viral polypeptide by the 3C-like protease 

to release the non-structural proteins, and autophagy pathway in host cells.25 We further 

investigated the potential antiviral mechanism of the 85 experimentally confirmed anti-

SARS-CoV-2 compounds using three assays, the SARS-CoV-2 pseudotyped particle (PP) 

entry assay,26-28 the SARS-CoV-2 3C-like protease (3CLpro) assay,18 and the GFP-LC3 

assay for autophagy modulators (see Supplemental Information for details).29 Out of the 85 

anti-SARS-CoV-2 compounds, 53 were viral entry inhibitors determined by the PP entry 

assay, 35 were identified as autophagy modulators in the GFP-LC3 assay by all three 

parameters, and 52 were active in at least one autophagy parameter (Figure 4A). Two 

compounds showed marginal activity in the 3CLpro assay. The results from all three assays 

are summarized in Supplementary Data 2. These results suggest that autophagy plays a 

major role in the antiviral activity of the model identified anti-SARS-CoV-2 compounds. 

Most of these compounds are viral entry inhibitors, and 3CLpro inhibition (related to viral 

replication) is not a major antiviral mechanism of these compounds. The most potent anti-

SARS-CoV-2 compound, MLS000699212, showed potent inhibition (IC50 = 592 nM) of 

viral cell entry and was active in all three parameters of the autophagy assay, indicating a 

dual mechanism of action (Figure 4).

Discussion

Traditional QSAR models rely on chemical structure similarity to infer biological activity 

and thus are limited in their power to discover new chemical scaffolds. Consequently 

biological activity predictions made on chemicals with structure types not included in the 

training set are often not reliable – this is commonly referred to as the “applicability 

domain” (AD) issue.30 QSAR models are thus fundamentally restricted by their ADs, 

namely by the chemical spaces within which the models were originally trained. 

Incorporating biological response patterns into the models helps to alleviate this issue 

by expanding the model AD to cover structurally dissimilar chemicals that share similar 

activity profiles. Activity-based modeling is a relatively new concept, especially when 

applied to drug discovery. The prerequisite of activity-based modeling is the availability 

of sets of compounds tested consistently across multiple biological assays with the results 

serving as compound descriptors or fingerprints. This is enabled by the recent advances 

in HTS technologies that have produced a tremendous amount of biological activity data 

in a relatively short amount of time. As a center specialized in HTS, NCATS has a data 

repository that hosts biological response data on over half a million compounds tested 

against thousands of assays mostly in qHTS format, which form a rich set of activity profiles 

at unprecedented scale (over 130 million wells screened over the last 4 years) .3,31 We show 

here that a subset of these data could be used to build activity-based models to identify 

antiviral compounds for Zika, Ebola and COVID-19.
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Compared to traditional QSAR models built with chemical structure data alone, the BABM 

identified compounds that are structurally distinct from the training set and the compounds 

identified by the SBM (see Supplemental Information for details), demonstrating the 

advantage of the BABM in discovering new chemical types. Combining traditional 

structure-based models with BABM can maximize the chance of identifying the best lead 

compounds as new candidates for any therapeutic target of interest. Both the BABM and 

CM models used activity data in other assays as descriptors for training while the CM used 

structure features in addition. The model predictions were further validated experimentally. 

Using the ZIKV NS1 models for example, even though the BABM identified a larger portion 

of the experimentally confirmed actives (i.e., was more sensitive), the CM had a lower 

false positive rate (i.e., was more specific). Adding structure information helped the CM to 

achieve a slightly improved PPV. For all three viral targets modeled in this study, the CM 

models achieved the best overall performance compared to the SBM and BABM models. 

More intriguingly, the sizes of the training sets for all the models were much smaller than 

the prediction sets on which the models were applied, 30- to 100-fold for the BABM and 

CM models, and up to 300-fold for the SBM (Supplementary Table 2). That models built 

on a small training set performed well on predicting a much larger and more diverse set of 

compounds with accuracies on par with or better than most in silico screening approaches 

further demonstrated that the models were robust enough to be applicable to large and 

diverse compound collections to identify new leads.1,32

The SARS-CoV-2 BABM models identified ~100 compounds that were experimentally 

verified to show antiviral activity in a live virus assay. The results from further mechanism 

of action studies showed that most of these compounds inhibited SARS-CoV-2 cell entry, 

and/or modulated the autophagy process in host cells. Models built for Zika and Ebola also 

identified new lead compounds. In addition, we provided the prediction results of ~5,000 

compounds that were predicted as active by the SARS-CoV-2 BABM models as a resource 

to the scientific community to develop new anti-COVID-19 therapies. The activity-based 

approach was demonstrated here to be able to be rapidly applied to identify lead compounds 

for new targets or disease phenotypes.

As a complement to structure-based approaches, either ligand or target structure-based, the 

additional information provided by activity data is shown here to significantly improve the 

predictive power of VS models. Furthermore, the assays, as part of the activity signature, 

that contributed the most to the predictive power of the BABM models could provide clues 

to the underlying targets or mechanisms of the disease for which the models were built, such 

as COVID-19.33 The chemical scaffolds identified by BABM from an existing screening 

library can also be incorporated into QSAR models to screen other chemical libraries more 

efficiently with no bioactivity profiles available. Of note is that, in addition to HTS libraries, 

the general concept of BABM can be extended to any type of biological data, such as 

genomics and proteomics data,34 data generated on mixtures or antibodies, and clinical data, 

where clearly defined structure information is not available. As such the BABM approach 

shows the promise of broad applications in different areas of biology.
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Online Methods

SARS-CoV-2 cytopathic effect (CPE) assay

Vero-E6 cells (ATCC® VeroE6 CRL-1586) previously selected for high ACE2 expression 
35 (grown in EMEM, 10% FBS, and 1% Penicillin/Streptomycin) were cultured in T175 

flasks and passaged at 95% confluency. Cells were washed once with PBS and dissociated 

from the flask using TrypLE. Cells were counted prior to seeding. A CPE assay previously 

used to measure antiviral effects against SARS-CoV 36 was adapted for performance in 

384 well plates to measure CPE of SARS CoV-2 with the following modifications. Cells, 

harvested and suspended at 160,000 cells/ml in MEM/1% PSG/1% HEPES supplemented 

2% HI FBS, were batch inoculated with SARS CoV-2 (USA_WA1/2020) at M.O.I. of 

approximately 0.002 which resulted in approximately 5% cell viability 72 h post infection. 

Compound solutions in DMSO were acoustically dispensed into assay ready plates (ARPs) 

as 3 point 1:5 titrations (or 8 point 1:3 titrations for confirmation screen). ARPs were stored 

at −20°C and shipped to BSL3 facility (Southern Research Institute, Birmingham, AL) for 

CPE assay. ARPs were brought to room temperature and 5μl of assay media was dispensed 

to all wells. The plates were transported into the BSL-3 facility were a 25 μL aliquot of virus 

inoculated cells (4000 Vero E6 cells/well) was added to each well in columns 3-24. The 

wells in columns 23-24 contained virus infected cells only (no compound treatment). A 25 

μL aliquot of uninfected cells was added to columns 1-2 of each plate for the cell only (no 

virus) controls. After incubating plates at 37°C with 5% CO2 and 90% humidity for 72 h, 30 

μL of Cell Titer-Glo (Promega, Madison, WI) was added to each well. Following incubation 

at room temperature for 10 minutes the plates were sealed with a clear cover, surface 

decontaminated, and luminescence was read using a Perkin Elmer Envision (Waltham, MA) 

plate reader to measure cell viability.

NS1 TR-FRET assay

HEK293 cells were maintained in EMEM medium with 10% fetal bovine serum, 1% pen/

strep (Gibco, Cat. # 15140–122). Cells were seeded at 1000 cells/3 μL/well in the white 

1536-well plate and incubated at 37 °C with 5% CO2 overnight. Compounds in dilution 

were added to cells at 23 nL/well and incubated for one hour followed by addition of 2 

μL/well of the prototypic ZIKV strain, MR766 solution to cells (MOI = 0.5). After an 

incubation at 37 °C for 24 h, 2.5 μL/well of detection reagent mixture of two labeled anti-

ZIKV NS1 antibodies was added to assay plates. TR-FRET signals were measured using an 

Envision plate reader (PerkinElmer). Compounds were tested as 7 point 1:5 titrations in the 

primary screen and 11 point 1:3 titrations in triplicate in the confirmation screen. Data were 

normalized by using the control wells (without addition of ZIKV) as a negative control (0% 

NS1) and positive wells (with ZIKV) as 100% NS1 level.

ATP content assay for cell viability and compound cytotoxicity

Cells were seeded in the 1536- well assay plates and incubated for 16 hours at 37°C with 5% 

CO2. Test compounds dissolved in DMSO were added to assay plates at a volume of 23 nl/

well by an automated pintool workstation (Wako Automation, San Diego, CA). Compounds 

were incubated with cells for 48 hours at 37°C with 5% CO2. ATPlite, the ATP monitoring 

reagent (PerkinElmer), was then transferred to the assay plates and incubated for 15 minutes 
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at RT. The resulting luminescence was measured using the PHERAstar FSX plate reader 

(BMG Labtech, Cary, NC, USA). Data was normalized using the wells without cells as a 

control for 100% cell killing, and cell-containing wells with DMSO control were used as full 

cell viability (0% cell killing).

EBOV-eGFP infection assay

As described previously, 15,20 vero E6 cells were maintained in Dulbecco's modified Eagle 

medium (DMEM) (HyClone) supplemented with 10% fetal bovine serum (FBS) (Sigma-

Aldrich). The following Ebola virus was used: Ebola virus NML/H.sapiens-lab/COD/1976/

Mayinga-eGFP-p3 (EBOV/May-eGFP) (derived from an Ebola virus, family Filoviridae, 

genus Ebolavirus, species Zaire ebolavirus, GenBank accession No NC_002549). All work 

with infectious virus was performed in the biosafety level 4 (BSL-4) facility at the National 

Microbiology Laboratory (NML) of the Public Health Agency of Canada (PHAC) in the 

Canadian Science Centre for Human and Animal Health (CSCHAH), Winnipeg, Canada. All 

procedures were conducted in accordance with international protocols appropriate for this 

level of biosafety. The toxicity of compounds was evaluated in Vero E6 cells by using the 

PrestoBlue cell viability reagent, which is a resazurin dye-based assay (Life Technologies, 

Canada). Cells were plated, allowed to adhere overnight, and then treated with various 

compound concentrations for 2 h. Control cells received an equivalent volume of 10% 

dimethyl sulfoxide (DMSO) only. PrestoBlue cell viability reagent was added according to 

the manufacturer's protocol. Viability was determined by comparing fluorescence readings 

of treated cells to those of untreated controls.

3CLpro enzyme assay and counter screen18

SARS-CoV-2 3CLpro, sensitive internally quenched fluorogenic substrate, and assay buffer 

were obtained from BPS Bioscience (San Diego, CA, USA). The enzyme was expressed 

in E. coli expression system with a molecular weight of 34 kDa. The peptide substrate 

contains 14 amino sequence (KTSAVLQSGFRKME) with Dabcyl and Edans attached on 

its N- and C-termini, respectively. The reaction buffer is composed of 20 mM Tris-HCl 

(pH 7.3), 100 mM NaCl, 1 mM EDTA, 0.01 % BSA (bovine serum albumin), and 1 mM 1,4-

dithio-D, L-threitol (DTT). The 3CLpro enzyme assay was carried out in 1536-well black, 

medium binding microplates (Greiner BioOne, Monroe, NC, USA) with a total volume of 

4 μL that includes 2 μL 2X enzyme (50 nM) in reaction buffer and 2 μL 2X substrate 

(20 μM). The experiment was conducted at room temperature (RT). In brief, 2 μL/well 

enzyme was firstly added into 1536-well plate. Compounds in DMSO were then transferred 

as 23 nL/well with an automated pintool workstation (WAKO Scientific Solutions, San 

Diego, CA). The compounds and enzyme were incubated for 30 min at RT. Afterwards, 

2 μL/well substrate was dispensed into assay plate, followed by 1 hr incubation for the 

enzyme reaction. The fluorescent intensity was measured on a PHERAstar FSX plate reader 

(BMG Labtech, Cary, NC, USA) with Ex=340 nm/Em=460 nm. A counter-screen assay to 

eliminate the fluorescence quenching compounds was carried out by dispensing 4 μL of 

substrate containing fluorescent Edans fragment, SGFRKME-Edans, into 1536-well assay 

plates in the absence of enzyme. Compounds were pin transferred as 23 nL/well and the 

fluorescence signal was read. Compounds were tested as 11 point 1:3 titrations in duplicate 

for both enzyme assay and counter screen.
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Pseudotyped particle (PP) entry assay in 1536-well format

Cell line and cell culture: HEK293 cell line with stable expression of human 

ACE2 (HEK293-ACE2) was generated by Codex BioSolutions (Gaithersburg, MD).37 

In short, Expi293F cells (ThermoFisher) were seeded into cells a 6-well plate 

with 70-80% confluency. For each well, the cells were transfected with 2.5 ug 

pCMV_ACE2_IRES_Puromycin plasmid (Codex BioSolutions) using Lipofectamine 3000 

(ThermoFisher). Twenty-four hours later, the cells were disassociated with trypsin and 

transferred into 100-mm dishes. The cells were selected with 1 ug/ml Puromycin for 2-3 

weeks. Single colonies were picked into 24-well plates containing 1 ml of DMEM 10% 

FBS supplemented with 1 ug/ml Puromycin. Western blot was performed to screen the 

ACE2 expression clones with an ACE2 specific antibody. The positive clones were further 

confirmed with SARS-CoV2-S PP entry assay.

Pseudotyped particle (PP) generation: Pseudotyped particles (PPs), SARS-CoV2-S 

PP, VSV-G PP and delEnv (bald) PP were custom produced by Codex Biosolutions 

(Gaithersburg, MD) using previously reported methods using a murine leukemia virus 

(MLV) pseudotyping system.26,27 The SARS-CoV2-S construct with Wuhan-Hu-1 sequence 

(BEI #NR-52420) was C-terminally truncated by 19 amino acids to reduce ER retention28 

for pseudotyping.

PP entry assay: HEK293-ACE2 cells were seeded in white, solid bottom 1536-well 

microplates (Greiner BioOne) at 2000 cells/well in 2 μL/well medium, and incubated at 37 

°C with 5% CO2 overnight (~16 h). Compounds were titrated 1:3 in DMSO and dispensed 

via pintool at 23 nL/well to assay plates. Cells were incubated with test articles for 1 h at 

37 °C with 5% CO2, before 2 μL/well of PP was added. The plates were then spinoculated 

by centrifugation at 1500 rpm (453 xg) for 45 min, and incubated for 48 h at 37 °C 5% 

CO2 to allow cell entry of PP and expression of luciferase reporter. After the incubation, 

the supernatant was removed with gentle centrifugation using a Blue Washer (BlueCat Bio). 

Then 4 μL/well of Bright-Glo Luciferase detection reagent (Promega) was added to assay 

plates and incubated for 5 min at room temperature. The luminescence signal was measured 

using a PHERAStar plate reader (BMG Labtech). Compounds were tested as 11 point 1:3 

titrations in duplicate. Data was normalized with wells containing PPs as 100%, and wells 

containing control delEnv PP (no spike protein) as 0%.

GFP-LC3 high-content assay

As previously described,29 GFP-LC3 MEF (mouse embryonic fibroblasts) cells were 

dispensed at 800 cells/5 μl/well in 1536-well tissue culture-treated black/clear bottom, 

collagen coated plates (Corning, Acton, MA) using a Flying Reagent Dispenser (FRD, 

Aurora Discovery, Carlsbad, CA). The assay plates with cells were incubated at 37°C with 

5% CO2 for 5 h, followed by addition of 23 nL of compound or control, chloroquine 

diphosphate (CQ), into the assay wells using a Wako Pintool station (Wako Automation, 

San Diego, CA). After 18-h incubation at 37°C with 5% CO2, the cells were fixed with 

4% (v/v) paraformaldehyde (EMS, Hatfield, PA) and nuclei were stained with Hoechst 

33342 (Invitrogen, Madison, WI) for 30 min at room temperature. After washing twice with 

phosphate buffered saline (PBS) using Blue Washer (Blue Cat Bio, Concord, MA), the assay 
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plates were imaged for GFP-LC3 puncta formation using an Operatta CLS (Perkin Elmer) 

through 20x objective in confocal format. EGFP channel (Excitation 460-490nm/Emission 

500-550nm) and DAPI (Excitation 355-385nm/Emission 430-500nm) were used to measure 

the fluorescence intensities. Images were acquired from each well for one center field 

(around 25% of a single well area in a 1536-well plate) and analyzed with software of 

Operetta Harmony 4.6. The compartment analysis algorithm was used to identify the nuclei, 

apply a cytoplasmic mask and quantitate GFP spots in the GFP channel. A nuclear mask 

was generated from DAPI stained nuclei. Autophagosomal membrane-associated GFP-LC3 

(puncta) was detected as GFP-fluorescent vesicular objects that exceeded a threshold defined 

by untreated cells and that were located exclusively in the cytoplasmic area. Data was 

expressed as three output parameters i.e. “% of positive cells”, “Total Spot Area - Mean per 

Well” and “Relative Spot Intensity - Mean per Well”. Compounds were tested as 11 point 

1:3 titrations in triplicate.

In vitro assay and structure data

qHTS data generated on the NPC from the CPE assay (https://opendata.ncats.nih.gov/

covid19/index.html) as well as compounds reported as active from recent anti-SARS-

CoV-2 repurposing screens38-40 and drugs proposed by the scientific community as 

potential COVID-19 therapies41-44 were used to train the SARS-CoV-2 models. The 

detailed qHTS data analysis process including data normalization, correction, classification 

of concentration response curves, and activity assignment was described previously 45. 

Briefly, concentration response curves were fit to a four-parameter Hill equation yielding 

concentrations of half-maximal inhibition (IC50) and maximal response (efficacy) values 
3,46. From the CPE assay, compounds that showed concentration dependent response 

with >30% efficacy were considered active. Other compounds were considered inactive. 

Literature reported anti-SARS-CoV-2 compounds were considered active.

qHTS data generated in-house at NCATS were used to train the models for ZIKV NS1. 

NS1 activity data15 were generated in qHTS format on three bioactive collections: the 

Library of Pharmacologically Active Compounds (LOPAC, 1,280 compounds), the NCATS 

Pharmaceutical Collection (NPC, 2,816 approved and investigational drugs) 5, and the 

Mechanism Interrogation PlatE (MIPE, 1,866 cancer drugs with known mechanism of 

action) 47. Compounds that showed inhibition in both the ratio and 615 nm readouts were 

considered active. Compounds that were inactive in the ratio readout were considered 

inactive. Other compounds were considered inconclusive and excluded from modeling. A 

NCATS in-house collection, the Genesis library, of ~90K diverse compounds was also 

screened for NS1 activity at a single concentration (14 μM). From these results, compounds 

that showed >30% inhibition in both the ratio and 615 nm readouts were considered active 

and other compounds were considered inactive.

The activity data on ~2,600 drugs screened in an EBOV assay from a literature report were 

used to train the EBOV activity models.16 These compounds were mapped to 2,065 unique 

compounds in the NCATS compound library. The anti-EBOV activities (active or inactive) 

of these compounds were assigned according to the literature report.16 All compounds and 
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their assay activities (1 = active, 0 = inactive) used to train the SARS-CoV-2, ZIKV NS1 and 

EBOV models are provided as Supplementary Data 6.

A subset of the compounds in the bioactive collections, NPC and LOPAC in particular, 

were screened in nearly all the assays available at NCATS. Two NCATS in-house diverse 

compound libraries, Sytravon, which contains ~44,000 compounds, and Genesis, which 

contains ~90,000 compounds, and a subset (~100,000 compounds) of the other NCATS 

bioactive libraries and a large diverse compound library (MLS), were also screened in 

subpanels of the NCATS assay portfolio. The bioactive compound activity profiles in the 

assays that also screened the Sytravon (130 readouts), Genesis library (39 readouts), or MLS 

(225 readouts) were used to train and test the activity-based models (BABM-S or BABM-

G). Structure fingerprints were generated for all compounds using the ChemoTyper48 for 

the structure-based models (SBM). Structure data on all the compounds with target activity 

data available were used to train and test the SBM. The compositions of these datasets are 

summarized in Supplementary Table 2 and the different types of models based on these 

datasets are summarized in Table 2 and illustrated in Figure 1C. The assay activity-based 

models (BABM-S, BABM-G, BABM-M) and the activity-structure combined models (CM-

S, CM-G, CM-M) were applied to predict the target activity of the compounds with activity 

profiles available from the Sytravon/Genesis/MLS assays (Figure 1). In the combined 

models, the activity profile and the structure fingerprint were concatenated to form a new 

fingerprint for each compound. The SBM was applied to predict the target activity of 

all ~600K compounds in the NCATS compound library. For activity-based models, only 

compounds that showed activity in at least 10% of the Sytravon, Genesis or MLS assay 

panel were kept for analyses. Here, the definition of “active” is not as strict as what 

would normally be considered as a “hit” for lead identification. Any type of concentration 

dependent activity observed, regardless of potency or efficacy, was labeled as “active”. As 

such, compounds that showed activities in multiple assays are not compounds that deemed 

“promiscuous” in the traditional sense.

Modeling

The Weighted Feature Significance (WFS) method previously developed at NCATS49 was 

applied to construct the models. Briefly, WFS is a two-step scoring algorithm. In the first 

step, a two-tailed Fisher’s exact test is used to determine the significance of enrichment for 

each feature in the active compounds compared to inactive compounds, and a p-value is 

calculated for all the features present in the data set. For structure data, the feature value was 

set to 1 for compounds containing that structural feature and 0 for compounds that do not 

have that feature. For assay activity data, each assay readout was treated as a feature and the 

feature value was set to 1 for “active” compounds and 0 for inactive compounds. If a feature 

is less frequent in the active compound set than the inactive compound set, then its p-value 

is set to 1. These p-values form what we call a “comprehensive” feature fingerprint, which is 

then used to score each compound for its active potential according to Equation (1), where pi 

is the p-value for feature i; C is the set of all features present in a compound; M is the set of 

features encoded in the “comprehensive” feature fingerprint (i.e., features present in at least 

one active compound); N is the number of features; and α is the weighting factor, which is 

Huang et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2023 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



set to 1 in all the models described here so that all assay features and structure features are 

treated equally. A high WFS score indicates a strong potential to be active.

W FS = ∑log(pi)
min(log(pi)) × (αNC − M + NM ∩ C) (1)

For each model, compounds were randomly split into two groups of approximately equal 

sizes, one used for training and the other for testing. The randomization was conducted 10 

times to generate 10 different training and test sets to evaluate the robustness of the models. 

Model performance was assessed by calculating the area under the receiver operating 

characteristic (ROC) curve (AUC-ROC), which is a plot of sensitivity [TP/(TP+FN)] versus 

(1-specificity [TN/(TN+FP)]) 50. A perfect model would have an AUC-ROC of 1 whereas 

an AUC-ROC of 0.5 indicates a random classifier. The random data split and model training 

and testing were repeated ten times, and the average AUC-ROC values were calculated 

for each model. For external experimental validation of models, model performance was 

measured by the positive predictive value (PPV = TP/(TP+FP)). Statistical significance was 

determined by the two-tailed Fisher’s exact test comparing model PPV with the active rate 

in the training dataset for the corresponding target being modeled.

Selection of model predicted actives

Models with AUC-ROC >0.75 were considered for compound selection. WFS score cutoff 

values for model predicted actives were determined using the ROC curves where both 

sensitivity and specificity were optimized. Only compounds that scored higher than the 

cutoff values were considered candidates for follow up selection. Due to the limitations 

of different assays and resources, for each target we selected compounds with the largest 

possible structure diversity that could fit into one 1,536-well plate for experimental 

validation. When the candidate pool was much larger than the target number of compounds, 

the candidates were narrowed down based on structure type. For this purpose, the entire 

NCATS in-house compound library was clustered based on structure similarity (729-bit 

ChemoTyper48 fingerprints) using the self-organizing map (SOM) algorithm51. From the 

clusters that contain model predicted actives, a fraction of the active compounds was 

selected from each cluster based on the WFS score and the number of models that predicted 

the compound as active. Because the EBOV assay could only test ~100 compounds, the anti-

EBOV candidates were manually inspected and narrowed down further based on literature 

reports, structure novelty and ADME properties. In most cases the selection was driven by 

availability of physical samples. All compounds that met the WFS score cutoff from a model 

were selected when less than 1,408 compounds had physical samples available for cherry 

picking. The SARS-CoV-2 CPE assay (live virus) could only be run in 384-well format. 

Limited by the testing space available and physical sample availability, only 311 model 

predicted compounds were selected for experimental confirmation in the SARS-CoV-2 live 

virus assay.
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Statistical analysis and illustrations

Principal component analysis (PCA) was performed within R package version 3.4.3. The 

first three principal components (PCs), PC1, PC2 and PC3 were calculated based on the 

729 ChemoTyper fingerprints. 3D PCA plots were generated using the first three PCs in 

TIBCO® Spotfire® version 7.11.1 (Somerville, MA). Concentration response curve plots 

were generated using Prism GraphPad 8 (San Diego, CA) with IC50 values calculated using 

a three-parameter logistic regression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Biological activity-based modeling (BABM) process overview. For any biological target 

of interest, T (e.g., SARS-CoV-2, ZIKV NS1, EBOV), the model identifies the activity 

pattern of active vs. inactive compounds based on the training data, which are activity 

profiles of a set of compounds across a diverse panel of assays including T. The active 

signature is then matched against the activity profiles of a new set of compounds across 

the same assay panel. The ability of the model to use this signature to correctly identify 

actives from the new compound set is first tested using part of the data with known T 
activity (the test set). An AUC-ROC value is calculated using the test set to evaluate the 

model performance. The model is then applied to a set of compounds with unknown T 
activity (prediction set; e.g., Sytravon, MLS, Genesis). Predictions are made on the new 

compounds based on their activity profile similarity to that of the active signature for 

T. The predicted T actives are further validated experimentally for their activity against 

T. Comparing experimental results with model predictions, true positives (TP) and false 

positives (FP) are counted to determine the performance of the model. In the heat maps, each 

row represents a compound, each column is an assay, and the heat map is colored by the 

compound activity. B. Detailed flowchart of the modeling process. C. Types of signatures 

and fingerprints used in different models.
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Figure 2. 
Model performance and experimental validation. A. Model performances on the test sets 

measured by AUC-ROC values. Mean AUC-ROC values from ten randomly generated 

test sets are plotted with the error bars indicating the SD values. B. Model performances 

measured by external experimental validation PPV (colored in different shades of brown) in 

comparison to training set active rates (e.g., original assay hit rate; colored in different 

shades of blue) (Supplementary Table 2). Model selected compounds are significantly 

enriched with true actives. Model type: SBM = Structure based model; BABM = Activity-

based model (Sytravon); CM = Combined model (SBM+BABM).
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Figure 3. 
Experimental validation results from the sencondary confirmation of model predicted 

actives. A. Potencies and examples of compounds confirmed in the EBOV inhibition 

assay with minimal cytotoxicity. Replicate data are presented as mean±SD. B. Potencies 

and examples of compounds confirmed in the ZIKV NS1 inhibition assay with minimal 

cytotoxicity. Replicate data (n = 3) are presented as mean±SD. C. Potencies and examples of 

compounds confirmed in the anti-SARS-CoV-2 CPE assay.
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Figure 4. 
Mechanistic study of experimentally connfirmed anti-SARS-CoV-2 compounds. A. Activity 

distribution of compounds in the SARS-CoV-2 PP entry, 3CLpro, and GFP-LC3 autophagy 

assays. Concentration response curves of the most potent compound, MLS000699212, in the 

SARS-CoV-2 3CLpro (B),PP entry (C), and GFP-LC3 autophagy (D) assays.
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Table 1.

Overview of viral targets used for modeling and summary statistics of model identified active compounds.

Model Data Source Data Type Active
Enrichment
(fold)*

Potency
Range**

Structure
Diversity***

SARS-CoV-2 In house/Literature HTS/Literature 2.8-3.3 0.5 μM - 32 μM 0.07-0.23

ZIKV NS1 a In house qHTS 2.7-27.5 1 nM - 63 μM 0.04-0.26

EBOV Literature HTS 6.5-6.8 0.4 μM - 25 μM 0.07-0.21

a
The NS1 protein is a nonstructural protein that is not present in the virus itself but only appears in the host cells when virus starts replication. 

The NS1 assay detects compounds that block NS1 protein production, which may inhibit virus entry to cells, and virus RNA and virus protein 
productions in cells.

*
Fold = hit rate of model predicted actives/hit rate of assay used for model training

**
Potency range of experimentally confirmed model predicted actives

***
Tanimoto similarity was calculated between each model predicted active and active compounds in the training set. The values shown here are 

the range of the average Tanimoto scores for the model predicted actives.
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Table 2.

Models built on different training datasets

Assay Data
Source/Model Type Chemical Structure Assay Activity

Activity and Structure
Combined

MLS SBM BABM-M CM-M

Sytravon SBM BABM-S CM-S

Genesis SBM BABM-G CM-G

SBM = Structure based model

BABM-M = Activity-based model (MLS)

BABM-S = Activity-based model (Sytravon)

BABM-G = Activity-based model (Genesis)

CM-M = Combined model (SBM+BABM-M)

CM-S = Combined model (SBM+BABM-S)

CM-G = Combined model (SBM+BABM-G)
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