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Abstract

Membrane permeability plays an important role in oral drug absorption. Caco-2 and Madin-Darby 

Canine Kidney (MDCK) cell culture systems have been widely used for assessing intestinal 

permeability. Since most drugs are absorbed passively, Parallel Artificial Membrane Permeability 

Assay (PAMPA) has gained popularity as a low-cost and high-throughput method in early drug 

discovery when compared to high-cost, labor intensive cell-based assays. At the National Center 

for Advancing Translational Sciences (NCATS), PAMPA pH 5 is employed as one of the Tier 

I ADME assays. In this study, we have developed a quantitative structure activity relationship 

(QSAR) model using our ~6500 compound PAMPA pH 5 permeability dataset. Along with 

ensemble decision tree-based methods such as Random Forest and eXtreme Gradient Boosting, we 

employed deep neural network and a graph convolutional neural network to model PAMPA pH 

5 permeability. The classification models trained on a balanced training set provided accuracies 

ranging from 71% to 78% on the external set. Additionally, an ~85% correlation was determined 

between PAMPA pH 5 permeability and in vivo oral bioavailability in mice and rats. These results 

suggest that data from this assay (experimental or predicted) can be used to rank-order compounds 

for preclinical in vivo testing with a high degree of confidence. Additionally, experimental data for 
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486 compounds (PubChem AID: 1645871) and the best models have been made publicly available 

(https://opendata.ncats.nih.gov/adme/).
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Introduction

Absorption is a critical property for orally administrated drugs, as the drug must pass 

through the intestinal epithelium before reaching systemic circulation. Absorption is not 

only dependent upon the characteristics of the gastrointestinal (GI) tract, but also on the 

physicochemical properties of the drug1-3. Several studies have shown that absorption of 

drugs is regional 4,5 and the pH gradient in the intestinal tract (from acidic, i.e., pH 2-3 

to basic i.e., pH 8-9) has been attributed as a major influencing factor6,7. For example, 

most intestinal absorption occurs in the small intestine (the duodenum, jejunum, and ileum 

specifically) where the pH ranges from 4-78. This phenomenon is explained by the pH-

partition hypothesis which states that only uncharged compounds can permeate through the 

lipophilic membrane9. This suggests that the permeability of a compound would vary across 

different segments of the GI tract depending on the pH and permeability of a compound 

would be greatest at the pH where its least charged.

Two of the most popular cellular in vitro membrane permeability methods used in drug 

discovery include Caco-2 and Madin-Darby Canine Kidney (MDCK) monolayer assays. 

Caco-2 is a human epithelial colon adenocarcinoma cell line which presents both enterocytic 

and colonocytic10 characteristics. Additionally, data generated in these cells exhibit good 

correlation with in vivo bioavailability11 and permeability like that of the human jejunum12. 

MDCK cells, isolated from canine distal renal tissue, came in later as a faster and more 

cost-effective alternative to Caco-2 cells13. While these cell lines model active and passive 
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transport, their use is often limited due to high costs, long membrane growth cycles (21-day 

and 5-day culture time for Caco- 2 and MDCK cells respectively), and lab-to-lab and 

batch-to-batch variation14-16. In addition to cell-based assays, Parallel Artificial Membrane 

Permeability Assay (PAMPA) is also popular as a cost effective, non-cell-based screening 

tool17-19. One of the major disadvantages of PAMPA (i.e., its inability to model active 

transport 20,18) is offset by the fact that more than 90% of drugs are absorbed via 

passive diffusion 21,2,22,17,20. PAMPA permeability at both pH 7.4 and pH 5.5 correlates 

well with Caco-2 permeability in small data sets 23. The adaptability of PAMPA to high-

throughput in combination with its flexibility with experimental conditions (different lipid 

compositions/range of pH conditions) makes PAMPA an excellent screening method in 

early drug discovery. This technique has been extensively used in several published drug 

discovery projects with a great deal of success 24-30. At the National Center for Advancing 

Translational Sciences (NCATS), compounds are routinely screened for permeability using 

a high-throughput, double-sink PAMPA assay at pH 5 and pH 7.4, part of the ADME Tier 

I assays. On examining the correlation between PAMPA pH 5 permeability and preclinical 

oral bioavailability using in-house pharmacokinetic (PK) datasets, a correlation of ~85% 

was determined, further underlining the importance of this assay as a screening tool in drug 

discovery.

The current cost of bringing a new drug from drug discovery through to the market stands 

at $2.6 billion USD 31. This cost has risen steadily throughout the last few decades, making 

it critical to find alternatives to reduce costs in the drug discovery process. Quantitative 

structure activity relationships (QSAR) using machine learning approaches, a branch of 

artificial intelligence (AI), has been shown to improve the decision-making process across 

various steps in drug discovery, including its use in predicting PAMPA permeability. While 

a few PAMPA QSAR models do exist, they are primarily based on small datasets and in 

most cases, neither the data nor the models are made publicly available 1,2,32,33,19. In this 

study, we present an in silico model for predicting drug permeability at pH 5 based on 

experimental PAMPA data collected at NCATS, a complement to our previously published 

PAMPA pH 7.4 model 18. The PAMPA pH 5 model features a dataset of ~6500 compounds, 

representing a variety of small molecule drug discovery projects and chemotypes. We 

employed both classical and advanced machine learning techniques to develop the prediction 

models. The best model with both training and validation accuracies over 75% was made 

available on the publicly-accessible NCATS ADME portal (https://opendata.ncats.nih.gov/

adme/). which can be useful in rank-ordering virtual compounds for their potential behavior 

in PAMPA pH 5 assay and identifying compounds with poor permeability profile.

Materials & Methods

Materials.

Dimethyl sulfoxide (DMSO, UPLC/MS grade), ammonium acetate, sodium hydroxide, 

ranitidine, dexamethasone, verapamil, and albendazole were purchased from Sigma-Aldrich 

(St. Louis, MO). Acetonitrile (ACN, UPLC/MS grade) was purchased from Fisher Scientific 

(Hampton, NH). GIT-0 lipid (Catalog #110669), acceptor sink buffer (pH 7.4, Catalog 

#110139), PRISMA HT buffer (Catalog #110151), 96-well stirwell sandwich plates with 
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stirrers (Catalog #120551-SUPP), and high sensitivity UV plates (Catalog #110286) were 

purchased from Pion Inc. (Billerica, MA).

Instrumentation.

Experiments were performed using a Freedom Evo 200 automated platform with a 96-

channel (MCA96) head and 8-channel liquid handling (LiHa) system with EVOware 

software (version 3.2) (Tecan Inc., Männedorf, Switzerland). The system also includes a 

Gutbox (Pion Inc.) and a Nano Quant Infinite 200 Pro UV plate reader (Tecan Inc.). 200 μL 

pipette tips (MCA96: Catalog #14-223-552, Fisher Scientific, Hampton, NH; LiHa: Catalog 

#110126, Pion Inc., Billerica, MA) were used in the experiments.

PAMPA Permeability pH 5 Method:

Stirring double-sink PAMPA method (patented by Pion Inc.) was employed to determine 

the permeability of compounds in a high-throughput format 17 The GIT-0 lipid (proprietary 

Pion Inc. lipid, optimized to predict GI tract passive permeability) was immobilized on 

the plastic matrix of a 96-well “acceptor” filter plate placed atop a 96-well “donor” 

plate. pH 5 buffer (PRISMA HT buffer) was used in the donor wells and pH 7.4 buffer 

(acceptor sink buffer) was used in the acceptor wells. The test articles (in duplicates), 

stocked in 10 mM DMSO solutions, were diluted to 0.05 mM in aqueous buffer (pH 5), 

and the concentration of DMSO was 0.5% in the final solution. During the 30-minute 

incubation at room temperature, test samples in the donor compartment were stirred using 

Gutbox technology (Pion Inc.) to reduce the aqueous boundary layer. The test article 

concentrations in the donor and acceptor compartments were measured using a UV plate 

reader (Nano Quant, Infinite 200 PRO, Tecan Inc., Männedorf, Switzerland). Calculations 

were performed using Pion Inc. software and effective permeability (Peff) was expressed in 

units of 10−6cm/s. If the permeability could not be determined via UV, the samples were 

plated for analysis via UPLC-MS by plating 8 μL of the incubation solutions in 192 μL 

of Acetonitrile/Internal Standard (albendazole) solution in a 96-well plate (350 μL, Waters, 

Milford, MA). A previously published ultra-high-performance liquid chromatography- mass 

spectrometry method with minor modifications was used to analyze the samples 34

Compound Data Sets:

A total of 6500 measurements were available in the PAMPA pH 5 assay. These compounds 

were synthesized at NCATS and they represent a variety of small molecule drug discovery 

projects and chemotypes. Compounds were categorized with the following cutoffs: low 

permeability: <10 X 10−6cm/s and moderate/high permeability: >10 X 10−6cm/s. For the 

model, compound structures were standardized following best practices recommended in the 

literature 35. LyChI hash identifiers (https://github.com/ncats/lychi) were generated for all 

standardized structures to group them into unique compounds. For compounds with multiple 

measurements, the values were averaged if all values fell within the same category and 

compounds with conflicting experimental results were omitted. Finally, the processed data 

set comprised a total of 5227 unique compounds. The data set was randomly divided into 

a training set (80%; 4181 compounds labelled as Training set I) used to build the models 

and an external set (20%; 1046 compounds) used to validate the models. 486 out of 5277 

compounds were identified as open access compounds and PAMPA pH 5 data for these 
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compounds has been deposited in PubChem (AID: 1645871) as part of this study. The 

remaining 4741 compounds were identified as part of on-going projects at NCATS and data 

for these compounds will be released at some point in the future.

Due to imbalance in the distribution of training set compounds between the two classes 

(low permeability and moderate/high permeability), we decided to generate a balanced 

training set using the diversity under-sampling method 36. Retaining all minority class (i.e., 

low permeability) compounds, a structurally diverse set of majority class compounds that 

is double the size of minority class was obtained using RDKit Diversity Picker node in 

KNIME. Using this technique, a total of 1698 compounds were used as a balanced dataset 

(not to be confused with a perfectly balanced dataset; labelled as Training set II) to generate 

the same set of models. The same external set was employed for validating these models to 

mimic the imbalanced nature of the data in a realistic setting. An overview of the training 

and external data sets is provided in Table 1.

Molecular Descriptors:

We used molecular descriptors available from the RDKit toolkit (https://www.rdkit.org/; 

version 2020.03.1) as one of the input features. Each compound in the data set is 

represented by a total of 119 RDKit descriptors. In addition, molecular fingerprints (bit 

vector representations of molecules) that encode substructural features were employed as 

input features. Morgan fingerprint 37, a circular molecular fingerprint that takes into account 

the neighborhood of individual atoms, was chosen for this study. Each fingerprint contains a 

total of 1024 bits, each bit set to either 1 or 0. On the other hand, molecular graphs as such 

also serve as input features for one of the modeling methods employed in this study.

Modeling Methods:

Random Forest.—A random forest (RF) 38 is an ensemble of several decision trees that 

are fitted on random subsets of input features of the data set. The outcome is decided via a 

majority vote on the outcomes from the individual trees in the forest. Using this averaging 

approach, RF is robust to overfitting and thereby improves prediction accuracy. We used 

the ‘RandomForestClassifier’ method implemented in Scikit-learn39, a Python library for 

machine learning. In this study we employed a total of 100 estimators (i.e., individual 

trees) per model. The ‘random state’ parameter was set to an integer (random state = 42). 

The remaining parameters were set to default. We built RF models based on both RDKit 

descriptors and Morgan fingerprints.

XGBoost.—eXtreme Gradient Boosting (XGBoost) is another method evaluated in this 

study. While RF builds a set of independent trees of unlimited depth, the gradient boosting 

technique builds a series of smaller trees where each tree corrects for the residuals in 

previous tree’s predictions. First implemented as Generalized Boosted Models (GBM), 

the method was considered to perform similarly to RF although the high number of 

adjustable parameters has limited its applicability on large datasets. Later, Chen and 

Guestrin implemented XGBoost 40 (https://github.com/dmlc/xgboost) that is based on the 

same idea behind GBM but uses an additive strategy to generate the prediction output. 

Furthermore, XGBoost uses a split-finding approach that can efficiently train on sparse 
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data. This approach is particularly best suited when using sparse molecular representations 

such as fingerprints that contain many zeros. Due to its speed and widely recognized 

performance, we employed the XGBoost method using the same number of trees as RF. 

Both RDKit descriptors and Morgan fingerprints were employed.

Deep Neural Network.—Artificial neural networks (ANNs) have been applied to a wide 

range of QSAR tasks. More recently, the ANNs have evolved into deep neural networks 

(DNN). Unlike an ANN, a DNN consists of multiple fully connected layers with two or 

more hidden layers between the input and output layers. In a feedforward neural network 

(referred to simply as DNN in the rest of the study), the information passed through 

the input layer flows in forward direction through the hidden layers to the output layer. 

DNN models were implemented in Keras (https://keras.io) using the TensorFlow (https://

tensorflow.org) backend. The number of hidden layers was adjusted based on the size of 

input descriptors (i.e., 119 for RDKit descriptors and 1024 for Morgan fingerprint).

Graph Convolutional Neural Network.—Graphs are natural ways to represent chemical 

structures where nodes represent atoms and edges represent bonds between them. We 

recently showed that graph convolutional neural network (GCNN) provided superior 

performance in modeling Tier I ADME endpoints (rat liver microsomal stability, PAMPA 

permeability, and kinetic aqueous solubility)41,42. A message passing variant of GCCN 

implemented in the ChemProp43 Python package (https://github.com/chemprop/chemprop/) 

was employed to build GCNN models. The algorithm generates graph features when 

chemical structures (as line notations) and associated target values (i.e., PAMPA pH 5) 

are provided as input. The model parameters were set to default.

Modeling and Validation:

The training sets (I & II) were used to build models that were validated on the external 

set. Each training set was randomly divided into internal training and internal test sets (at 

an 80:20 ratio) for a total of five times. Each time, the model developed using the internal 

training set was validated on the internal test set. This procedure, widely known as k-fold 

(k = 5) cross-validation 44, was employed to identify the best performing methods and the 

descriptors. The best models identified from the cross-validation were further validated on 

the external set.

The model performance was assessed using different statistical measures. A receiver 

operating characteristic (ROC) curve, that plots true positive rate against the false positive 

rate, was used to estimate the predictive power of the classification models. The area under 

the ROC curve (i.e., AUC) is a numerical value between 0 and 1. The higher the value, the 

better the predictive power. Sensitivity indicates the proportion of true positives correctly 

predicted as positive. Specificity is the ability of the model to correctly predict true negatives 

as negative. Balanced accuracy (BACC) is an average of the Sensitivity and Specificity. It 

is a useful alternative to accuracy when the datasets in hand have a large degree of class 

imbalance. Cohen’s Kappa is another metric used in this study that measures the agreement 

between the actual classes and the classes predicted by the classifier.
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Sensitivity = TP
(TP + FN)

Specificity = TN
(FP + TN)

Balanced accuracy = Sensitivity + Specificity
2

Kappa =
pa − pϵ
1 − pϵ

Here, TP = true positives, FN = false negatives, TN = true negatives, and FP = false 

positives. In the case of Kappa, pa is the proportion of observations in agreement and p∈ is 

the proportion in agreement due to chance.

Results

Assay Performance:

Three control compounds; ranitidine (low permeability), dexamethasone (moderate 

permeability), and verapamil (high permeability) were run with each plate to ensure assay 

quality. Table 2 shows the assay reproducibility data for these compounds, spanning 194 

plates over 4 years. The minimum significant ratio (MSR)45 for all compounds was around 

2.0, which indicates excellent assay reproducibility over time. Standard deviation and MSR 

values were not calculated for ranitidine as Peff values are always below the limit of 

quantification.

Distribution of Molecular Properties:

The greatest number of compounds in our dataset were found in the moderate/high 

permeability category (~72%) followed by the low permeability category (28%) (Fig. 1). 

Molecular properties, sLogP, total polar surface area (TPSA), and molecular weight (MW), 

were calculated using an in-house compound dataset annotation tool, known as NCATS 

Find 46. A large proportion of compounds from both Peff categories fell within the 300-500 

MW range, had Log P values between 2-6 and TPSA values less than 100. No significant 

differences were found between both categories based on the distribution of these molecular 

properties (Fig. 2).

Correlating PAMPA pH 5 Permeability with Oral Bioavailability (%F):

Oral bioavailability (%F) is the fraction of an orally administered drug that reaches systemic 

circulation. To illustrate the application of our PAMPA pH 5 assay, we attempted to correlate 

log Peff values with oral bioavailability (%F) obtained from in-house pharmacokinetic (PK) 

studies (128 compounds). This in-house PK database was built with studies in mice (90%) 
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and rats (10%), from a variety of projects with intravenous (IV) doses ranging from 1-5 

mg/kg and oral (PO) doses ranging from 3-50 mg/kg, the median dosages being 3 mg/kg. 

We set the %F cut-off values at 20% as it represents an acceptable criteria for screening 

compounds in drug discovery 47,48.

The cut-off value for the PAMPA assay was set at 10 x 10− cm/sec since it is value 

differentiating compounds between low and moderate/high permeability. While we did not 

achieve a linear correlation, a categorical correlation of 74% was observed (Fig. 3A). %F 

is a complex property dependent on several factors such as GI physiology, physicochemical 

characteristics of the compound, drug metabolism, food, formulation, disease state, etc. 

Solubility and microsomal stability, two properties that affect %F, are also routinely tested 

for every compound synthesized at NCATS as part of Tier I ADME screening 49,41. To 

understand if a better correlation with %F could be obtained, we filtered our 128-compound 

dataset and eliminated compounds with poor solubility (<10 μg/mL)49 and poor microsomal 

stability (t1/2 < 30 min)41 (Fig. 3B). Peff values for the remaining 62-compounds were 

correlated with %F and an improved correlation of ~85% was observed (Fig. 3C).

Cross-validation Results:

Training sets I and II were employed for 5-fold cross-validation (5-CV). DNN and GCNN 

models were compared with the baseline models based on RF and XGBoost. The baseline 

models RF and XGBoost provided similar performance on the training set I. Due to the high 

number of majority class examples in the dataset, the specificity values were high compared 

to sensitivity values. In case of both RF and XGBoost, RDKit descriptors provided slightly 

better sensitivity values compared to Morgan fingerprints. In contrast, the DNN models 

provided better sensitivity values with Morgan fingerprints. The performance of GCNN was 

found to be similar to DNN.

When evaluated using training set II, the overall performance of all models improved on 

account of enhanced sensitivity due to lower degree of class imbalance. The performance of 

RF and XGBoost models remained the same while DNN showed slightly better performance 

using RDKit descriptors compared to Morgan fingerprints. DNN and GCNN models 

provided a better balance between sensitivity and specificity. Figures 4 and 5 provide a 

comparison of the performance of models based on different methods and descriptors in 

terms of balanced accuracy, sensitivity, and specificity. The complete 5-CV results are 

provided in the supplementary information.

External Validation Results:

Since training set II provided better performance in cross-validation, we only used the 

models based on this dataset to predict the external set. Once again, RF and XGBoost 

provided higher specificity values compared to sensitivity and RDKit descriptors provided 

superior performance over Morgan fingerprints. DNN model based on Morgan fingerprints 

provided better balanced accuracy due to improved sensitivity. GCNN model based on 

molecular graphs provided the best performance on the external set (Table 3).
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Feature Importance:

We analyzed our data further to understand structural features and important properties that 

are indicative of poor PAMPA permeability. The GCNN architecture, as implemented in 

the ChemProp package, provides a mechanism for identifying substructural features that 

explain the molecular property. For each compound, the interpretation module provides a 

predicted property value along with a substructural feature and an associated rationale score. 

The rationale score is the predicted property value for the substructure. We identified 11 

features that were present in at least 30 compounds (log frequency > 1.5) in the training 

set and were predicted to have a rationale score > 2.5 (Fig. 6). These substructures are 

overrepresented in compounds with moderate to high PAMPA permeability (Peff > 2.5) from 

the training data. We also identified substructures that were predicted to have a rational score 

< = 1 and satisfy the frequency criterion (log frequency > 1.5). These substructures (Table 

4) are overrepresented in compounds with low PAMPA permeability (Peff < 1) from our 

training data and can be of interest to medicinal chemists when dealing with liabilities due to 

PAMPA permeability. To the best of our knowledge, this is the first study to present analysis 

of substructural features relevant to PAMPA permeability.

Similarly, we investigated the RF model to identify the RDKit descriptors that were scored 

higher in terms of importance of the RDKit features. The complete dataset was used for 

this purpose and out of the 119 RDKit descriptors, a total of 48 descriptors were identified 

to have importance of at least 0.01. Out of the 48 descriptors, we closely examined 17 

descriptors (Fig. 7) with an importance > = 0.015. As anticipated, Log P (calculated by 

RDKit as SlogP) turned out to be the most important feature (average feature importance 

of 0.03) for the classification model followed by peoe_VSA8, smr_VSA3, peoe_VSA2 

and topological polar surface area (TPSA). Log P, Log D and polar surface area have 

been previously discussed to be important descriptors for PAMPA permeability in former 

studies that reported for QSAR models 50-52. PEOE descriptors are those based on the 

partial charges of each atom in a molecule, calculated using Partial Equalization of Orbital 

Electronegativities (PEOE) method of calculating atomic partial charges, and depend only 

on the connectivity (i.e., elements, formal charges, and bond orders).

Validation Using Molecular Weight and Time Split:

We previously demonstrated using the rat liver microsomal stability data that a time-based 

splitting of data provides an alternative view of model performance. A recent study 53 

proposed molecular weight split combined with time-based splitting as a cross-validation 

strategy to validate ADME prediction models. The authors removed compounds with 

molecular weight higher than 500 g/mol from the training set and retained only those 

compounds with molecular weight higher than 600 g/mol in the external set. In the current 

study, we have data spanning 2016, 2017, 2018 and 2019 with approximately 25% of the 

data coming from the year 2019. Therefore, using the data from the years 2016, 2017 and 

2018 as the training set and the rest as the external set closely resembles a random split of 

the data set at 80:20 ratio that resulted in the original external set. Additionally, we removed 

compounds with molecular weight > 500 g/mol from the training set and slightly adjusted 

the original criterion to retain compounds with weight > 550 g/mol in the external set. 

The reason behind adjusting this criterion is to accommodate higher number of compounds 
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in the external set. After temporal and molecular weight split, the training and external 

sets comprised of 3,334 (Class 1: 407; Class 0: 2927) compounds and 119 (Class 1: 19; 

Class 0: 100) compounds, respectively. This model provided a balanced accuracy of 65% 

(Sensitivity: 58% and Specificity: 73%). While the performance is inferior compared to the 

performance of models on the other external set, this could be explained by the presence 

of unusually large molecules present in this external set (average molecular weight = 885 

Daltons and average number of rings per molecule = 6) in comparison to the corresponding 

training set (average molecular weight = 400 Daltons and average number of rings per 

molecule = 4). It would be worth investigating this strategy on a larger dataset that spans 

multiple years and a wider chemical space.

Discussion

Oral bioavailability is a complex process dependent on many physiological, 

physicochemical, and pharmacological parameters including membrane permeability, 

solubility, metabolic stability, particle size, pH, surface area of the GI tract, activities of 

uptake and efflux transporters, etc. For an orally administered drug to reach systemic 

circulation, it must pass through the intestinal membrane by passive diffusion, carrier 

mediated uptake or active transporter mechanisms. Cell-based assays, such as Caco-2 

and MDCK cell culture systems, have been used to model membrane permeability and 

these assays have become the standard in the pharmaceutical industry. However, since 

80-95% of commercially available drugs are absorbed via passive diffusion 2,17,19,20,18, 

PAMPA is as a popular alternative approach. PAMPA has several advantages including low 

cost, amenability to high-throughput, shorter lead times as well as comparable prediction 

accuracy to the Caco-2 assay for prediction of intestinal permeability 54 Additionally, 

the good day-to-day reproducibility and lower data variability 54 make datasets generated 

through PAMPA assays highly sought after for in silico QSAR modeling. In this study, we 

used our 6500 compound PAMPA pH 5 dataset and built classification models to predict 

intestinal permeability of test compounds. While a few PAMPA QSAR models exist in 

literature, they are built using relatively small datasets and neither the model nor the datasets 

have been made publicly available. While we cannot make our entire dataset public due to 

its proprietary nature, a small subset (486 compounds; PubChem AID: 1645871) of our data 

and the best predictive models have been made public. Our PAMPA models (pH 5 and pH 

7.4; published previously18) are to the best of our knowledge, the only open-access PAMPA 

models built using high-quality data, generated at a single laboratory.

A recent study by Oja and Maran highlighted the importance of understanding the pH-

permeability relationship, especially for ionizable compounds 2. They also emphasized the 

fact that most PAMPA studies in literature have been performed at neutral or near-neutral 

pH and thus, there is a dearth of PAMPA permeability data and QSAR models at different 

pH values. To this end, Oja and Maran have published datasets and QSAR models (238 

compounds) for PAMPA permeability at pH 3, 5, 7.4 and 9 22. Our PAMPA datasets go a 

long way towards filling this data gap. Although the openly accessible compounds represent 

a relatively small percentage of our total dataset, these represent by far, the largest datasets 

in literature (Table 5).
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Multiple studies reported QSAR models to predict PAMPA permeability 
55-57,23,58-61,19,18,22. However, as emphasized earlier by Chi et al 62, PAMPA permeability 

depends on several factors other than the pH of the assay. Therefore, creating a good QSAR 

model using data available in the public domain has been considered impractical. Most 

previously reported models were based on linear regression techniques such as partial least 

squares (PLS) and multiple linear regression. Later, having understood that there exists a 

bilinear relationship between Log D and PAMPA permeability, it became clear that the linear 

regression models were unable to capture the complex nonlinearity 63. Machine learning 

methods such as support vector machines, random forests and gradient boosting have been 

employed 64,62,65 using both public and proprietary datasets. Though most studies reported 

regression models, a few studies reported categorical models using classification criteria 

similar to those employed in the current study 55,66,67. While most studies relied on a 

handful of physicochemical properties, some of them employed large number of 2D or 3D 

descriptors from commercial software. Considering that type of assay used in our study 

(double sink PAMPA) is different from other published studies and the fact that there are 

very few PAMPA studies conducted at pH 5, we could not directly compare our models with 

those in literature.

Additionally, we correlated the PAMPA pH 5 permeability values with pre-clinical oral 

bioavailability and observed an accuracy of 74%. Considering that oral bioavailability 

is an extremely complex and multi-factorial property, this correlation was encouraging. 

Moreover, after accounting for solubility and metabolic stability, two parameters that affect 

oral bioavailability, this correlation increased to 85%. The corresponding correlation for the 

PAMPA pH 7.4 dataset was found to be 80% (unpublished data). This suggests that the 

proper use of our data and models could help minimize the risk of compounds failing in 

pre-clinical in vivo studies due to poor bioavailability.

Conclusion

In summary, we developed a robust QSAR model using our PAMPA pH 5 dataset and 

identified structural features and descriptors relevant for PAMPA pH 5 permeability. This 

model along with our previously published models 42 (https://opendata.ncats.nih.gov/adme/

home) can be used to rank-order compounds for synthesis and thus, project teams can 

get to their lead compounds in fewer iterations. Implementing in silico tools in early drug 

discovery may ultimately prove to be game changing in the time-intensive, costly, and 

high-attrition drug discovery and development process.
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Figure 1. 
Number of compounds categorized into low permeability (black), and moderate/high 

permeability (gray).
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Figure 2. 
Distribution of dataset based on A) Molecular Weight, B) Log P, and C) TPSA. Dataset 

is divided into compounds with low permeability (black) and compounds with moderate to 

high permeability (gray).
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Figure 3. 
Correlating log Peff at pH 5 with %F (A) %F vs Log Peff with the 128-compound dataset. 

(B) Eliminating compounds with poor solubility and poor microsomal stability (C) %F vs 

Log Peff with the 62-compound dataset. Blue boxes in A and C show the categorical binning.
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Figure 4. 
Comparison of performances of models in 5-fold cross-validation measured as balanced 

accuracies. Each error bar represents the standard deviation of the average of the 

performance in five folds.
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Figure 5. 
Comparison of Sensitivity and Specificity values for training sets I and II. The error bars 

represent the standard deviations of average values for five folds.

Williams et al. Page 21

Bioorg Med Chem. Author manuscript; available in PMC 2023 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Features interpreted by the GCNN model. X-axis stands for the rationale score and Y-axis 

stands for the frequency of the feature in logarithmic scale. The top 11 features are shown on 

the plot.
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Figure 7. 
RDKit descriptors identified as important features by RF model based on 5-CV using the 

complete dataset. For each descriptor, the feature importance score from the five folds is 

plotted.
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Table 1.

Overview of data sets employed for developing models in this study.

Dataset Total
Compounds

Class = 1
(Low

Permeability)

Class = 0
(Moderate to High Permeability)

Training Set I 4181 566 3615

Training Set II 1698 566 1132

External Set 1046 141 905
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Table 2.

Reproducibility data for control compounds. Mean and S.D. permeability (Peff) values were calculated across 

194 plates.

Compound Peff (10−6 cm/s) MSR
(102√2*S.D.)

Ranitidine <1 N/A

Dexamethasone 61 ± 16 2.3

Verapamil 208 ± 52 2.1
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Table 3.

External validation performance of models built using training set II.

Method Descriptor AUC BACC Sensitivity Specificity Kappa

RF RDKit 0.83 0.74 0.62 0.87 0.41

RF Morgan FP 0.78 0.71 0.60 0.83 0.32

XGBoost RDKit 0.83 0.77 0.69 0.86 0.44

XGBoost Morgan FP 0.80 0.71 0.57 0.84 0.33

DNN RDKit 0.80 0.70 0.50 0.90 0.37

DNN Morgan FP 0.77 0.73 0.64 0.82 0.34

GCNN Graph 0.84 0.78 0.74 0.82 0.40
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Table 4.

Substructural features from GCNN model that represent low permeability compounds.

Substructure Rationale Score Frequency

0.68 57

0.75 125

0.82 54

1.01 51

0.98 44
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Table 5.

Summary of NCATS ADME Models and Datasets

Assay Type Number of
Compounds Location

PAMPA pH 5 Dataset 486 PubChem- AID: 1645871

PAMPA pH 5 Model 6,500 https://opendata.ncats.nih.gov/adme/

PAMPA pH 7.4 Dataset 2,532 PubChem- AID: 1508612

PAMPA pH 7.4 42 Model 22,000 https://opendata.ncats.nih.gov/adme/
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