
Abstract. Background/Aim: The ectopic pain associated with
inferior alveolar nerve (IAN) injury has been reported to
involve macrophage expression in the trigeminal ganglion (TG).
However, the effect of age-related changes on this abnormal
pain conditions are still unknown. This study sought to clarify
the involvement of age-related changes in macrophage
expression and phenotypic conversion in the TG and how these
changes enhance ectopic mechanical allodynia after IAN
transection (IANX). Materials and Methods: We used
senescence-accelerated mouse (SAM)-prone 8 (SAMP8) and
SAM-resistance 1 (SAMR1) mice, which are commonly used to
study ageing-related changes. Mechanical stimulation was
applied to the whisker pad skin under light anaesthesia; the
mechanical head withdrawal threshold (MHWT) was measured
for 21 d post-IANX. We subsequently counted the numbers of
Iba1 (macrophage marker)-immunoreactive (IR) cells,
Iba1/CD11c (M1-like inflammatory macrophage marker)-co-IR
cells, and Iba1/CD206 (M2-like anti-inflammatory macrophage
marker)-co-IR cells in the TG innervating the whisker pad skin.
After continuous intra-TG administration of liposomal
clodronate Clophosome®-A (LCCA) to IANX-treated SAMP8-
mice, the MHWT values of the whisker pad skin were examined.
Results: Five days post-IANX, the MHWT had significantly

decreased in SAMP8 mice compared to SAMR1-mice. Iba1-IR
and Iba1/CD11c-co-IR cell counts were significantly increased
in SAMP8 mice compared to SAMR1 mice 5 d post-IANX.
LCCA administration significantly restored MHWT compared
to control-LCCA administration. Conclusion: Ectopic
mechanical allodynia of whisker pad skin after IANX is
exacerbated by ageing, which involves increases in M1-like
inflammatory macrophages in the TG.

Orofacial neuropathic pain usually occurs following
trigeminal nerve injury. In clinical settings, injury to the
inferior alveolar nerve (IAN) – the third branch of the
trigeminal nerve – often caused by implant misplacement,
accidents during wisdom tooth extraction, and other invasive
dental treatments (1, 2). Recent studies have reported that
IAN injury causes not only dysesthesia of lower lip but also
abnormal pain in the intact orofacial area outside the IAN-
innervated area (3, 4). It is vital for dentists to accurately
diagnose and relieve pain, which is crucial to the treatment
of patients suffering from abnormal pain.

Primary neuronal hyperexcitability caused by peripheral
nerve injury and inflammation induces the release of
signalling molecules from primary sensory neuronal soma as
well as non-neuronal cells, such as macrophages in the TG
(5, 6). Peripheral nerve injury also causes persistent changes
in undamaged nerves adjacent to the injured nerve (7). These
changes involve not only neuron-neuron communication, but
also neuron-glia and neuron-macrophage communication (8-
10). Orofacial ectopic pain is also reportedly caused by
enhanced excitability of nociceptive TG neurons, and this
neuronal hyperexcitability is caused by the activation of
satellite glial cells via P2Y12 receptor signalling, or the
enhanced signalling of tumour necrosis factor (TNF)-α
release from proliferating and activated macrophages in the
TG (11, 12). Macrophages accumulated by nerve injury or
inflammation differentiate into two phenotypes with distinct
morphological and functional profiles corresponding to the
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microenvironment to which they migrate (13). M1-like
inflammatory macrophages can secrete numerous
inflammatory cytokines and chemokines, thereby affecting
local inflammatory responses (14). In contrast, M2-like anti-
inflammatory macrophages facilitate anti-inflammatory
responses and tissue repair (15). Polarization of these two
opposing phenotypes can augment or attenuate pain
sensitivity (16, 17); this polarization is also probably
involved in the pathogenesis of orofacial ectopic pain.

Neuropathic pain is reportedly exacerbated in the elderly
(18, 19). The correlation between ageing and neuropathic
pain is reportedly due to age-related changes in macrophage
expression in the dorsal root ganglion, which enhances
neuropathic pain after sciatic nerve injury (20). Moreover,
age-related increases in microglia in the trigeminal spinal
subnucleus caudalis enhance the mechanical allodynia of the
oral mucosa (21). Thus, changes in immune cell expression
in nociceptive signalling pathways are associated with
ageing-modulated pain hypersensitivity; however, the role of
immune cells of the TG in the orofacial ectopic pain after
IAN injury in elderly compared to younger remains unclear.

Recent studies have used senescence-accelerated mice-
prone-8 (SAMP8) and SAM-resistant/1 (SAMR1) mice to
investigate age-related pathological changes (22-24). SAMP8
mice exhibit learning and memory deficits and show a rapid
age-dependent increase in senescence, while SAMR1 mice are
the normal ageing control strain for SAMP8 mice (23, 25, 26).

This study aimed to examine age-related changes in
macrophage expression and polarity in the TG after IANX
and its involvement in the orofacial ectopic mechanical
allodynia using SAMP8 and SAMR1 mice. 

Materials and Methods

Animals. We used 23-week-old male SAMP8 (n=98, Japan SLC,
Shizuoka, Japan), and 23-week-old male SAMR1 (n=56, Japan
SLC) mice weighing 20-30 g. All mice were individually housed in
clear polycarbonate cages and maintained in a controlled
temperature (23˚C) environment under a 12-h light/dark cycle with
free access to food and water. All experiments were conducted in
accordance with the guidelines of the International Association for
the Study of Pain (27) and approved by the Animal Experimentation
Committee at Nihon University School of Dentistry
(AP19DEN012). The number of mice used in the experiment was
the minimum required for statistical analysis.

The inferior alveolar nerve transection model. Inferior alveolar
nerve transection (IANX) was performed under deep anaesthesia
with intraperitoneal (i.p.) administration of butorphanol (5 mg/kg;
Meiji Seika, Tokyo, Japan), medetomidine (0.75 mg/kg; Zenoac,
Fukushima, Japan), and midazolam (4.0 mg/kg; Sandoz, Tokyo,
Japan) as previously described (28, 29). Briefly, a small incision
was made in the skin of the left cheek and the masseter muscle was
incised. The masseter muscle was dissected to expose the surface
of the mandible.

The mandibular surface was scraped with a low-speed dental drill
bar to expose the IAN. The exposed IAN was replaced with a
mandibular canal after the IAN was gently withdrawn and cut. In
the control group, a sham operation was performed, which consisted
of skin incision, muscle debridement, and bone shaving without
severing the IAN, before the incised muscle and skin incision were
sutured with 6-0 silk.

Measuring mechanical sensitivity of the whisker pad skin and lower
lip. Mechanical stimulation was conducted after confirming that the
mice were maintained at the depth of anaesthesia as described
below. Briefly, mice were anaesthetized with 2% isoflurane (Mylan,
Canonsburg, PA, USA). After discontinuing the supply of 2%
isoflurane, we confirmed whether an identical hind limb withdrawal
reflex was induced by identical noxious pinch stimulation to the
hind paw and assessing whether the breathing and cardiac rhythm
were appropriate. Mice were mechanically stimulated with their
heads fixed with silicone rubber to prevent head movement; further,
mechanical stimulation was applied to the left whisker pad skin
using an electronic von Frey anaesthesiometer (Bioseb, Chaville,
France) while they were under constant, adjusted-depth anaesthesia.
Mechanical stimulation was also applied to the left lower lip
ipsilateral to the IANX conducted site using flat-tipped forceps
(Panlab s.l., Barcelona, Spain) while under constant, adjusted-depth
anaesthesia. Both mechanical stimulation intensities were gradually
increased at a specified rate (von Frey anesthesiometer; 0-100 g, 10
g/s, cut-off: 100 g, flat tipped forceps; 0-80 g, 10 g/s, cut-off: 80 g).
The lowest intensity of mechanical stimulation required to induce
the head withdrawal reflex was defined as the mechanical head
withdrawal reflex threshold (MHWT). Each stimulation interval was
3 min; the average of three measurements was defined as the
MHWT for each mouse. MHWT measurements were performed
under blinded conditions.

Intra-TG administration of Clophosome®-A. SAMP8 mice were
anaesthetized with an i.p. injection of butorphanol (5 mg/kg),
midazolam (4.0 mg/kg), and medetomidine (0.75 mg/kg). The
skull was exposed, and a small hole (1 mm in diameter) was
drilled above the TG (2.8 mm anterior from the posterior
fontanelle, 1.2 mm lateral to the sagittal suture) ipsilateral to the
location of IANX. Next, the guide cannula was extended to the
TG (6 mm below the skull surface) through the small hole and
then secured to the skull using dental cement. The correct
position of the tip of the cannula was confirmed by inserting the
trocar as an electrode into the cannula and testing the induction
of multi-unit activity by mechanical stimulation of the left
whisker pad skin (29). After cannula fixation, a 26-gauge needle,
polyethylene tubing (0.8 mm in diameter; Natsume, Tokyo,
Japan), and an osmotic mini-pump (0.11 μl/h, Alzet model 1004;
Durect Corporation, Cupertino, CA, USA) were connected, and
inserted into the TG through the cannula. Subsequently, liposomal
clodronate Clophosome®-A (LCCA, 13.2 μl; F70101-CA,
FormuMax Scientific, Sunnyvale, CA, USA), plain control
liposomes for LCCA (Cont-LCCA, 13.2 μl, F70101-A,
FormuMax Scientific), or vehicle were continually administered
into the TG before operation and on days 1-5 following IANX or
sham operation. Next, under light anaesthesia with 2% isoflurane,
the MHWT of the left whisker pad skin and left lower lip were
measured before the IANX operation and every other day for 5 d
after IANX or sham operation. 
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Immunohistochemistry in TG. Following deep anaesthesia by i.p.
injection of butorphanol (5 mg/kg), midazolam (4.0 mg/kg), and
medetomidine (0.75 mg/kg), we injected a retrograde labelling
tracer, 4% FluoroGold (FG, 5 μl dissolved in saline; Fluorochrome,
Denver, CO, USA) into the left whisker pad skin using a 30-gauge
needle 7 d before IANX or the sham operation. On day 5 after the
IANX operation, the mice were transcardially perfused with saline
followed by a mixture of 4% paraformaldehyde (PFA) in 0.1 M
phosphate buffer (PB; pH=7.4). After fixation, the ipsilateral TG
was dissected out and immersed in the same fixative component at
4˚C for 24 h and then kept in 0.01 M phosphate buffer saline (PBS)
containing 20% sucrose for 6 h for cryoprotection. Next, the TGs
were embedded in Tissue-Tek® (Sakura Finetek, Tokyo, Japan) and
stored at –20˚C until cryosectioning. 

The specimens were cut in the horizontal plane along the long
axis of the ganglion at a thickness of 10 μm. Every tenth section
(five sections per mouse) was thaw-mounted on a MAS-coated
Superfrost™ Plus microscope slide (Matsunami, Tokyo, Japan) and

dried overnight at room temperature (RT; 23˚C). The five sections
of each TG were used for immunohistological analysis. 

After rinsing the tissue sections with 0.01 M PBS three times for
10 min each, the sections were incubated with a rabbit anti-Iba1
polyclonal antibody (1:500, 019-19741; Wako Fujifilm, Osaka, Japan)
diluted in 0.01 M PBS containing 4% normal goat serum (Merck,
Darmstadt, Germany) in 0.3% Triton X-100 (Merck) to identify
macrophages at 4˚C for 72 h. The sections were also incubated with
a rabbit polyclonal Iba1 antibody (1:500, 019-19741; Wako Fujifilm)
and an Armenian hamster monoclonal CD11c antibody (1:250,
ab33483; Abcam, Cambridge, UK) diluted in 0.01 M PBS containing
4% normal goat serum (Merck) in 0.3% Triton X-100 (Merck) at 4˚C
for 72 h to identify Iba1-positive M1 macrophages (Iba1/CD11c). 

Goat polyclonal Iba1 (1:500, ab5076; Abcam) and rabbit
polyclonal mannose receptor (CD206) antibodies (1:200, ab64693;
Abcam) were diluted in 0.01 M PBS containing 4% normal donkey
serum (Merck) in 0.3% Triton X-100 (Merck) and incubated at 4˚C
for 72 h to identify Iba1-positive M2 macrophages (Iba1/CD206).
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Figure 1. Changes in mechanical sensitivity of the whisker pad skin and the lower lip following inferior alveolar nerve transection (IANX). (A)
Time course of treatment and behavioural testing. (B) Changes in mechanical head withdrawal threshold (MHWT) of the whisker pad skin for 21
d following IANX. Changes in MHWT of the lower lip for 21 d following IANX. Data represent mean±SD. (n=7 each for IANX-treated SAMP8,
IANX-treated SAMR1 sham-operated SAMP8, and sham-operated SAMR1 mice; two-way ANOVA with repeated measures followed by Sidak’s
multiple-comparison tests, **p<0.01, IANX-treated SAMP8 vs. sham-operated SAMP8 mice. ##p<0.01, IANX-treated SAMR1 vs. sham-operated
SAMR1 mice. ++p<0.01, IANX-treated SAMP8 vs. IANX-treated SAMR1 mice. $$p<0.01, sham-operated SAMP8 vs. sham-operated SAMR1 mice).



Following primary antibody incubation, the sections were rinsed
with 0.01 M PBS three times for 10 min each, and then the sections
were incubated with either an Alexa Fluor® 488 donkey-anti-rabbit
IgG (1:200, A-21206; Thermo Fisher Scientific, Waltham, MA, USA),
Alexa Fluor® 488 goat-anti-Armenian hamster IgG (1:200, ab173003;
Abcam), Alexa Fluor® 568 goat anti-rabbit IgG (1:200, ab175471;
Abcam), Alexa Fluor® 568 donkey-anti-goat IgG (1:200, A-11057;
Thermo fisher scientific) in 0.01 M PBS for 2 h at RT. After rinsing
with 0.01 M PBS, the sections were coverslipped in PermaFluor
(Thermo Fisher Scientific), and Iba1-immunoreactive (IR),
Iba1/CD11c co-IR, or Iba1/CD206 co-IR cells were identified under
a fluorescence microscope (BZ9000 system; Keyence, Osaka, Japan). 

The areas occupied by Iba1-IR, Iba1/CD11c co-IR, or Iba1/CD206
co-IR cells found in the FG-labelled TG innervating the left whisker
pad skin were analysed with an overlaid square grid (26.7×26.7 μm2).
The mean relative areas occupied by these immunostained products
were measured using a computer-assisted imaging analysis system
(ImageJ 1.37v; NIH, Bethesda, MD, USA). All immunohistochemical
measurements were performed by observers blinded to the animal
treatment status. Using the same conditions, no specific
immunostaining was observed for all samples when primary antibodies
were not used (negative control, data not shown).

Statistical analysis. The data are presented as mean±standard
division (SD). Statistical analyses were performed using one-way
or two-way repeated-measures analysis of variance (ANOVA)

followed by Sidak’s multiple-comparison tests, where appropriate.
The cut-off for statistical significance was set at p<0.05. The
statistical package used for the analysis by GraphPad Prism (version
5, La Jolla, CA, USA).

Results

Changes in mechanical sensitivity following IANX. The MHWT
of the whisker pad skin and lower lip ipsilateral to the IANX
was measured before IANX and every other day post-IANX
until day 21 (Figure 1A). The MHWTs of the whisker pad skin
were significantly decreased on days 1-5 in the SAMR1 mice,
and days 3-11 in the SAMP8 mice (p<0.05). On day 5 after
IANX, the MHWT values of the whisker pad skin in both
SAMR1 and SAMP8 mice decreased significantly, and the
MHWT of the SAMP8 mice was lower than that of SAMR1
mice (IANX-treated SAMP8 mice: 65.3±3.0 g; IANX-treated
SAMR1 mice: 73.4±5.3 g; sham-operated SAMP8 mice:
82.6±1.9 g; sham-operated SAMR1 mice: 83.5±3.4 g) (Figure
1B). The MHWTs of the lower lip were significantly increased
on days 1-9 in both SAMR1 mice and SAMP8 mice. On days
1-9 after IANX, there were no significant differences between
MHWT in SAMP8 and SAMR1 mice (IANX-treated SAMP8
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Figure 2. Macrophages in the trigeminal ganglion (TG) on day 5 after inferior alveolar nerve transection (IANX). (A) Photomicrographs of FG-
labelled Iba1-immunoreactive (IR) cells on day 5 after IANX. The arrows indicate Iba1-IR cells. Scale bars: 30 μm. (B) The relative area of Iba1-
IR cells. Data represent mean±SD. (n=7 each for IANX-treated SAMP8, IANX-treated SAMR1, sham-operated SAMP8, and sham-operated SAMR1
mice; one-way ANOVA with repeated measures followed by Sidak’s multiple-comparison tests, *p<0.05).
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Figure 3. M1 or M2 phenotype macrophages in TG on day 5 after inferior alveolar nerve transection (IANX). (A) Photomicrographs of Iba1/CD11c co-
IR cells on day 5 after IANX. The arrows indicate Iba1/CD11c co-IR cells. Scale bars: 30 μm. (B) Photomicrographs of Iba1/CD206c co-IR cells on day
5 after IANX. The arrows indicate Iba1/CD206 co-IR cells. Scale bars: 30 μm. (C) The relative area of Iba1/CD11c co-IR cells on day 5 after IANX and
sham operation. Data represent mean±SD. (n=7 each for IANX-treated SAMP8, IANX-treated SAMR1, sham-operated SAMP8, and sham-operated
SAMR1 mice; one-way ANOVA with repeated measures followed by Sidak’s multiple-comparison tests, **p<0.01). (D) The relative area of Iba1/CD206
co-IR cells on day 5 after IANX and sham operation. Data represent mean±SD. (n=7 each for IANX-treated SAMP8, IANX-treated SAMR1, sham-operated
SAMP8, and sham-operated SAMR1 mice; one-way ANOVA with repeated measures followed by Sidak’s multiple-comparison tests, *p<0.05).



mice: 79.9±0.1 g; IANX-treated SAMR1 mice: 79.3±0.9 g;
sham-operated SAMP8 mice: 64.2±0.6 g; sham-operated
SAMR1 mice: 67.0±6.0 g) (Figure 1B).

Changes in Iba1, Iba1/CD11c, and Iba1/CD206
expression in TG following IANX. We examined Iba1
expression in TG on day 5 after IANX or sham operation
in SAMP8 or SAMR1 mice (Figure 2A). IANX-treated
SAMP8 mice exhibited significant increases in the
relative area of Iba1-IR cells than sham-operated SAMP8
mice, IANX-operated SAMR1 mice, and sham-operated
SAMR1 mice (IANX-treated SAMP8 mice: 1.5±0.3%;
IANX-treated SAMR1 mice: 0.8±0.2%; sham-operated
SAMP8 mice: 0.5±0.2%; sham-operated SAMR1 mice:
0.4±0.2%) (Figure 2B).

Next, we examined Iba1/CD11c or Iba1/CD206 expression
in TG on day 5 after IANX or the sham operation in SAMP8
or SAMR1 mice (Figure 3A and B). IANX-treated SAMP8
mice exhibited significant increases in the relative area of
Iba1/CD11c co-IR cells compared to those of sham-operated
SAMP8, IANX-treated SAMR1, and sham-operated SAMR1
mice (IANX-treated SAMP8 mice: 6.6×10-4±1.2×10-4%;
IANX-treated SAMR1 mice: 3.7×10–4±1.2×10–4%; sham-
operated SAMP8 mice: 2.2×10–4±7.3×10–5%; sham-operated
SAMR1 mice: 1.6×10–4±4.2×10–5%) (Figure 3C). IANX-
treated SAMP8 mice showed significant increases in the
relative area of Iba1/CD206 co-IR cells compared to sham-
operated SAMR1 mice. The IANX-treated SAMR1 mice
exhibited significant increases in the relative area of
Iba1/CD206 co-IR cells compared to sham-operated SAMR1
mice (IANX-treated SAMP8 mice: 2.1×10–4±5.1×10–5%;
IANX-treated SAMR1 mice: 2.1×10–4±2.8×10–5%; sham-
operated SAMP8 mice: 1.9×10–4±4.0×10–5%; sham-operated
SAMR1 mice: 1.6×10–4±2.8×10–5%) (Figure 3D).

Changes in mechanical allodynia and Iba1/CD11c
expression after IANX following intra-TG administration of
LCCA. We examined the effect of intra-TG administration of
LCCA, control-LCCA, or vehicle on mechanical pain
sensitivity after IANX in SAMP8 mice on days 1-5 (Figure
4A). The administration of LCCA on IANX-treated SAMP8
mice significantly recovered the reduction in MHWT
following IANX on days 3-5 compared to control-LCCA-
treated, IANX-treated SAMP8 mice or vehicle-treated,
IANX-treated SAMP8 mice (Figure 4B). 

We investigated the effects of intra-TG administration of
LCCA, control-LCCA, and vehicle on mechanical pain
sensitivity of the lower lip after IANX, finding no significant
differences in MHWT on days 1-5 between IANX-treated
SAMP8 mice treated with LCCA, control-LCCA, or vehicle
(Figure 4C).

On day 5 after IANX, we investigated the effect of LCCA,
control-LCCA, or vehicle on Iba1/CD11c expression in TG

in SAMP8 mice (Figure 4D). The relative areas of
Iba1/CD11c co-IR cells in the IANX-treated SAMP8 mice
treated with LCCA group were significantly lower compared
to the control-LCCA-treated IANX-treated, SAMP8 mouse
group or the vehicle-treated, IANX-treated, SAMP8 mouse
group (LCCA-treated group: 1.9×10–4±3.9×10–5%; control-
LCCA treated group: 6.5×10–4±9.3×10–5%; vehicle treated
group: 6.2×10–4±9.7×10–5%) (Figure 4E).

Discussion

Ectopic pain often occurs following peripheral nerve injury
and inflammation. In clinical practice, older people complain
of pain more frequently than young people (30). The
majority of elderly people also routinely experience pain in
areas with no disease or injury (31). However, the effects of
ageing on ectopic pain mechanisms after peripheral nerve
injury remain unclear.

Many previous studies have shown that the long-lasting
mechanical allodynia observed in IANX models resembles
the ectopic pain hypersensitivity observed in patients with
a history of trauma to the IAN (28, 32). SAMP8 mice are
an established strain that show accelerated ageing, shortened
lifespans, and rapid age-dependent increases in senescence
scores such as neuronal pathology; meanwhile, SAMR1
mice are a corresponding control strain of SAMP8 mice that
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Figure 4. Effect of intra-TG LCCA administration on mechanical
sensitivity of the whisker pad skin and the number of Iba1/M1 co-IR
cells after inferior alveolar nerve transection (IANX) in SAMP8 mice.
(A) Time course of treatment and behavioural testing. (B) Changes in
mechanical head withdrawal threshold (MHWT) of the whisker pad skin
after administration with LCCA, control-LCCA, or vehicle to IANX-
treated SAMP8 mice. Data represent mean±SD. (n=7 each for LCCA-
administrated SAMP8, control-LCCA-administrated SAMP8, vehicle-
administrated SAMP8 mice; two-way repeated-measures analysis of
variance followed by Sidak’s multiple-comparison tests, **p<0.01,
LCCA-administrated SAMP8 vs. control-LCCA-administrated SAMP8
mice. ++p<0.01, LCCA-administrated SAMP8 vs. vehicle-administrated
SAMP8 mice). (C) Changes in MHWT of the lower lip after
administration with LCCA or control-LCCA or vehicle to IANX-treated
SAMP8 mice. Data represent mean±SD. (n=7 each for LCCA-
administrated SAMP8, control-LCCA-administrated SAMP8, vehicle-
administrated SAMP8 mice; two-way repeated-measures analysis of
variance followed by Sidak’s multiple-comparison tests, **p<0.01,
LCCA-administrated SAMP8 vs. control-LCCA-administrated SAMP8
mice. ++p<0.01, LCCA-administrated SAMP8 vs. vehicle-administrated
SAMP8 mice). (D) Photomicrographs of Iba1/CD11c co-IR cells on day
5 after IANX. The arrows indicate Iba1/CD11c co-IR cells. Scale bars:
30 μm. (E) The relative area of Iba1/CD11c co-IR cells on day 5 after
IANX and sham operation. Data represent mean±SD. (n=7 each for
LCCA-administrated SAMP8, control-LCCA-administrated SAMP8, and
vehicle-administrated SAMP8 mice; one-way ANOVA with repeated
measures followed by Sidak’s multiple-comparison tests, **p<0.01).
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exhibit normal ageing (24, 33, 34). Compared to several
other SAMP strain mice, SAMP8 mice exhibit physiological
and morphological features that better resemble ageing-
related changes found in human brains (35). Thus,
examining neuropathological differences between SAMP8
and SAMR1 mice at the same time point should be
appropriate for determining the effects of ageing on neural
mechanisms (21, 24, 36). 

Here, both SAMP8 and SAMR1 mice developed
mechanical allodynia of the whisker pad skin after IANX.
Interestingly, SAMP8 mice developed stronger mechanical
allodynia than that of SAMR1 mice post-IANX. In addition,
both SAMP8 and SAMR1 mice showed increased MHWT in
the lower lip post-IANX. This result is similar to that
produced by lower lip dysesthesia in humans following
alveolar nerve injury. Therefore, using IANX-treated SAMP8
mouse may be useful for studying the effects of ageing on
the mechanism of orofacial ectopic pain. 

Many previous studies have indicated that peripheral
nerve injury increases the number of resident and
proliferated macrophages in sensory ganglia (37-39). Iba1
expression is a specific marker for macrophages (40). Here,
the number of Iba1-IR cells in the TG increased on day 5
after IANX and mechanical allodynia of the whisker pad
skin was enhanced in SAMP8 mice. Furthermore, Iba1-IR
cells were more abundant in the TG of SAMP8 mice than in
SAMR1 mice on day 5 after IANX. Previous studies have
shown that IANX increased the number of Iba1-IR cells in
TG and induced mechanical allodynia in the whisker pad
skin (29). An animal model of persistent peripheral
neuropathic pain, the spared nerve injury model, develops
mechanical allodynia in the plantar surface of the hind paw
(41). In this rat model, ageing enhances the increased
expression of Iba-1 IR cells in nociceptive neurons compared
to young rats (42). These reports agree with our present
results, suggesting that ageing enhances the increase in Iba1-
IR cell expression in the TG at the onset of ectopic
mechanical allodynia in whisker pad skin after IANX. M1
macrophages potentiate inflammation by producing TNF-α,
interleukins (IL)-6, and C-C motif chemokine 2 (CCL2) (43-
45). In contrast, M2 macrophages function as anti-
inflammatory agents by producing anti-inflammatory
products such as IL-4, transforming growth factor-β, and
CCL4 (46-48). Some previous reports have also indicated
that CD11c is a major marker for M1 macrophages (49, 50),
and that CD206 is a major marker for M2 macrophage
activation states (50, 51). 

We examined Iba1/CD11c co-IR cells, or Iba1/CD206 co-
IR cells in the TG on day 5 after IANX and found that
Iba1/CD11c co-IR cells were increased in both SAMP8 and
SAMR1 mice. Moreover, the number of Iba1/CD11c co-IR
cells in SAMP8 mice was greater than that of SAMR1 mice.
Meanwhile, Iba1/CD206 co-IR cells were increased in

SAMR1 mice following IANX, but no significant differences
were observed in corresponding SAMP8 mice. 

Macrophage polarity changes are related to ageing.
Ageing has widely been reported to accelerate the polarity
switch from M2-like to M1-like macrophages (52-54).
Further, macrophages in the enteric nervous system
reportedly exhibit enhanced inflammatory M1 polarity
following ageing, resulting in enhanced neural responses to
inflammatory signals (55). Consistent with these reports, our
present results suggest that age-related macrophage polarity
changes in TG accelerate changes in inflammatory M1
polarity, which enhances mechanical allodynia in whisker
pad skin after IANX. Additionally, many other markers for
M1 have been found, such as CD38, CD86, and CD40 (56,
57). Future studies using other M1 and M2 markers may be
necessary to investigate the involvement of macrophage
polarity changes in orofacial ectopic pain.

When LCCA, a macrophage depleting agent, was directly
and continuously administered into the TG in SAMP8 mice,
mechanical allodynia of whisker pad skin on day 5 after
IANX was significantly suppressed compared to the control-
LCCA-treated and vehicle-treated SAMP8 mice. We
confirmed that the increase in the number of Iba1/CD11c co-
IR cells in TG on day 5 after IANX was significantly
suppressed in LCCA-treated SAMP8 mice compared to the
control-LCCA or vehicle-treated SAMP8 mice. Previous
studies have reported that IANX enhances background activity
and responsiveness to mechanical stimuli in the infraorbital
nerve (28, 58), resulting in the development of ectopic
mechanical allodynia in the ipsilateral whisker pad skin (59).
The various macrophage-derived pro-nociceptive mediators
induce neuronal sensitization and hyperexcitation (60).
Increased ageing-related neural responses to inflammatory
signals involve a shift in macrophage polarity from an anti-
inflammatory M2 to an inflammatory M1 state (55). In the
spinal cord, TNF-α released from M1 macrophages binds to
TNF receptor-α1 on nociceptive neurons, causing neuronal
sensitization, and leading to cutaneous mechanical allodynia
(60). Furthermore, other reports indicate that TNF-α released
from accumulated M1 macrophages activates satellite cells
following the injury of dorsal root ganglion neurons
innervating the colon; neural hyperexcitation of the injured
primary sensory neuron of the colon enhanced the excitability
of primary sensory neuron innervating the uninjured bladder,
causing bladder dysfunction and hypersensitivity (61, 62).
Furthermore, orofacial ectopic pain studies have indicated that
neuron-macrophage interactions are involved in the
pathogenesis of abnormal tongue pain after pulpitis by
enhancing TG neuronal excitability via IL-1 receptor type-1
and transient receptor potential vanilloid-1 signalling (63).
Together, these reports indicate that macrophages in TG
directly or indirectly enhanced the excitability of neurons,
innervating areas remote from the injured area, which play a
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key role in the development of orofacial ectopic pain. Our
results agree with these past reports, also indicating that age-
related changes in macrophage expression in TG are
responsible for worsening mechanical allodynia of the whisker
pad skin, and that these changes enhance the excitability of
TG neurons after IANX. However, to further corroborate this,
macrophage-mediated changes in TG neuronal excitability
after IANX need to be clarified in SAMP8 mice.

In conclusion, the ectopic mechanical allodynia that develops
in the whisker pad skin after IANX is enhanced with ageing,
and the enhanced age-related inflammatory M1 macrophage
polarity changes seen in the TG play a pivotal role in this
pathogenesis. This present study is the first report regarding the
effects of ageing on orofacial ectopic pain. The results of this
study should facilitate the elucidation of the regulatory
mechanisms of abnormal pain associated with ageing. 
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