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Abstract 

Background Advantages of meta‑analysis depend on the assumptions underlying the statistical procedures used 
being met. One of the main assumptions that is usually taken for granted is the normality underlying the population 
of true effects in a random‑effects model, even though the available evidence suggests that this assumption is often 
not met. This paper examines how 21 frequentist and 24 Bayesian methods, including several novel procedures, for 
computing a point estimate of the heterogeneity parameter ( τ 2 ) perform when the distribution of random effects 
departs from normality compared to normal scenarios in meta‑analysis of standardized mean differences.

Methods A Monte Carlo simulation was carried out using the R software, generating data for meta‑analyses using 
the standardized mean difference. The simulation factors were the number and average sample size of primary stud‑
ies, the amount of heterogeneity, as well as the shape of the random‑effects distribution. The point estimators were 
compared in terms of absolute bias and variance, although results regarding mean squared error were also discussed.

Results Although not all the estimators were affected to the same extent, there was a general tendency to obtain 
lower and more variable τ 2 estimates as the random‑effects distribution departed from normality. However, the esti‑
mators ranking in terms of their absolute bias and variance did not change: Those estimators that obtained lower bias 
also showed greater variance. Finally, a large number and sample size of primary studies acted as a bias‑protective 
factor against a lack of normality for several procedures, whereas only a high number of studies was a variance‑pro‑
tective factor for most of the estimators analyzed.

Conclusions Although the estimation and inference of the combined effect have proven to be sufficiently robust, 
our work highlights the role that the deviation from normality may be playing in the meta‑analytic conclusions from 
the simulation results and the numerical examples included in this work. With the aim to exercise caution in the 
interpretation of the results obtained from random‑effects models, the tau2() R function is made available for obtain‑
ing the range of τ 2 values computed from the 45 estimators analyzed in this work, as well as to assess how the pooled 
effect, its confidence and prediction intervals vary according to the estimator chosen.
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Background
Meta-analysis is the set of procedures aimed at synthe-
sizing the combined evidence from multiple scientific 
studies that attempt to answer a common research ques-
tion. Combining the evidence, rather than relying on 
individual studies, has important benefits like an increase 
in the statistical power to detect an effect of interest or 
the possibility to examine why and how individual esti-
mates vary. However, these benefits only apply when the 
assumptions underlying the statistical procedures used in 
meta-analysis are met or, at least, when these procedures 
are robust enough to the violation of these assumptions. 
One of the main assumptions that is usually taken for 
granted in applied meta-analysis is the normality under-
lying the population of true effect sizes in a random-
effects model. Previous works have tried to answer how 
the estimation and inference regarding the pooled effect 
size perform under non-normal random effects [1–3], 
but less has been said about other important parameters, 
like the heterogeneity or between-study variance.

This paper presents a Monte Carlo simulation that 
examines how the available methods for computing a 
point estimate of the between-study variance perform 
when the distribution of effect sizes departs from normal-
ity in meta-analyses of standardized mean differences.

The role of the heterogeneity parameter
The random-effects model assumes that the effect esti-
mates collected in the meta-analysis may not only vary 
due to random sampling error (given the primary studies 
employ samples of different size), but also because each 
study is estimating a different parametric effect. Continu-
ing with its mathematical formulation, the effect size esti-
mate θ̂i of the ith study ( i = 1, . . . , k ) is decomposed into 
θi + ei , where θi refers to the parametric effect estimated, 
and ei represents the error or difference between θi and θi . 
The expected value of the ei errors is assumed to be zero 
(the effect size estimators are usually unbiased) and their 
variance is called error variance (i.e., within-study vari-
ance, σ 2

i  ). The within-study variability is a way of quanti-
fying the imprecision (variability due to random sampling 
error) of a study through a function of the study’s sample 
size. At the same time, the parametric effect θi is decom-
posed into µθ + ui , where µθ refers to the mean of the 
parametric effect distribution, and ui represents the dif-
ference between θi and µθ . Again, the expected value of 
the ui errors is assumed to be zero and their variance is 
called heterogeneity (i.e., between-study variance, τ 2 ). 
Therefore, the between-study variance is the variabil-
ity found among effect estimates that is not due to ran-
dom sampling error, but to the variability present in the 

parametric effect (hereinafter also referred to as random-
effects or true effects) distribution.

As Higgins et al. [4] (p139) stated, ‘The naive presenta-
tion of inference only on the mean of the random-effects 
distribution is highly misleading. Estimation of [hetero-
geneity] is just as important’. It could be argued that the 
heterogeneity is equally important as the pooled effect 
size, given it is needed for understanding the consistency 
(i.e., the homogeneity or similarity) among the effects 
sizes and, also, for comparing the different sources of 
variability underlying the distribution of effect estimates. 
The correct estimation of the heterogeneity parameter 
is decisive, not only because the pooled effect, its con-
fidence and prediction intervals, and indices such as 
I2 depend on it, but also because it allows us to know 
whether additional analyses (i.e., meta-regression, loca-
tion-scale, or network meta-analyses) are needed to 
investigate the sources of this heterogeneity [5–7].

The normality assumption in the random‑effects model 
and the point estimation of τ2

As explained above, the random-effects model implies 
that the parameters that describe the distribution of the 
effect estimates are µθ , τ 2 and σ 2

i  , but no distributional 
assumption has been made to this point, neither for θ̂i nor 
for θi . The first normality assumptions are made at the 
within-study level, when assuming θ̂i ∼ N (θi, σ

2
i ) , which 

is often done when the primary studies have a sufficiently 
large sample size or when ei are supposed to be normally 
distributed with mean equal to 0 and variance σ 2

i   [8]. 
Since our work is focused on the normality assumption 
at the random-effects distribution or between-study 
level and not at the fixed-effect or within-study level, we 
refer the reader to the work of Jackson and White [8] for 
a comprehensive analysis of the statistical reasons why 
researchers often assume normality at the within-study 
level and the extent to which these assumptions may 
affect the meta-analytic results. At the between-study 
level, the normality assumption regarding the modelling 
of the random effects is made depending on the hetero-
geneity estimator chosen. As we will see below, there are 
lots of ways for estimating the between-study variance 
[9], and some of these estimators assume that the errors 
ei and ui are normally distributed and, consequently, that 
θ̂i and θi are also normally distributed, θ̂i ∼ N (θi, σ

2
i ) and 

θi ∼ N (µθ , τ
2
).

Since the generalization of random-effects models 
to the field of meta-analysis, new and old procedures 
have been used to estimate τ 2 . The procedures dis-
cussed in this paper are presented in Table  1, along 
with their abbreviation, the authors who initially devel-
oped them and the year of publication [10–29]. As can 
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be seen in Table  1, these procedures differ according 
to whether they are obtained iteratively or analyti-
cally, whether they produce only positive estimates 
or also include zero, whether they rely on random-
effects normality, and the estimation method they are 
based on. Since describing each procedure in detail is 
beyond the scope of this paper, readers are referred to 

the supplementary material of the study of Boedeker & 
Henson [30] and the work of Zhang et al., [31] where 
most of the estimators evaluated in the present work 
are described. With respect to the most novel proce-
dures (i.e., MPM and GENQM), the logic behind its 
calculation is presented in the work of Viechtbauer 
(2021) [19]. It is also worth mentioning that the tables 

Table 1 Point estimators for the heterogeneity parameter

Heterogeneity point estimators included in the present study, their abbreviation, authors and year of publication, type of calculation required to obtain the 
corresponding estimate, the range of real values for theτ 2estimates obtained, whether they assume or not normality assumptions regarding the random‑effects 
distribution, and the underlying estimation method they are based on

Point estimator forτ 2 Author (year) Computation Range Assume
normality

Estimation method

Cochran (Hedges‑Olkin) CA Cochran (1954) [10] Direct Non‑negative No Method of the 
moments

Mandel‑Paule MP Mandel & Paule (1970/82) [11, 12] Iterative Non‑negative No Method of the 
moments

DerSimonian‑Laird DL DerSimonian & Laird (1986) [13] Direct Non‑negative No Method of the 
moments

Hartung‑Makambi HM Hartung & Makambi (2002) [14] Direct Positive No Method of the 
moments

Two‑step Cochran CA2 DerSimonian & Kacker (2007) [15] Direct Non‑negative No Method of the 
moments

Two‑step DerSimonian‑Laird DL2 DerSimonian & Kacker (2007) [15] Direct Non‑negative No Method of the 
moments

Positive DerSimonian‑Laird DLp Kontopantelis et al. (2013) [16] Direct Positive No Method of the 
moments

Lin‑Chu‑Hodges r LCHr Lin et al. (2017) [17] Iterative Non‑negative No Method of the 
moments

Lin‑Chu‑Hodges m LCHm Lin et al. (2017) [17] Iterative Non‑negative No Method of the 
moments

Multistep DerSimonian‑Laird DLm vanAert & Jackson (2018) [18] Direct Non‑negative No Method of the 
moments

Median‑unbiased Mandel‑Paule MPM Viechtbauer (2021) [19] Iterative Non‑negative No Method of the 
moments

Median‑unbiased Gen. Q GENQM Viechtbauer (2021) [19] Iterative Non‑negative No Method of the 
moments

Maximum likelihood ML Hardy & Thompson (1996) [20] Iterative Non‑negative Yes Maximum likelihood

Restricted maximum likelihood REML Viechtbauer (2005) [21] Iterative Non‑negative Yes Maximum likelihood

Sidik‑Jonkman SJ Sidik & Jonkman (2005) [22] Direct Non‑negative Yes Least squares

Sidik‑Jonkman (prior CA estimation) SJ(CA) Sidik & Jonkman (2007) [23] Direct Positive Yes Least squares

Non‑parametric bootstrap 
DerSimonian‑Laird

DLb Kontopantelis et al. (2013) [16] Direct Non‑negative No Non‑parametric

Malzahn‑Böhning‑Holling MBH Malzahn et al. (2000) [24] Direct Non‑negative No Non‑parametric

Hunter‑Schmidt (weighted by 
inversed variance)

HSiv Hunter & Schmidt (1990) [25] Direct Non‑negative No Artifact correction

Hunter‑Schmidt (weighted by 
sample size)

HSss Hunter & Schmidt (1990) [25] Direct Non‑negative No Artifact correction

Hunter‑Schmidt (corrected by small 
sample size)

HSk Morris et al. (2015) [33] Direct Non‑negative No Artifact correction

Fully Bayesian FB Smith et al. (1995) [26] Iterative Non‑negative Yes Bayesian

Rukhin Bayes RB Rukhin (2013) [27] Direct Non‑negative No Bayesian

Rukhin Bayes positive RBp Rukhin (2013) [27] Direct Positive No Bayesian

Bayes Modal BM Chung et al. (2013a, 2013b) [28, 29] Iterative Positive Yes Bayesian
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and figures of the present work are available in the 
supplementary material hosted in the Open Science 
Framework repository [32].

Frequentist heterogeneity estimators
Beginning with the frequentist estimators based on 
the method of moments, Kacker [34] showed that sev-
eral methods for estimating the between-study variance 
were special cases of the application of the method of 
moments for a generalized version of the Q statistic pro-
posed by Cochran [10]:

where θ̂i and ai represents the effect estimate and the 
weighting factor (any positive constant), respectively, for 
the ith study, and θ̂w is computed as the weighted mean of 
the effect size estimates, 

∑k
i=1aiθ̂i/

∑k
i=1ai.

Those estimators based on the generalized Q statistic 
(CA, MP, DL, HM) are consequently obtained by set-
ting different weights to ai , and clearing the between-
study variance component from the expected value of the 
resulting Q statistic. Several other estimators (CA2, DL2, 
DLp, DLm) are extensions of the original procedures men-
tioned above, in the sense that they are computed based 
on one or multiple previous estimates of the Cochran [10] 
and the DerSimonian-Laird [13] procedures.

The MP estimator introduced by Mandel and Paule [11, 
12] is mathematically identical to the empirical Bayes 
estimator (EB), which was independently proposed by 
Morris [35]. For this reason, in the following we will refer 
to both procedures when naming the MP estimator.

Lin et  al. [17] proposed the r and m estimators that 
rely on alternative Q statistics with the aim of obtaining 
τ
2 estimates more robust to the presence of outliers. The 

difference between these alternative Q statistics and the 
one presented in Eq.  1 is that the formers are weighted 
sums of absolute differences instead of squared residu-
als, and that their residuals are computed with respect 
to a measure less affected by outliers than the typical 
weighted mean.

More recently, two new estimators have been pro-
posed (MPM and GENQM) [19] with the aim of drawing 
attention to the fact that the previous methods estimate 
τ
2 from the expected value of the generalized Q statis-

tic, when in fact this statistic follows a χ2 distribution 
and therefore its distribution is skewed. For this reason, 
Viechtbauer[19] proposed to estimate τ 2 from the median 
of the generalized Q statistic instead of its expected value.

Overall, the generalized Q statistic is simply a weighted 
sum of residuals and, therefore, does not imply any 
assumption of normality, regardless of the value of ai . 
It is worth noting that, only when Q is used as a test 

(1)QG =
∑k

i=1a1

(
θ̂i − θ̂w

)2
,

statistic for which a χ2 distribution is assumed, then 
normality is assumed at the within-study level since, the-
oretically, a χ2 variable is the sum of several independent 
standard normal squared variables. As a result, all the 
heterogeneity estimators based on Qstatistics, although 
based on potentially unrealistic assumptions (i.e., known 
within-study variances and unbiased effect size esti-
mates) [8], do not involve assuming normality for the 
random effects.

The estimators based on maximum  likelihood (ML 
and REML) rely on the within-study and between-study 
normality assumptions [21]. These estimators assumed 
that each individual effect estimate is normally distrib-
uted with respect to a single parametric effect, and, at 
the same time, each parametric effect is supposed to be 
normally distributed regarding the mean of the paramet-
ric effects. Consequently, τ 2 estimates based on these 
procedures are computed by maximizing the log-likeli-
hood function where the individual effect estimates are 
assumed to follow a normal distribution with mean µθ 
and variance τ 2 + σ

2
i .

Those heterogeneity estimators based on weighted least 
squares (SJ and SJ(CA)) also rely on the within-study and 
between-study normality assumptions [22, 23]. These 
estimators were developed in the framework of a linear 
regression model: Y = β01+ ε , where Y  is a vector with 
the effect size estimates, β0 is a constant that represents 
µθ , and ε is the error due to the total variance. Given that 
one of the underlying assumptions of linear regression 
models is that errors must be normally distributed, ε is 
therefore assumed to follow a N (0, τ 2 + σ

2 ) distribution 
and, consequently, the true effects and their estimates are 
also supposed to be normally distributed.

As for the nonparametric estimators (DLb and MBH), 
none of them are based on underlying normality assump-
tions, neither at the within-study nor at the between-
study level [16, 24]. The DLb estimator consists of 
bootstrapping the set of effect estimates to compute the 
DL estimator in each sample and, finally, calculating the 
mean DL estimate. Given that the DL estimator is based 
on the Q statistic and the bootstrap procedure does not 
imply any distributional assumption regarding the ran-
dom effects, the DLb estimator is free of the normality 
assumption at the within and between-study levels. Sim-
ilar to the CA estimator, the logic underlying the MBH 
procedure is the difference between the total variance 
of the effect estimates and the variance due to random 
sampling error but cannot be expressed in terms of the 
generalized Q statistic as well as the HS estimator. As a 
simple difference between two sources of variability, the 
MBH estimator does not imply any within nor between-
study distributional assumptions. Although it is worth 
mentioning that it acknowledges the variability due to 
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the fact that within-study variances are unknown [36] 
and was designed to be used only with the standardized 
mean difference.

The so-called artifact correction estimators (HSiv, HSss, 
and HSk) compute τ 2 as the difference between the total 
variance of the effect estimates and the variance due to 
random sampling error, obtained as a weighted average of 
the within-study variances. Although Hunter and Schmidt 
[25] followed the same logic for developing the HS estima-
tors that Cochran [10] did when proposing the CA estima-
tor, the latter can be reduced to the generalized Q statistic 
when the weights ai are set to 1/k whereas the HS ver-
sions cannot. The HS estimators can be seen as a differ-
ence between variances, but no distributional assumption 
is made regarding the effect sizes or their estimates.

Bayesian heterogeneity estimators
We now describe the underlying assumptions of Bayesian 
estimators. Three of them (RB, RBp, and BM) are derived 
analytically, whereas the Fully Bayesian estimators (FB) 
require Markov chain Monte Carlo (MCMC) processes.

As we will see below, the FB estimators [26] need to 
make distributional prior assumptions regarding the 
parameters to be estimated (in this case, µθ and τ 2 ) and 
the underlying variables whose distribution depends 
on these parameters (that is, θi and θ̂i ). It is important 
to note that any distributional assumption can be made 
regarding the true effects and their estimates. However, 
given that some of the previously described frequen-
tist estimators assume normality both at the within and 
between-study levels, in the present study fully Bayesian 
estimators were also based on these assumptions.

As stated by Rukhin [27], the specification of the pri-
ors mean allows for the very explicit form of the approxi-
mate Bayesian estimators (RB and RBp), which makes 
them more flexible in terms of normality assumptions. 
The reason behind is that the only features of the nor-
mal distribution that are used to derive these estimators 
are the formula for the kurtosis of a normal variable, and 
the assumption that the within-study variances are inde-
pendent of θ̂i and follow a χ2 distribution.

Finally, the BM estimator proposed by Chung et al. [28, 
29] also relies on the within and between-study normal-
ity assumptions. This method can also be considered a 
penalized maximum likelihood estimator, since the τ 2 
estimate obtained is the resulting value that maximizes 
the log-likelihood function (where the individual esti-
mates are assumed to be normally distributed) but penal-
ized by the parameters of the gamma and uniform priors 
set up for τ 2 and µθ , respectively.

Evidence of the lack of normality in meta‑analysis
Although there are several reasons to doubt about the 
fulfilment of the within-study normality assumption [8, 
37], this paper focuses on the effects of non-normality at 
the between-study level (i.e. when the distribution of ran-
dom effects deviates from normality).

Contrary to the opinion of many meta-analysts, nor-
mality for the random effects cannot be justified using 
the central limit theorem even when the number of 
studies is large [4, 38]. Indeed, Rubio-Aparicio et al. [39] 
reviewed 54 meta-analyses regarding the effectiveness of 
psychological treatments, that used effect sizes from the 
family of mean differences, and found that the distribu-
tion of effect estimates deviated from a normal distri-
bution in a significant proportion of the meta-analyses 
analyzed. More specifically, in that review the skewness 
distribution of the 54 meta‐analyses presented a median 
value of 0.52, with  25th and  75th percentiles of 0.18 and 
1.1 and minimum and maximum values of − 2 and 3.67, 
respectively. When pairing the skewness and kurtosis 
values for the effect estimates distribution of each study, 
these authors found a U-shaped relationship between 
skewness and kurtosis.

As a case study, we now analyze two of the meta-anal-
yses reviewed by Rubio-Aparicio et  al. [39] The meta-
analyses conducted by Richards and Richardson [40] 
and Shadish and Baldwin [41] had a similar number of 
independent estimates: 33 and 30, respectively. However, 
while the former showed a relatively normal distribution 
of effect estimates (skewness = -0.01, kurtosis = -0.88, 
p-value for the Shapiro-Wilks test equaled 0.855), the 
latter summarized estimates whose distribution was far 
from normal (skewness = 2.09, kurtosis = 3.64, p-value 
for the Shapiro-Wilks test equaled 1.233 • 10−6).

When the frequentist and Bayesian heterogeneity esti-
mators described previously are computed, a similar 
mean estimate of τ 2 is obtained for both cases (0.15 for 
the study of Richards and Richardson [40] and 0.18 for 
the study of Shadish and Baldwin [41]), while the vari-
ance of the τ 2 estimates is almost forty-four times larger 
for latter (0.07) than for the former (0.002). In other 
words, estimates of τ 2 range from 0.11 to 0.39 in study of 
Richards and Richardson, while for Shadish and Baldwin’s 
study τ 2 estimates range from 0.002 to 1.18. A pertinent 
conclusion would be that the deviation from normality 
could be affecting the variability of the heterogeneity esti-
mates but, is this correct? Does deviation from normality 
affect all estimators equally? Are the most robust estima-
tors those that make no normality assumptions? In order 
to answer these questions, simulation studies are needed.
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Previous literature
Even though several simulation studies have assessed 
the influence of the lack of normality of the random 
effects on the meta-analytic results [1–3], one of the few 
studies that in the context of meta-analysis of standard-
ized mean differences has reported results referring to 
how this lack of normality affects the estimation process 
of the heterogeneity parameter has been the study by 
Kromrey and Hogarty [42], and can therefore be consid-
ered as a precursor to the present work. These authors 
compared the performance of three estimators of τ 2 
(CA, DL and ML) and found that all of them demon-
strated extreme sensitivity to violations of the assump-
tions of normality. Their simulation results showed that 
the CA estimator remained essentially unbiased under 
normal scenarios, whereas the ML and DL estimators 
evidenced substantial bias under conditions of a small 
number of primary studies or small sample sizes. How-
ever, under non-normal conditions the CA estimator 
showed the greatest bias of the three estimators. With 
respect to the bias of the CA estimator, these authors 
imply that, while under normal conditions CA was prac-
tically unbiased (maximum bias of 0.07), under non-
normal conditions its performance depended on the 
sample size of the primary studies: “with small samples, 
substantial positive bias was evident as τ 2 increased, 
but with large samples, relatively unbiased results were 
obtained”. More specifically, for conditions simulated 
with skewness = 2 and kurtosis = 6, for example, the 
estimated bias reached as high as 0.69 with τ 2 = 1 and 
an average sample size of 10 but did not exceed 0.03 
with samples of 200. Therefore, could the sample size 
of primary studies act as a protective factor for the bias 

of heterogeneity estimators in non-normal scenarios? 
With respect to the variability of τ 2 estimates, Kromrey 
and Hogarty [42] only reported results under normal 
conditions and concluded that ML obtained the lowest 
standard errors, followed by DL, while CA showed the 
largest sampling errors.

Although there are no other simulation studies assess-
ing the performance of heterogeneity estimators in non-
normal parametric scenarios, there are several simulation 
studies [21, 30, 43–45] comparing them under normal 
conditions that have not always reached the same con-
clusions regarding which estimator has the best prop-
erties, possibly due to differences in the simulation 
design. Table 2 shows the values for the overall effect, the 
amount of heterogeneity, the number and average sample 
size of the primary studies included in the meta-analy-
ses of standardized mean differences generated in these 
previous simulation studies, along with the number of 
replications per simulation condition and the heteroge-
neity estimators analyzed in each case. Viechtbauer [21] 
found that there was an inverse relationship between bias 
and efficiency of the estimators analysed in his simula-
tion study and concluded that the CA procedure was 
unbiased across all the simulated conditions but was the 
one that showed the greatest mean square error (MSE) 
among the DL, HSiv, ML, and REML estimators. Novi-
anti et al. [43] explained that CA, DL, DL2, SJ(CA), MP 
and REML were comparable, showing relatively small 
bias for small amounts of heterogeneity. But, in contrast, 
the SJ estimator largely overestimated the real value of τ 2 
in most cases. Petropoulou and Mavridis [44] compared 
in terms of bias twenty frequentist and Bayesian estima-
tors. In their simulation, the DLb and DLp estimators 

Table 2 Parameters or factors varied in previous simulation studies

Simulation factors included in previous simulation studies assessing the performance of different heterogeneity estimators under normal random‑effects conditions. 
Within the fully Bayesian framework,  FBinformative corresponds to the prior specification τ 2 ∼ logN(−2.56, 1.742) ;  FBvague corresponds to the prior specification 
log(τ 2) ∼ t(−3.44, 2.592, 5) ; and  FBmode,  FBmean,  FBmedian correspond to the fully Bayesian procedures also evaluated in the present simulation study to model a 
function of heterogeneity (five different priors for τ , and other two for 1/τ 2 ) centered on the posterior mean, median and mode, respectively

Study Heterogeneity estimators Overall effect
(µθ)

Amount of 
heterogeneity
(τ 2)

Number of studies
(k)

Average sample 
size ( N)

Replicat

Viechtbauer [21] CA, DL, HSiv, ML, REML 0, 0.2, 0.5, 0.8 0, 0.01, 0.025, 0.05, 0.1 5, 10, 20, 40, 80 20, 40, 80, 160, 320 100,000

Novianti et al. [43] CA, MP, DL, REML, SJ, SJ(CA), 
CA2, DL2

0, 0.5 From 0 to 0.0366 10, 15, 20, 30, 50 From 40 to 400 10,000

Petropoulou and 
Mavridis [44]

CA, MP, DL, HSiv, ML, AREML, 
REML, SJ, SJ(CA), CA2, DL2, 
HM, MBH, DLp, DLb, BM, RB, 
RBp,  FBinformative,  FBvague

0, 0.3, 0.5, 0.8 0, 0.01, 0.05, 0.5 10, 20, 30, 50 From 40 to 400 1,000

Langan et al. [45] CA, MP, DL, CA2, DL2, HM, 
SJ, SJ(CA), REML

0.5 From 0 to 2.44 2, 3, 5, 10, 20, 30, 50, 
100

40, 220, 400, 1520, 
3000

5,000

Boedeker and 
Henson [30]

CA, CA2, DL, DLp, DL2, 
HM, HSiv, SJ, MBH, PM, ML, 
and REML,  FBmean,  FBmedian, 
 FBmode, RB, RBp, BM

0.5 0, 0.01, 0.025, 0.05, 
0.075, 0.1, 0.25, 0.5, 1

5, 10, 20, 40, 60, 100 40, 80, 120 1,000
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showed to be less biased in all conditions, followed by the 
REML and HM. Langan et al. [45] compared estimators 
similar to those previous simulation studies in terms of 
relative bias and MSE. These authors found that DL2 and 
REML, despite having a negative bias in a small number 
of scenarios, performed similarly and had relatively low 
bias and low MSEcompared to the other estimators, even 
when there were substantial differences in the sample 
sizes of the primary studies within the same meta-anal-
ysis. Finally, with respect to the simulation study car-
ried out by Boedeker & Henson [30], the estimator that 
showed the best performance with regard to bias and 
MSE over most conditions was that of MP followed by 
CA, REML, RB and those fully Bayesian focused on the 
posterior median with prior Ŵ(0.001, 0.001).

These simulation studies often end up advising the use 
of one estimator or another depending on very specific 
conditions of the number of studies, the sample size, the 
unknown amount of heterogeneity, among other factors, 
although among the estimators most recommended for 
continuous data, as the standardized mean differences, 
we can find the CA, MP, and REML procedures.

In addition to all the simulation factors taken into 
account in the previous simulations, we consider it nec-
essary to examine how deviation from normality affects 
the estimation of the heterogeneity parameter, since it is 
a condition evidenced in real meta-analyses. The estima-
tion of the parameter usually involves a greater negative 
bias the greater the amount of real heterogeneity [21, 
30, 43–45]. This deserves to be taken into account when 
reporting the conclusions of a meta-analysis, where often 
the small number of studies and sample sizes do not 
allow a proper estimation of τ 2 . Therefore, biased and 
very unstable τ 2 estimates may be found. If the role that 
the deviation from random-effects normality can play is 
also overlooked, the conclusions of the meta-analysis can 
be seriously compromised.

Methods
Aim of the present study
In this study, we aimed to compare the performance of 
the heterogeneity estimators previously presented when 
the assumption of normality for the distribution of para-
metric effects is altered for several reasons.

Primarily, we would like to extend the results of Krom-
rey and Hogarty [42] to a larger number of estimators, 
especially those more novel procedures. The estima-
tors proposed by Lin et  al. [17] have only been evalu-
ated in meta-analyses of rare binary events [46], but to 
our knowledge their performance remains unknown 
when the effect size belongs to the family of mean dif-
ferences. At the same time, the estimators proposed by 

Viechtbauer [19] were recently developed as improved 
versions of previously proposed estimators but have not 
yet been examined or compared with other procedures.

Secondly, we would like to know how the deviation 
from normality influences the heterogeneity estima-
tion. Specifically, we were interested in whether all the 
estimators were affected the same way and whether the 
estimators with better properties under normality are 
also the preferred ones when that assumption does not 
hold. Regarding the latter point, the simulation works 
mentioned above should help us to rank the estimators 
already studied in terms of their bias and efficiency in 
normal scenarios. However, since the results vary from 
one study to another, we believe that the most correct 
approach is to simulate new normal random-effects con-
ditions to serve as a starting point to compare the perfor-
mance of the heterogeneity estimators under non-normal 
conditions.

To do so, we carried out a Monte Carlo simulation 
study in R software [47] where we simulated data using 
the standardized mean difference as the outcome meas-
ure, given it is a popular index in psychology and other 
social and health sciences [48]. Throughout this section 
the data generation, the simulation factors and the out-
come variables evaluated are explained and justified.

Data generating process
Data for the primary studies were generated follow-
ing a two-group (experimental and control) design with 
respect to a continuous dependent variable, and the out-
come measure used was the standardized mean differ-
ence, also known as Cohen’s d. So far, the nomenclature 
used to refer to the parametric and estimated effect sizes 
has been θi and θ̂i , involving any effect size index. Since 
from now on we will only talk about the standardized 
mean difference, we will refer to the parametric and esti-
mated effects as δi and gi , respectively.

To simulate a single meta-analysis, a parametric 
effect size δi was randomly selected out of a distribu-
tion of parametric effect sizes with mean µδ = 0.5 and 
a specific variance τ 2 for each of the k primary studies. 
In the present work, the value of µδ has not been var-
ied (included as a factor in the simulation) since previ-
ous work [21, 43, 44] has shown that it has no effect on 
the estimation of τ 2 . Next, following the work of Hedges 
[49], an observed Cohen’s d value for each primary 
study gi was randomly sampled from a distribution that 
was 1/

√
ñi times a noncentral ti random variable, where 

ñi = nEi • nCi /(n
E
i + nCi ) , and nEi  and nCi  being the sample 

sizes for the experimental and control groups, respec-
tively. The noncentral ti distribution had a noncentral-
ity parameter 

√
ñiδi and mi degrees of freedom, where 
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mi = nEi + nCi − 2 . Hedges and Olkin [50] showed that 
g is a positively biased estimator of Cohen’s d, and pro-
posed a nearly unbiased estimator which is computed 
as gUi = c(mi) • gi , where c(mi) is a correction factor for 
small sample sizes given by.

Once a Cohen’s d unbiased estimate gUi  was obtained, 
the estimate of the within-study variance of each primary 
study, which corresponds to the sampling variance of gUi  , 
was computed as.

since the estimator presented in Eq.  3 has shown to 
be the least biased (although not the most efficient) of 
the main known estimators for the sampling variance of 
gUi  [51]. For a detailed analysis of this and other alterna-
tive estimators of the sampling variance of gUi  and the 
software tools where they are implemented, we refer 
readers to the work of Suero et al. [51]

Simulation conditions
The factors manipulated in this simulation were, on the 
one hand, those already studied previously: the number 
and sample size of the primary studies, and the amount 
of heterogeneity. And, on the other hand, the shape 
of the true effects distribution, which has always been 
established as a normal distribution in preceding simu-
lation works. To identify a range of realistic scenarios in 
the field of social and health sciences, the manipulated 
conditions in the current study were set according to the 
results of a systematic review of 54 meta‐analyses on the 
efficacy of psychological interventions using different 
types of standardized mean differences [39].

For the number of studies k, five values were con-
sidered, 10, 30, 50, 70, and 90, corresponding to a 
small‐to‐large number of studies for the meta‐analy-
ses. To model the sample sizes of the primary studies 
N  , we followed the sample size distributions of those 
54 meta-analyses included by Rubio-Aparicio et  al. 
[39] These distributions were positively skewed, with 
an average skewness coefficient of 1.423. To emulate 
a similar distribution, we used a χ2 distribution. Since 
the skewness coefficient for the χ2 distribution is cal-
culated as 

√
8/v ( v representing its degrees of freedom), 

equaling the skewness coefficient to 1.423 results in a 
χ
2 distribution with 3.95 degrees of freedom. In the 

(2)c(mi) =
Ŵ(mi/2)√

mi/2 • Ŵ[(mi − 1)/2]
.

(3)

σ̂
2
i

(
gUi

)
= [1/ñi] +

[
1− 1/

(
c(mi)

2 •mi

mi − 2

)]
(
gUi

)2
,

present simulation, the average total sample size of the 
primary studies N was set to 20, 40, 60, 80, and 100. As 
the expected value of the χ2 equals its degrees of free-
dom, to model the distribution of each average sample 
size condition, N− 3.95 was added to the values of the 
previous χ2 distribution, resulting in distributions with 
3.95 degrees of freedom and mean N  . From these dis-
tributions, a value for the total sample size of each pri-
mary study was randomly generated. Half of this value, 
rounded to the nearest integer, was the sample size for 
the experimental nEi  and control nCi  groups of the ith 
study and, therefore, nEi = nCi .

Furthermore, a wide range of values for the population 
between‐studies variance or heterogeneity was consid-
ered. As found in previous reviews, estimates for τ 2 in 
meta-analyses of health and social sciences range from 
0 to 1 (or even greater values), with a higher concentra-
tion in the 0 to 0.1 range. Therefore, in the present work 
the values 0.000, 0.010, 0.025, 0.050, 0.075, 0.100, 0.250, 
0.500, 0.750, 1.000 were considered for τ 2.

The shape of the distribution of the parametric effect 
sizes s was manipulated through six combinations of 
skewness and kurtosis values. First, a normal scenario 
was set, where skewness and kurtosis equaled zero. 
Second, five nonnormal conditions were considered 
based on the results from Rubio-Aparicio et  al. [39] 
The skewness distribution of the 54 meta‐analyses pre-
sented a median value of 0.52, with 25th and 75th per-
centiles of 0.18 and 1.1 and minimum and maximum 
values of − 2 and 3.67, respectively. Based on these 
results, a wide range of skewness values of − 2, − 1, 0, 
1, and 2 were selected to simulate the parametric effect 
distribution. The nonlinear relationship exhibited by 
the 54 pairs of skewness and kurtosis values found in 
the systematic review was used to predict the kurto-
sis values. A nonlinear predictive model previously fit-
ted to this dataset [3], lead to the predictive equation 
Kurtosis = −0.581 + 0.023 ∗ Skewness + 1.069 ∗ Skewness

2  , 
resulting in five combinations of skewness and kurtosis 
values (− 2, 3.65), (− 1, 0.47), (0, − 0.58), (1, 0.51), and 
(2, 3.74). We used the rpearson() function from the Pear-
sonDS package [52] to generate random values from a 
distribution of parametric effect sizes with mean 0.5, and 
a given variance, skewness, and kurtosis, which is based 
on the Pearson distribution system [53]. Fig.  1 presents 
the probability density functions of the parametric effect 
size distributions for the six simulated combinations of 
skewness and kurtosis, with µδ = 0.5 and τ 2 = 0.05.

Table 3 summarizes the parameters being varied in this 
simulation work. In the end, the total number of condi-
tions was 1350 [5 ( k values) × 5 ( N) × 9 ( τ 2) × 6 ( s)], and 
for each one 1,000 meta‐analyses were generated. There-
fore, 1,350,000 meta‐analyses were simulated.
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Analytic procedures
The simulation was programmed in R 4.1.0 [47] using 
several packages: PearsonDS [52] (v1.2.2), metafor  [54] 
(v3.1.18), bootstrap  [55] (v2019.6), rsample  [56] (v0.1.0), 
bayesmeta  [57] (v2.6), rjags  [58] (v4.10), R2jags  [59] 
(v0.6.1), and runjags [60] (v2.2.0.2). Complete data and R 
code files used for the simulation and analyses reported 
below are available in the supplementary material [32].

In each meta-analysis, all the estimators for the hetero-
geneity parameter described in the Background section 
were computed. That is, twelve estimators based on the 
method of moments, two based on maximum likelihood, 
another two based on least squares, three more focused 
on artifact correction, two nonparametric estimators, 
and four Bayesian procedures.

However, the fully Bayesian procedure allows any a 
priori probability distribution for the parameters of the 
random-effects model (that is, for µδ and τ 2 , since the 

Fig. 1 Absolute bias of the frequentist estimators

Note. Absolute bias of the frequentist estimators as a function of the amount of heterogeneity, the number of primary studies, and theaverage 
sample size. The results are presented separately for each condition of the shape of the random‑effects distribution. CA = Cochran estimator; 
MBH = Malzahn‑Böhning‑Holling estimator; SJ(CA) = Sidik‑Jonkman estimator with prior CA estimation; MPM = median‑unbiased Mandel‑Paule 
estimator; SJ = Sidik‑Jonkman estimator; MP = Mandel‑Paule estimator; CA2 = two‑step Cochran estimator; DL2 = two‑step DerSimonian‑Laird 
estimator; DLm = multistep DerSimonian‑Laird estimator; HS(ss) = Hunter‑Schmidt estimator weighted by sample size; ML = maximum likelihood 
estimator; REML = restricted maximum likelihood estimator; LCHr = Lin‑Chu‑Hodges r estimator; LCHm = Lin‑Chu‑Hodges m estimator; GENQM 
= median‑unbiased generalized Q statistic estimator; DLp = positive DerSimonian‑Laird estimator; DL = DerSimonian‑Laird estimator; HS(k) = 
Hunter‑Schmidt estimator corrected by small sample size; DLb = nonparametric bootstrap DerSimonian‑Laird estimator; HS(iv) = Hunter‑Schmidt 
estimator weighted by inversed variance; HM = Hartung‑Makambi estimator

Table 3 Parameters or factors varied in the present simulation 
work

Simulation factors included in the present study, the mathematical 
nomenclature used in the article, and the values set for each one in the present 
work

Factor Values

Overall effect (µθ) 0.5

Amount of heterogeneity (τ 2) 0.000, 0.010, 0.025, 
0.050, 0.075, 0.100, 
0.250, 0.500, 0.750, 
1.000

Number of studies (k) 10, 30, 50, 70, 90

Average sample size (N) 20, 40, 60, 80, 100

Skewness and kurtosis of the 
random‑effects distribution

(s) (0, 0), (− 2, 3.65), 
(− 1, 0.47), 
(0, − 0.58), (1, 0.51), 
(2, 3.74)

Replications 1,000
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within-study variances are assumed to be known). To be 
consistent with previous work that had studied the per-
formance of heterogeneity estimators, we chose seven 
different combinations of vague or weakly informative 
priordistributions for both parameters following Boede-
ker & Henson [30]. Specifically, different priors were 
used to model a function of heterogeneity, whereas for 
µδ the prior was a normal distribution with mean and 
variance equal to 0 and 1000, respectively, in all cases. 
Priors for τ included two uniform distributions with 
limits of 0 to 2 and 0 to 100, and three half-Cauchy dis-
tributions with scale parameters 1, 5, and 25. Whereas 
priors for precision (1/τ 2) were Ŵ(0.001, 0.001) and 
Ŵ(0.1, 0.1).

We would like to point out that previous studies, 
as discussed by Röver et al., [61] advise against using 
the inverse gamma distribution to model the variance 
prior because this can force the variance estimate to 
be positive and often too much probability is allo-
cated to very large heterogeneity values. Addition-
ally, when the µδ prior is a normal distribution (as set 
in the present simulation work), the variance of the 
µδ posterior distribution increases proportionally to 
τ , which can impact the prediction intervals of µδ , 
for example. In contrast, half-Cauchy distributions, 
since they exhibit approximately uniform behavior 
near zero heterogeneity and monotonically decreas-
ing probability with increasing values of heterogene-
ity (which guarantees integrability of the lower and 
upper tails), and bounded uniform distributions, pro-
vided that the boundary [0, a] is reasonably large, are 
advisable [61].

Finally, in addition to using seven prior distributions, 
since the posterior distribution for τ 2 is most likely not 
symmetric, we chose the posterior mean, median, and 
mode as the resulting point estimates for the heteroge-
neity parameter. Therefore, 21 different fully Bayesian 
procedures for τ 2 were included in the present simula-
tion work. Overall, we compared the performance of 45 
(21 frequentist and 24 Bayesian) point estimators for 
the heterogeneity parameter.

Performance criteria
To compare the performance of the heterogeneity esti-
mators described above, we focused on the following 
outcome variables. First, point estimators were com-
pared in terms of absolute bias, defined as the average 
difference between the point estimate τ̂ 2pj for procedure 
p and the actual value of τ 2 along the 1,000 meta-analy-
ses in each simulation condition ( j = 1, . . . , 1, 000),

Secondly, the precision of the estimates produced 
by the point estimators is commonly assessed through 
the MSE, which is defined as the variability of the 
point estimates for procedure p with respect to the 
actual τ 2 value across the 1,000 meta-analyses of each 
condition,

However, MSE can be decomposed according to the 
variance and bias of procedure p into 
MSE

(
τ̂
2
p

)
= Var

(
τ̂
2
p

)
+

[
Bias

(
τ̂
2
p

)]2
 , and therefore 

results regarding MSE may be hiding the variability of 
the point estimates in those scenarios where procedure 
p shows a greater bias. This is the reason why the sec-
ond outcome variable to compare the performance of 
the heterogeneity estimators was their variance. The 
variance of estimator p can be defined as the mean 
squared difference between the point estimate for pro-
cedure p and the expected value of these point esti-
mates E

[
τ̂
2
pj

]
 along the 1,000 meta-analyses in each 

simulation condition,

Although the variance was our second outcome vari-
able, results regarding the MSE were also computed and 
discussed.

Most of the heterogeneity estimators included in this 
work are computed analytically and, therefore, a resulting 
estimate is always guaranteed. Indeed, some of the itera-
tive procedures (i.e., the r and m estimators) [17] were 
programmed in such a way that they must always provide 
an estimate. However, the rest of the iterative estima-
tors (MP, ML, REML, BM, and all fully Bayesian proce-
dures) can lead to convergence problems. Thus, to ensure 
that 1,000 estimates for each estimation procedure were 
available across all the simulation conditions, the data 
of those meta-analyses for which at least one heteroge-
neity estimator could not be computed were deleted and 
new data was generated instead. Furthermore, when 
this occurred, these situations were taken into account, 
resulting in a non-convergence rate for each iterative 
procedure in each simulation condition. However, the 
non-convergence rates of these procedures were equal to 

Bias
(
τ̂
2
p

)
=

∑
j

(
τ̂
2
pj − τ

2
)

1, 000

MSE
(
τ̂
2
p

)
=

∑
j

(
τ̂
2
pj − τ

2
)2

1, 000

Var
(
τ̂
2
p

)
=

∑
j

(
τ̂
2
pj − E

[
τ̂
2
pj

])2

1, 000
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zero for all the simulation conditions, except for the ML 
procedure in only two conditions. The first of these two 
conditions implied a τ 2 = 0.75 , k = 10 , N = 20 , and a 
random-effects distribution with skewness and kurtosis 
values equal to 1 and 0.51, respectively, while the second 
simulation condition implied a τ 2 = 1 , k = 10 , N = 20 , 
and a random-effects distribution with skewness and 
kurtosis values equal to 2 and 3.74, respectively. In both 
conditions, the ML procedure did not converge on only 
one of the 1,000 meta-analyses generated and, therefore, 
it was only necessary to generate new data for a single 
meta-analysis.

Results
Absolute bias in normal scenarios
Figures 1 and 2 present the absolute bias of the frequen-
tist and Bayesian estimators, respectively, as a function of 
the amount of heterogeneity, the number of primary stud-
ies, and the average sample size. In addition, these results 
are presented separately for each condition of the shape of 
the random-effects distribution. Due to the huge number 
of estimators available for the heterogeneity parameter, 
those estimators that showed similar performance were 

grouped together and their data were averaged to facili-
tate the understanding of the results. To make the com-
parison between the frequentist and Bayesian estimators 
easier, the plots depicted in Figs. 1 and 2 present the same 
amount of absolute bias (0.60 points) on the y-axis.

Given the main focus of the present work is to com-
pare the performance of these estimators from normal 
to non-normal random-effects scenarios, we will start 
by describing the results under normal conditions. The 
amount of heterogeneity was the simulation factor that 
affected the bias of the estimators to a greater extent. 
As can be seen in plot A of Figs. 1 and 2, most estima-
tors obtained slightly positively biased estimates for 
very low values of τ 2 (0.01 – 0.025) and more negatively 
biased estimates as the actual value of τ 2 increased. 
However, some estimators showed a different trend. 
The RBp estimator yielded positively biased estimates 
regardless of the amount of τ 2 , but followed the general 
trend of obtaining lower estimates as τ 2 increased, that 
is, its positive bias decreased as τ 2 increased. The BM 
estimator always overestimated τ 2 and its bias showed 
an inverted-U relationship with respect to the amount 
of heterogeneity, gradually increasing to reach a maxi-
mum average absolute bias of 0.23 when the actual τ 2 

Fig. 2 Absolute bias of the Bayesian estimators

Note. Absolute bias of the Bayesian estimators as a function of the amount of heterogeneity, the number of primary studies, and the average 
sample size. The results are presented separately for each condition of the shape of the random‑effects distribution. FB (mean) = fully Bayesian 
estimators based on the posterior mean; FB (median) = fully Bayesian estimators based on the posterior median; FB (mode) = fully Bayesian 
estimators based on the posterior mode; RB = Rukhin Bayes estimator; RBp = positive Rukhin Bayes estimator; BM = Bayes Modal estimator
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value was 0.25 (implying a maximum relative bias of 
almost 100%). Finally, those fully Bayesian estima-
tors focused on the posterior mean overestimated τ 2 
increasingly the larger the true value of the parameter.

Graphs G and M in Fig. 1 show that the number of pri-
mary studies had no noticeable effect on the bias of the 
frequentist estimators, whereas a large sample size of 
primary studies reduced the absolute bias: once an aver-
age sample size of between 40 and 60 observations was 
reached, the bias of the frequentist estimators tended to 
stabilize. The absolute bias of Bayesian estimators stabi-
lized as the number of primary studies increased up to 50 
and the average sample size exceeded 60 observations, as 
presented in plots G and M of Fig. 2.

Absolute bias in non‑normal scenarios
Compared to the normal scenarios, the departure from 
normality in the distribution of random effects accen-
tuated the effect of (seems to interact with) the amount 
of heterogeneity for the vast majority of estimators but 
did not alter the relative ranking of the estimators with 
regards to their bias.

On the one hand, the order of the heterogeneity esti-
mators with respect to their absolute bias was not altered 
by the lack of normality, except for the LCHr and LCHm 
estimators. These estimators showed a medium bias 
when the normality of the random effects was held (plot 
A, Fig. 1), whereas in those scenarios where the deviation 
from normality was most pronounced (plots B and F), 
these estimators were among the most biased.

On the other hand, the bias trends of most estimators 
with respect to the amount of heterogeneity became 
more pronounced as the distribution of random effects 
departed from normality. That is, in general, even lower 
estimates were obtained for larger amounts of τ 2 as the 
departure from normality increased. This can be seen in 
the scenarios depicted in plots B and F of Figs.  1 and 
2, where the absolute bias of most estimators showed 
larger negative slopes than in the normal scenario 
depicted in plot A.

The number of the primary studies did not seem to be 
a protective factor against a lack of normality in the ran-
dom effects for the frequentist estimators, but the sample 
size was shown to attenuate the effect of non-normality 
on the relationship between the amount of heterogeneity 
and the bias of some frequentist estimators. Figures  S1 
and S2 of the supplementary material[32] present a more 
detailed analysis of the absolute bias of the frequentists 
estimators as a function of the number and average sam-
ple size of primary studies, respectively, the shape of the 
random-effects distribution. As can be seen, the effect of 
the lack of normality on the bias of most estimators was 

very similar regardless of the number of primary studies 
included in the meta-analysis. However, some heteroge-
neity estimators (MBH, SJ(CA), MPM, SJ, MP, CA2, DL2, 
DLm, HSss, ML, and REML) showed similar amounts 
of bias for meta-analyses of studies with a smaller aver-
age sample size in normal scenarios and studies with a 
larger average sample size in those scenarios where the 
deviation from normality was most extreme. Although 
the deviation from normality also affected the bias of 
these estimators to some extent regardless of the aver-
age sample size, its impact was smaller as the sample size 
increased. It is important to note that, although the CA 
estimator is represented in the same group as the MBH, 
SJ(CA) and MPM estimators in Figure S2, the average 
sample size did not represent a protective factor against 
non-normality for this first estimator, which remained 
practically unbiased under both normal and non-normal 
random-effects scenarios.

The number and average sample size of primary stud-
ies also decreased the effect of non-normality on the 
relationship between the amount of heterogeneity and 
the bias of most Bayesian heterogeneity estimators. Fig-
ures S3 and S4 of the supplemental material [32] present 
in more detail the bias of the Bayesian estimators as a 
function of the number and average sample size of pri-
mary studies, respectively, and the shape of the random-
effects distribution. As can be appreciated, Bayesian 
estimators showed lower amounts of bias for meta-anal-
yses with 30 studies in non-normal scenarios than for 
meta-analyses with 10 studies in normal scenarios. Like-
wise, most of these estimators showed similar amounts 
of bias for meta-analyses with studies of an average 
sample size of 40 observations in scenarios where the 
deviation from normality was most pronounced and for 
meta-analyses with studies of an average sample size of 
20 in normal conditions. Again, although the deviation 
from normality increased the bias of Bayesian estimators 
to some extent regardless of the number and average 
sample size of primary studies, its impact was smaller as 
the number of primary studies increased.

Finally, along all the simulated scenarios, CA, MBH, 
SJ(CA), and MPM showed the least biased estimates 
among the frequentist estimators. Within this group per-
formance was very homogeneous in normal scenarios 
(the average bias ranged from -0.005 to 0.002), but as the 
distribution of random effects departed from normality, 
CA remained essentially unbiased (average bias of 0.003 
for the  6th shape of the random-effects distribution) while 
the MBH, SJ(CA) and MPM estimators slightly over or 
underestimated τ 2 depending on the simulated scenario 
(average bias of 0.006, -0.015 and -0.013, respectively). 
Furthermore, the bias of these estimators together with 
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SJ, MP, CA2, DL2, DLm, HSss, ML and REML was less 
influenced by the lack of normality in the random-effects 
distribution than the rest (LCHr, LCHm, GENQM, 
DLp, DL, HSk, DLb, HSiv, and HM) of the frequentist 
estimators.

Concerning Bayesian estimators, those focused on 
the posterior median showed the lowest bias across all 
the simulated conditions, followed by the  RB estima-
tor. In normal scenarios, the average bias of the fully 
Bayesian median-centered estimators ranged from 
-0.021 to 0.005, while the average bias of the RB estima-
tor was 0.019. However, when the distribution of ran-
dom effects departed from normality, the absolute bias 
increased for these Bayesian procedures (the average 
bias ranged from -0.052 to -0.024 for the fully Bayes-
ian median-centered estimators in the  6th shape of the 
random-effects distribution), while became negative 
for the RB estimator (average bias of -0.018). In addi-
tion, it is worth noting that the absolute bias of the RB 
estimator (together with that of RBp) was less affected 

by non-normality than that of the fully Bayesian and 
the BM estimators.

Variance in normal scenarios
Figures  3 and 4 present the variance of the frequentist 
and Bayesian estimators, respectively, as a function of the 
amount of heterogeneity, the number of primary studies, 
and the average sample size. These results are presented 
separately for each condition of the shape of the random-
effects distribution. To make the comparison between 
the frequentist and Bayesian estimators easier, the plots 
depicted in Figs. 3 and 4 present the same amount of var-
iance (0.30 points) on the y-axis.

Again, since the main goal of the present work is to 
compare the performance of these estimators from nor-
mal to non-normal random-effects scenarios, we will 
start by describing the results under normal conditions. 
In general terms, the variance of all heterogeneity esti-
mators decreased as the true amount of heterogeneity 
became smaller and as the number of the primary studies 

Fig. 3 Variance of the frequentist estimators

Note. Variance of the frequentist estimators as a function of the amount of heterogeneity, the number of primary studies, and the average sample 
size. The results are presented separately for each condition of the shape of the random‑effects distribution. CA = Cochran estimator; MBH 
= Malzahn‑Böhning‑Holling estimator; SJ(CA) = Sidik‑Jonkman estimator with prior CA estimation; MPM = median‑unbiased Mandel‑Paule 
estimator; SJ = Sidik‑Jonkman estimator; MP = Mandel‑Paule estimator; CA2 = two‑step Cochran estimator; DL2 = two‑step DerSimonian‑Laird 
estimator; DLm = multistep DerSimonian‑Laird estimator; HS(ss) = Hunter‑Schmidt estimator weighted by sample size; ML = maximum likelihood 
estimator; REML = restricted maximum likelihood estimator; LCHr = Lin‑Chu‑Hodges r estimator; LCHm = Lin‑Chu‑Hodges m estimator; GENQM 
= median‑unbiased generalized Q statistic estimator; DLp = positive DerSimonian‑Laird estimator; DL = DerSimonian‑Laird estimator; HS(k) = 
Hunter‑Schmidt estimator corrected by small sample size; DLb = nonparametric bootstrap DerSimonian‑Laird estimator; HS(iv) = Hunter‑Schmidt 
estimator weighted by inversed variance; HM = Hartung‑Makambi estimator
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became larger. Although the efficiency of all heterogene-
ity estimators increased slightly as the average sample 
size became larger, this simulation factor did not affect 
the variance of the heterogeneity estimators to the same 
extent as the amount of heterogeneity and the number of 
studies.

Considering the amount of heterogeneity, it can be 
seen in plot A of Figs. 3 and 4 that all estimators showed 
greater variance as the heterogeneity increased, except 
for the BM estimator which showed a different trend. 
Although the variance of the BM estimator also increased 
as τ 2 increased, it was more variable than the rest of esti-
mators for τ 2 values between 0.01 and 0.25 but obtained 
the lowest variances when τ 2 exceeded 0.50.

Variance in non‑normal scenarios
Deviation from normality in the distribution of random 
effects accentuated the effect of (seemed to interact with) 
the amount of heterogeneity and the number of studies 
for most estimators. That is, in general, greater variances 
were obtained for larger amounts of τ 2 as the departure 
from normality increased, as can be seen in the scenar-
ios depicted in plots B and F of Figs. 3 and 4, where the 
variance of most estimators showed larger positive slopes 

compared to the normal scenario depicted in plot A. Fur-
thermore, even larger variances were also obtained for a 
smaller number of studies as the departure from normal-
ity was more extreme, as shown in plots H and L of Figs. 3 
and 4 compared to the normal scenario depicted in plot 
G. However, the order of the estimators with respect to 
their variance (variance ratio) did not alter from normal 
to non-normal scenarios.

The number of primary studies was shown to 
decrease the effect of non-normality on the relation-
ship between the amount of heterogeneity and the var-
iance of all heterogeneity estimators. Figures  S5 and 
S6 of the supplemental material [32] present a more 
detailed analysis of the variance of the frequentists and 
Bayesian estimators, respectively, as a function of the 
number of primary studies and the shape of the ran-
dom-effects distribution. As can be seen, most hetero-
geneity estimators showed similar amounts of variance 
for meta-analyses with 10 studies in normal scenarios 
and for meta-analyses with 30 studies in those sce-
narios where the deviation from normality was most 
extreme. Although the deviation from normality 
affected the variance to some extent regardless of the 
number of primary studies, its impact was smaller as 

Fig. 4 Variance of the Bayesian estimators

Note. Variance of the Bayesian estimators as a function of the amount of heterogeneity, the number of primary studies, and the average sample size. 
The results are presented separately for each condition of the shape of the random‑effects distribution. FB (mean) = fully Bayesian estimators based 
on the posterior mean; FB (median) = fully Bayesian estimators based on the posterior median; FB (mode) = fully Bayesian estimators based on the 
posterior mode; RB = Rukhin Bayes estimator; RBp = positive Rukhin Bayes estimator; BM = Bayes Modal estimator
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the number of primary studies increased. On the con-
trary, the average sample size of the primary studies 
did not seem to be a protective factor against a lack of 
normality in the random effects, since the slopes of the 
lines for the variance of the different estimators in the 
condition where normality was held were not altered 
in those scenarios where the deviation from normal-
ity was greater. This can be also seen in Figures  S7 
and S8 of the supplemental material, which present in 
more detail the variance of the frequentists and Bayes-
ian estimators, respectively, as a function of the aver-
age sample size of primary studies and the shape of the 
random-effects distribution.

Finally, those estimators that had previously shown 
to be less biased, showed greater variances than the 
rest of the estimators analyzed. Among the frequen-
tist estimators, CA, MBH, SJ(CA), and MPM were the 
most variable both, in normal (the average variance 
ranged from 0.022 to 0.024) and non-normal scenarios 
(the average variance ranged from 0.048 to 0.061 for 
the  6th shape of the random-effects distribution). The 
frequentist estimators that showed to be most efficient 
were the DLb, HSiv and HM estimators both, in nor-
mal (the average variance ranged from 0.011 to 0.012) 
and non-normal conditions (the average variance 
ranged from 0.013 to 0.014 for the  6th shape of the ran-
dom-effects distribution).

Within the Bayesian procedures, those fully Bayes-
ian estimators centered on the posterior median 
and the RB estimator yielded intermediate variances 
among the Bayesian estimators analyzed both, in 
normal (the average variance ranged from 0.018 to 
0.028) and non-normal scenarios (the average vari-
ance ranged from 0.041 to 0.056 for the  6th shape of 
the random-effects distribution). The Bayesian esti-
mator that showed to be the most efficient was the 
BM estimator, obtaining an average variance of 0.014 
in normal scenarios, and 0.026 for the  6th shape of the 
random-effects distribution.

To conclude the Results section, we briefly present how 
the bias and variance results translate into MSE. Supple-
mental materials [32] also include Figures S9 and S10 that 
present the MSE of the frequentist and Bayesian estima-
tors, respectively, as a function of the amount of hetero-
geneity, the number of primary studies, and the average 
sample size. These results are also presented separately 
for each condition of the shape of the random-effects dis-
tribution. To make the comparison between the frequen-
tist and Bayesian estimators easier, the plots showing 
MSE depicted in Figures S9 and S10 have the same y-axis 
(0–0.35 points).

In normal random-effects scenarios, all the heterogene-
ity estimators obtained similar results regarding MSE. In 

these conditions, the simulation factor that most affected 
the MSE was the amount of heterogeneity: Most estima-
tors showed a greater MSE as the amount of heterogene-
ity increased (except for the BM estimator). At the same 
time, most estimators showed an increase in their MSE 
for those scenarios in which meta-analyses with fewer 
than 30 studies and an average sample size of less than 40 
observations were simulated.

Although all the heterogeneity estimators obtained 
similar results regarding MSE, the deviation from nor-
mality resulted in an increase of the MSE of all the esti-
mators and accentuated the differences in terms of MSE 
among the estimators analyzed.

Discussion
The present paper is focused on the performance of the 
point heterogeneity estimators under conditions where 
the distribution of random effects departs from normal-
ity compared to normal scenarios. For this purpose, we 
carried out a Monte Carlo simulation study where data 
for meta-analyses based on the standardized mean dif-
ference were generated. In total, 21 frequentist and 24 
Bayesian estimators have been compared in terms of 
absolute bias and variance, including several procedures 
(LCHm, LCHr, MPM, and GENQM) [17, 19] that have 
not been compared in similar simulation studies so far.

One of our main goals was to answer the question of 
whether the best estimator under normal parametric 
conditions remained the same in non-normal condi-
tions. In this respect, our results show that, fortunately, 
the estimators ranking in terms of their absolute bias and 
variance does not change when the normality in the dis-
tribution of parametric effects is altered (except for the 
LCHr and LCHm estimators). We consider that these are 
good news for meta-analysts since our results suggest 
that it is not needed to choose one estimator or another 
depending on how the random effects are believed to be 
distributed.

However, the conclusion cannot be that a lack of nor-
mality in the distribution of parametric effects has no 
implications for the estimation of τ 2 . Although the mag-
nitude of its effect may differ from one procedure to 
another, most estimators obtained lower mean �2 esti-
mates and greater variances as the parametric distribu-
tion deviated from normality. Moreover, since some 
estimators showed to be more influenced by the non-
normality than others, the variability among the mean τ 2 
estimates increased as the distribution of random effects 
deviates from normality. Our results in this regard may 
partly explain why the τ 2estimates computed for the 
study of Shadish and Baldwin [41], which summarized 
estimates whose distribution was farther from normal, 
vary to a greater extent (from 0.004 to 1.18) than for the 
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study of Richards and Richardson [40] ( ̂τ 2 range goes 
from 0.11 to 0.39).

In general, we could say that those estimators free 
from normality assumptions are not necessarily the most 
robust when this assumption does  not meet. In fact, 
among the frequentist procedures based on Cochran’s Q
statistic that do not necessarily assume any assumption 
of normality, some of them have shown less bias (and/or 
variance) and others more than the procedures based on 
maximum likelihood or weighted least squares, which do 
assume this assumption. On the other hand, the estima-
tors developed by Rukhin [27], which are more flexible 
but assume certain assumptions derived from the nor-
mality of the random effects, hardly suffer any variation 
in their performance in non-normality scenarios where 
the kurtosis have been altered.

Our results suggest that a large average sample size of 
primary studies seems to be a protective factor against 
non-normality with respect to the bias of most Bayes-
ian, but only of some frequentist heterogeneity esti-
mators. That is, lower estimates of τ 2 were obtained 
the less normal the distribution of random effects was. 
Nevertheless, most of the Bayesian and some frequen-
tist estimators analyzed (MBH, SJ(CA), MPM, SJ, MP, 
CA2, DL2, DLm, HSss, ML, and REML) showed simi-
lar amounts of bias for smaller average sample sizes in 
normal scenarios and for larger average sample size in 
those scenarios where the deviation from normality 
was most extreme. Indeed, this same trend was found 
for Bayesian estimators with respect to the number of 
primary studies included in the meta-analysis. With 
respect to the variance of the estimators analyzed, the 
number of studies (but not their average sample size) 
seems to be a protection factor against a lack of nor-
mality. In other words, most heterogeneity estimators 
showed similar amounts of variance for meta-analyses 
with 10 studies in normal scenarios and for meta-anal-
yses with 30 studies in those scenarios where the devia-
tion from normality was most extreme. Indeed, the 
effect of non-normality became smaller as the number 
of primary studies increased.

Regarding the new estimators tested, the procedures 
proposed by Lin et  al. [17] exhibited substantial bias 
in normal scenarios, which increase as the distribution 
of random effects departed from normality. However, 
although they are not among the most efficient estima-
tors, the variability of their estimates was not altered 
by the non-normality of the random effects. Concern-
ing the estimators proposed by Viechtbauer [19], the 
MPM estimator was on average slightly less biased 
than the MP estimator across the simulated scenarios, 
but also slightly more variable. Specifically, under less 
favorable conditions, the estimated bias of MPM was 

33% lower than that of MP whereas the variability of 
the former was 15% higher than that of the latter. The 
GENQM estimator showed to be substantially more 
biased than MPM, nevertheless, this difference in bias 
became practically null the more bias both estimators 
showed, and as the random-effects distribution devi-
ated from normality. In contrast, the variance of the 
GENQM estimates was between 40 and 75% lower 
than that of MPM.

With respect to previous findings, our results agree 
with those of Kromrey and Hogarty [42] in that, in gen-
eral terms, the CA estimator appears to be less biased 
than DL and ML. However, according to their results, 
CA showed more bias than DL and ML in non-normal 
settings for primary studies with small sample sizes. This 
last finding differs from the results found in our work, 
where the bias of CA was minimally affected by the sam-
ple size of the primary studies, and in no case showed 
a bias greater than that of ML or DL. In addition, we 
have not found  the sample size to be a protective fac-
tor against non-normality as Kromrey and Hogarty [42] 
seem to suggest with respect to the CA estimator. These 
authors stated that CA was essentially unbiased in nor-
mal settings, reaching a maximum bias of 0.07 with sam-
ples averaging 10 subjects per primary study (regardless 
of the number of primary studies). While in non-normal 
scenarios, this bias reached 0.69 for an average sample 
size of 10 and decreased to 0.03 with sample sizes of 200 
observations. The difference in the slope of the lines that 
would model the decrease in the CA bias as a function 
of the average sample size would have led us to think 
that this factor may have a protective role against non-
normality: obtaining similar amounts of bias between 
normal and non-normal scenarios with relatively large 
samples. However, we have not found such a difference 
in our results.

One possible reason to explain this inconsistency could 
be the fact that the sample sizes that these authors simu-
lated were twice as small and large as ours (ranged from 
an average of 10 to 200 observations per primary study, 
whereas ours ranged from an average of 20 and 100). To 
find out whether this was the underlying explanation 
for the differences between our results, we carried out a 
small simulation in which the conditions mentioned by 
Kromrey and Hogarty [42] in their results were repli-
cated. Figure S11, available at the supplementary material 
[32], shows the results obtained. Once more, these results 
did not show that the CA estimator was more biased 
than the DL and ML estimators under non-normal con-
ditions, even for very small average sample sizes such as 
10 observations per primary study. The bias of CA also 
did not decrease when the average sample size increased. 
Nonetheless, we found that the bias of the DL procedure 
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decreased and stabilized around -0.4 when changing 
from an average sample size of 10 to 20 observations per 
study, something we could not observe previously since 
sample sizes below 20 were not included in our simula-
tion study.

Our results for those conditions where the normality 
of the random effects distribution was held ( s = 1) agree 
in many respects with the findings of those previous 
simulation studies [21, 30, 43–45] comparing different 
heterogeneity estimators under normal random-effects 
scenarios. Although Viechtbauer [21] used average sam-
ple sizes six times larger than those used in our study (40, 
80, 160, 320 and 640) and τ 2 values ten times smaller (0, 
0.01, 0.025, 0.05 and 0.1), our study replicated the results 
found in this previous simulation in terms of MSE, effi-
ciency, and bias, with the exception that Viechtbauer 
[21] found the CA estimator to be unbiased in all con-
ditions, whereas in our study it presented a slight posi-
tive bias (maximum 0.007) that decreased as τ 2 reached 
0.1. Likewise, our results also suggest that DL and REML 
present a similar bias for the range of τ 2values studied in 
Viechtbauer [21]. However, our study evaluates scenarios 
where τ 2 reaches a maximum value of 1 and we found 
that REML and ML have a smaller and more similar bias 
as τ 2 increases (maximum bias around -0.1) than DL and 
HSiv (around -0.2).

Although the τ 2 values examined in the work of Novi-
anti et  al. [43] are extremely small (ranged from 0 to 
0.0366) compared to those examined in our simulation, 
we agree with these authors in that, when the hetero-
geneity ranges from 0 to 0.05, the bias of all estimators 
analyzed by that these authors is relatively small and 
comparable, except for the SJ procedure which greatly 
overestimates the heterogeneity in all cases. At the same 
time, our results show, like those of Novianti et  al. [43] 
that, as heterogeneity increases, the absolute bias of the 
analyzed procedures increases while the relative bias 
decreases. On the other hand, Novianti et  al. [43] do 
not directly provide results referring to the efficiency of 
the estimators, but the trends they suggest (i.e., that effi-
ciency decreases as τ 2 increases and k and N  decrease) 
are compatible with our findings.

Perhaps, the previous simulation study with which our 
results are least consistent is that of Petropoulou and 
Mavridis [44], who only reported results regarding the 
absolute bias of the estimators analyzed. These authors 
concluded that the bias of all estimators increased as het-
erogeneity increased, as we found in the present work, 
and that it decreased as the number of primary studies 
increased. Our results, on the contrary, show that the bias 
of the estimators decreases markedly as the sample size 
increases, but almost negligibly as the number of primary 

studies increases, although this decreasing trend depends 
on the procedure evaluated. While Petropoulou and 
Mavridis [44] claimed that REML was less biased than 
MP in most scenarios, we found just the opposite except 
for those scenarios where τ 2 ranged from 0.01 to 0.025. 
We also did not find DLp and DLb to have a small bias in 
all conditions and to be the best performing procedures, 
in fact, our results point to them being among the most 
biased frequentist estimators as heterogeneity increases. 
Nor do we find the HM estimator to be the least biased 
when the heterogeneity ranges from 0.01 to 0.05, in fact 
it is one of the most biased frequentist estimators in 
these scenarios. Finally, we agree with Petropoulou and 
Mavridis [44] in that the RBp, SJ and BM procedures 
have a non-negligible positive bias for a very wide range 
of heterogeneity values and should be avoided.

Our results agree with those found by Langan et  al. 
[45] for the most part, except for the following points. 
These authors found that the DL procedure was one of 
the least negatively biased estimators, distinctly lower 
than MP for a medium number of studies. However, we 
found that MP always obtains a lower or similar bias 
to DL. While Langan et  al.[45] claimed that HM has a 
comparatively lower MSE than the rest of the estima-
tors in all scenarios, our results show that this proce-
dure has one of the highest MSE among the frequentist 
estimators considered. To conclude, these authors also 
concluded that SJ(CA) showed a larger and positive bias 
as the sample size of the studies increased, whereas we 
found the opposite trend.

The simulation conditions of the study of Boedeker and 
Henson [30] are the most similar to those of the present 
work. This potentially explains why our results agree for 
the most part, except for the prior specification recom-
mended for modeling the heterogeneity parameter in the 
fully Bayesian procedure. Our results agree with those of 
Boedeker and Henson [30] in that those fully Bayesian 
estimators centered on the posterior median were less 
biased than those centered on the posterior mean and 
mode, which in comparison tended to obtain larger and 
smaller τ 2 estimates, respectively. However, we found 
that the procedure based on 

(
1

τ
2

)
∼ Ŵ(0.001, 0.001) prior 

specification obtains estimates with a noticeably larger 
negative bias as heterogeneity increases than other prior 
distributions for τ , such as U(0, 100) and U(0, 2) , or half-
Cauchy distributions with scale parameters 5 and 25.

Practical recommendations
The implications of an improper estimation of the 
heterogeneity parameter due to the non-normality 
of the random-effects distribution are diverse: While 
the mean effect and its confidence interval have been 
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shown to be relatively robust against non-normal con-
ditions [1–3], its influence on the estimation of pre-
diction intervals appears to be important [62, 63]. 
Returning to the two meta-analyses we used as exam-
ples in the Background  section, for the study of Rich-
ards and Richardson [40], depending on the procedure 
chosen for estimating the heterogeneity parameter, 
prediction intervals computed from the 45 τ 2 estima-
tors here analyzed range from [-1.24, 0.12] to [-1.832, 
0.6633], the width of the latter being 1.84 times the 
width of the former. This is not the case for the Shadish 
and Baldwin [41] study, where the distribution of effect 
estimates was more deviated from normality than in 
the previous case: prediction intervals range from 
[0.42, 0.77] to [-1.36, 2.99], the latter being more than 
twelve times wider than the former.

To be aware of the potential threat of non-normal ran-
dom effects to the results of our meta-analysis, statistical 
tests have been developed to assess the possible deviation 
from normality [64]. However, the statistical power of 
these procedures may be inadequate. Another tentative 
solution, if we suspect that the distribution of parametric 
effects may not follow a normal distribution, is the appli-
cation of more flexible models [62]. Nevertheless, the use 
of these models could result in an overfitting of the data 
if they are not applied correctly and, at the moment, the 
lack of these models in everyday software makes their 
implementation difficult.

In addition to the above, heterogeneity parameter esti-
mators often exhibit a feature that makes it even more 
difficult to choose the best one: an inverse relationship 
between bias and efficiency, as evidenced also by previ-
ous works [21, 30, 43–45]. In other words, those estima-
tors that tend to show less biased estimates are also those 
that tend to show more variability in their estimates, 
whereas none of the estimators actually dominates the 
others in terms of MSE. For example, the MP and REML 
are among the most advised frequentist estimators [9, 21, 
30, 43–45]. For conditions simulated with skewness = 2 
and kurtosis = 3.74, the estimated MP bias reached as 
high as -0.14 with τ 2 = 1 , k = 10 , and N = 20 , whereas 
that of REML reached as high as -0.27. However, for the 
same conditions the estimated variances of the MP and 
REML estimator were 0.65 and 0.48, respectively.

Despite the difficulties encountered, our results indi-
cate that there are several estimators less biased that, 
although they show higher sample variances than the 
rest, in meta-analyses with a minimum number and 
average sample size of the primary studies seem to be 
the best option. Within the frequentist framework, CA, 
MBH, SJ(CA), and MPM, followed by MP, CA2, DL2, 
DLm, and HSss, showed the least bias although highest 
variance in most conditions. However, in meta-analyses 

with at least 90 studies with an average sample size of 60 
observations, these estimators obtain a reasonably maxi-
mum amount of bias as the rest of the frequentist esti-
mators given their decrease in sample variability, even 
in non-normal random-effects scenarios. If a proce-
dure based on maximum likelihood is preferred, REML 
showed to be less biased but more variable than ML, 
although it obtained a higher bias than the estimators 
mentioned above for most of the simulated conditions. 
For REML to obtain a similar maximum bias as the rest 
of the estimators, also in non-normal conditions, the 
average sample size should increase to 100 observations 
per primary study. In many actual meta-analyses these 
conditions will not be easily met, and in these cases our 
recommendation for applied meta-analysts is to evalu-
ate the range of τ̂ 2 values that can be obtained from their 
data, as well as the implications that this variability may 
have on the pooled effect, its confidence interval and 
the prediction interval. To facilitate this task, we have 
developed the tau2() function in the free software R that 
allow to obtain the range of τ̂ 2 values obtained from the 
45 estimators analyzed in this work from the effect esti-
mates and the sample size of the primary studies. This 
function also returns the range for the combined effect 
size, its confidence interval, and its prediction interval, 
so that meta-analysts have an easy-to-use tool to help 
them report these results as sensitivity analyses until 
new statistical methods are developed that do not pre-
sent these difficulties. The code of the tau2()function as 
well as an explanatory document are available as part of 
the supplementary material [32].

From a Bayesian perspective, those fully Bayesian pro-
cedures centered on the posterior median with τ prior 
specifications such as U(0, 100) and U(0, 2) , or half-
Cauchy distributions with scale parameters 5 and 25, 
showed less biased estimates than most of the Bayesian 
procedures in normal random-effects conditions, includ-
ing the RB estimator. In spite of this, as the random-
effects distribution departed from normality, these fully 
Bayesian estimators became more negatively biased while 
RB was insensitive to deviations from normality, and 
it has also showed a lower variance. In the event that it 
was necessary to employ a fully Bayesian procedure, we 
recommend applied meta-analysts to compute both, the 
posterior median and posterior mean, when their dis-
tribution of effect estimates departs substantially from 
normality. The reason behind is that all fully Bayesian 
procedures tend to obtain lower τ 2 estimates as the devia-
tion from normality increase. But, since those centered 
on the posterior mean always produce greater estimates 
than those centered on the posterior median, the formers 
yielded less biased τ 2 estimates when the deviation from 
normality became extreme.
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Limitations and future research
Given the huge number of simulation conditions, 
factors that could have important implications for 
the results have been omitted. One of these fac-
tors is the I2 index, that is, the percentage of the 
total variability present in the effect estimates that 
is due to heterogeneity variance. Another two fac-
tors regarding the primary studies are the homo-
geneity of sizes and variances between the control 
and experimental groups. The works of Kromrey 
and Hogarty [42] and Langan et  al. [45] lead us to 
believe that these factors could have implications 
for the bias and efficiency of τ 2 point estimators, 
and we do believe that their effect should be evalu-
ated in future studies. Some of the procedures for 
creating intervals around τ 2 do not require previous 
point estimates, but others do, so including them in 
the present work would have substantially increase 
the number of analyzed procedures and would have 
required a higher amount of time and computational 
resources, which is why interval estimation of the 
heterogeneity parameter has not been addressed in 
the present work either. For those readers interested 
in providing a range of values for the heterogeneity 
parameter, we refer them to the simulation studies 
carried out by Boedeker and Henson [30] and Viech-
tbauer [65] for those scenarios in which the random 
effects follow and deviate from a normal distribu-
tion, respectively.

Another limitation of this work is that we were 
not able to explain why previous simulation studies 
[21, 30, 43–45] reached conclusions that are some-
times contradictory to the results of the present 
work. It is to be expected that these differences are 
due to the use of different simulation factors and 
the different levels set for each of them. However, it 
would be necessary to examine the possibility that 
these discrepancies are due to differences in the 
way the primary data were generated or in the code 
for computing many of the heterogeneity estimators 
that were not included in user-friendly software 
at the time the simulation study was conducted. 
Therefore, we would like to draw attention to the 
need to host the simulation code in one of the web 
repositories that have become so widespread, as 
well as the simulation data generated from it, since 
sometimes the lack of appropriate resources makes 
it difficult to run the code to replicate a simulation 
work.

Beyond the fact that different factors with varying lev-
els are used in each simulation study, the overall findings 

reflect the great complexity involved in estimating the 
heterogeneity parameter in random-effects meta-anal-
yses. It could be thought that an important limitation 
of this type of studies is the lack of clear guidelines on 
which estimator to use. However, even knowing how all 
the factors that can be controlled or evaluated by the 
meta-analyst (deviation from normality in the distribu-
tion of effect estimates, number and average sample size 
of primary studies, amount of I2 , degree of homosce-
dasticity and equality of sample sizes between compari-
son groups, etc.) affect the τ 2 estimation, we still could 
not choose which is the best estimator since the amount 
of actual heterogeneity is the main factor that affects its 
own estimation and remains unknown.

Finally, we would like to emphasize that our simulation 
is based on meta-analyses of standardized mean differ-
ences and, therefore, the results presented in this article 
can only be extrapolated to meta-analyses based on this 
same effect size index or others that are also asymptoti-
cally normally distributed.

Conclusions
The present work highlights the role that the deviation 
from normality may be playing in the conclusions of 
the meta-analyses that are carried out on a daily basis. 
Although the estimation and inference of the combined 
effect have proven to be sufficiently robust to the non-
normality of random effects, the estimation of the het-
erogeneity parameter appears to be affected to a greater 
extent. Real studies have been used to show how the 
estimation of τ 2 may be impacted and how the conclu-
sions of the prediction interval may vary, depending on 
the estimator chosen. Also, it should not be overlooked 
how variations in the estimated amount of heterogeneity 
may influence the conclusions of subsequent analyses of 
moderator variables.

We have also taken the opportunity to compare 
the performance of several new random-effects vari-
ance estimators with previous procedures. And, at the 
same time, we have made available an R function that 
will allow meta-analysts to obtain out of their data 
the range of τ 2 values computed from the 45 estima-
tors analyzed in this work, as well as to assess how 
the pooled effect, its confidence interval, and its pre-
diction interval vary according to the estimator cho-
sen. The underlying idea is, in words of Kromrey and 
Hogarty [42]: “[…] to exercise caution in the interpre-
tation of the results obtained from random-effects 
models” and, also, “highlight the need for the devel-
opment of meta-analytic methods that are robust to 
violations of these assumptions”.
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