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SUMMARY

Our comprehensive analysis of alternative splicing across 32 The Cancer Genome Atlas cancer 

types from 8,705 patients detects alternative splicing events and tumor variants by reanalyzing 

RNA and whole-exome sequencing data. Tumors have up to 30% more alternative splicing 

events than normal samples. Association analysis of somatic variants with alternative splicing 

events confirmed known trans associations with variants in SF3B1 and U2AF1 and identified 

additional trans-acting variants (e.g., TADA1, PPP2R1A). Many tumors have thousands of 

alternative splicing events not detectable in normal samples; on average, we identified ≈930 exon-

exon junctions (“neojunctions”) in tumors not typically found in GTEx normals. From Clinical 

Proteomic Tumor Analysis Consortium data available for breast and ovarian tumor samples, we 

confirmed ≈1.7 neojunction- and ≈0.6 single nucleotide variant-derived peptides per tumor sample 

that are also predicted major histocompatibility complex-I binders (“putative neoantigens”).

Graphical Abstract
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In Brief

A pan-cancer analysis by Kahles et al. shows increased alternative splicing events in tumors 

versus normal tissue and identifies trans-acting variants associated with alternative splicing events. 

Tumors contain neojunction-derived peptides absent in normal samples, including predicted 

MHC-I binders that are putative neoantigens.

INTRODUCTION

Analyses of cancer genomes have predominantly focused on the evaluation of somatic 

non-synonymous protein-altering mutations and the potentially pathogenic impact such 

mutations have on gene expression, protein function, and downstream pathways (Futreal et 

al., 2001; Greenman et al., 2007). The types of samples collected and the data generated by 

The Cancer Genome Atlas (TCGA) have been specifically chosen to support such analyses 

(Cancer Genome Atlas Research Network, 2008). However, the developed resources also 

provide an excellent opportunity for an in-depth analysis of the changes of the transcriptome 

in tumors, which has received much less attention so far.

Individual changes in regulatory binding sites or alterations to the protein coding sequences 

can have a strong functional impact, leading to selective growth advantages for tumor cells. 

Several cases have been reported where the physiological outcome of such alterations comes 

into functional effect through the alteration of splicing. A prominent example for cis-acting 

mutations is found in the splice junctions of MET leading to skipping of exon 14, resulting 
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in activation of MET but also providing specific sensitivity to MET inhibitors (Frampton et 

al., 2015; Paik et al., 2015). In addition, trans-acting alterations have been described where 

a somatic variant in a splicing factor leads to many splicing changes across the genome. For 

instance, somatic alterations of the splicing factor U2AF1 lead to a widely altered landscape 

of splicing events in certain cancer types, such as lung adenocarcinomas (Brooks et al., 

2014) or myelodysplastic syndromes (Graubert et al., 2012). Another well-characterized set 

of alterations are changes of the splicing factor SF3B1, which have been linked to changes 

in splicing patterns in various tumor types, such as uveal melanoma (Furney et al., 2013) or 

lymphocytic leukemia (Rossi et al., 2011), and are suggested to promote aberrant splicing 

patterns via alternative branchpoint usage (Alsafadi et al., 2016). More recently, the analysis 

of alternative splicing has also been shown to be of prognostic value for multiple cancer 

types, including non-small cell lung cancer (Li et al., 2017), ovarian cancer (Zhu et al., 

2017), breast cancer (Bjørklund et al., 2017), uveal melanoma (Robertson et al., 2017), and 

glioblastoma (Marcelino Meliso et al., 2017).

RESULTS

Workflow for Integrated Pan-Cancer Analysis

We devised a versatile and comprehensive workflow to integrate analyses of RNA and 

whole-exome sequencing data from tumors from 8,705 donors, including 670 matched 

normal samples, spanning a range of 32 cancer types (Figure 1 left, middle). The main 

questions answered by the developed methodology are (1) the identification of underlying 

genetic changes leading to splicing variability in tumors (Figure 1 right top), (2) a 

comprehensive analysis of quantitative and qualitative changes of alternative splicing in 

tumors (Figure 1 right middle), and (3) determining the extent to which splicing aberrations 

can be exploited for immunotherapy (right bottom).

Landscape of Alternative Splicing Events in Cancer

Based on recently developed methodology to construct individual splicing graphs for large 

gene sets (Kahles et al., 2016), we have systematically quantified changes in splicing event 

usage across the full TCGA cohort. Throughout all cancer types we found a substantial 

number of high-confidence splicing events, confirmed by at least 20 RNA sequencing 

(RNA-seq) reads (Djebali et al., 2012; Nellore et al., 2016; Wang et al., 2008), that contain 

introns not annotated in GENCODE (Figures 2A, S1A, and S1B), increasing the total 

number of observed events at least 2-fold. Despite accounting for cohort size and read 

length effects, we still observed a high variability of additional splicing across individual 

cancer types. Compared with the alternative splicing events in the GENCODE annotation, 

we observed that exon skip and alternative 3′ site events represent the majority (27.1% and 

27.5%, respectively) of the non-annotated events (Figures S1C and S1D).

When directly contrasted to matching normal tissue, we found a larger amount of alternative 

splicing events in tumor samples than in normal samples for the majority of the investigated 

cancers (Figures 2B and S1E–S1H; sample size of tumor and normal samples is 40 for all 

sets). This difference is especially pronounced for lung adenocarcinoma (LUAD), where 

we observed an over 30% increase in exon skip events in tumor samples. This effect 
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became even stronger when only events with the strongest splicing changes (measured as an 

increased ΔPSI [percent spliced in]; Schafer et al., 2015) were used (Figures S1I and S1J).

We have visualized the splicing diversity across the full cohort utilizing a standard 

dimensionality reduction technique (t-distributed stochastic neighbor embedding [t-SNE]; 

Van der Maaten and Hinton, 2008; Figures 2C and S1K–S1N) highlighting both the 

tissue-specific nature of alternative splicing but also cancer-type-specific differences and 

commonalities. We observed that cancer types, such as colon adenocarcinoma (COAD) 

and rectum adenocarcinoma (READ) or the group of squamous cell cancers, including 

lung squamous cell carcinoma (LUSC), cervical squamous cell carcinoma (CESC), and 

head and neck squamous cell carcinoma (HNSC), that are commonly ascribed with similar 

characteristics (Cancer Genome Atlas Network, 2012; Hoadley et al., 2014) clustered 

closely together, even overpowering the identity of the tissue of origin. Examples of the 

latter are LUAD and LUSC. The same pattern was observed based on a clustering of the 

median splicing profile (Figures S1O and S1P). Here, we also observed a cluster of uterine 

carcinosarcoma, uveal melanoma, mesothelioma, skin cutaneous melanoma, and sarcoma, 

which was less pronounced in a similar clustering based on gene expression profiles (Figures 

S1Q and S1R). Similarly, kidney chromophobe cancers (KICH) are clearly separated from 

kidney renal papillary cell carcinomas and kidney renal clear cell carcinomas in the t-SNE 

based on splicing profile as well as in the corresponding clustering (Figures S1K–S1N). 

We did not observe similarities in exon skip splicing patterns between breast basal-like and 

serous ovarian cancers as reported previously based on gene expression (Cancer Genome 

Atlas Network, 2012), suggesting that gene expression profiles did not drive the patterns 

in the same way as observed with alternative splicing. However, several breast basal-like 

cancers were located in the cluster of squamous cell cancers, including samples of LUSC, 

which had previously been reported as similar to basal-like breast cancer based on the 

analysis of transcriptional similarities (Chung et al., 2002). Interestingly, we found that, 

in breast cancer patients (BRCA), different cancer subtypes can be distinguished based 

on exon skip splicing features (Figures 2D and S1L), forming a notable trajectory across 

the four main subtypes with the luminal subtypes closely connected and the basal subtype 

clearly separated. For tumor-matched normal samples we found that, in almost all cases, 

they cluster clearly separated from the corresponding tumors (Figure S1M). With regard to 

possible confounding factors, such as library size, we did not observe clear associations to 

the clustering (Figure S1N). These observations were less pronounced for gene expression 

counts (Figures S1S and S1T).

Somatic trans Associations Drive Changes of Splicing Events

We performed an association study linking somatic single nucleotide variant (SNV) 

positions with alternative splicing changes in up to 8,255 donors. As phenotypes we 

considered a total of 94,749 exon skipping, 30,755 alternative 5′, and 48,365 alternative 

3′ events. We considered recurrently called tumor sample population-level variant calls. For 

the pan-cancer association study we used a linear mixed model implemented in LIMIX 

(Lippert et al., 2014), correcting for population, tissue, and batch effects. We also checked 

trans-splicing quantitative trait loci (sQTL) for a potential bias toward purity and ploidy as 

well as a potential bias for patient gender and total mutational load (Figure S2A). We found 
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that mutational load oftentimes strongly correlates with the genotype of individual variants 

(Figures S2B–S2D) and those variants also showed significant correlation among each other. 

This finding makes it difficult to determine whether individual variants themselves affect 

splicing event changes or are rather tagging higher mutational load, which in turn may have 

an effect on a wide range of splicing events. For this reason, we have excluded variants 

showing evidence of association with mutational burden (nominal p value <0.01) from 

further analysis. A subset of variants, including variants in SF3B1 and U2AF1, did not show 

this pattern (Figure S2E). In a joint analysis of cis and trans associations with 50% prior on 

each type, we identified 32 cis- and seven trans-sQTL (Bonferroni corrected p < 0.05).

The trans-sQTL genes included variants with known effect on splicing in SF3B1 (Alsafadi et 

al., 2016) (Figure 3A and 3B) and U2AF1 (Brooks et al., 2014) but also several candidates 

whose effects on splicing are less established. One such example is TADA1, where we 

observe that the distribution of splice event targets across the alternative event types shows 

a similar 3′ alternative splicing bias as the targets of the SF3B1 mutations (Figure 3C). 

TADA1 interacts with SF3B5, which itself interacts with various other splicing factors 

(including SF3B1) and suggests a possible mechanism (Figure 3D). We also found that 

mutations in the cancer driver gene PPP2R1A are associated with alternative splicing 

changes in SCRIB, which itself is a tumor suppressor gene and suggests a mechanism 

on how PPP2R1A may be driving tumorigenesis (Sayani et al., 2008). A further example 

is IDH1, where the same recurrent somatic missense variant had been associated with 

inhibiting the enzymatic functions of histones and demethylases. IDH1 variants have been 

shown to be most prevalent in brain lower grade glioma (LGG) and glioblastoma multiforme 

(GBM), which we also observe in the Pan-Cancer Atlas cohort (Figure S2F) (Yan et al., 

2009). They often appear in patients with low-grade gliomas and have been associated with 

more favorable outcomes (Yen et al., 2010). Due to the prevalence pattern of IDH1 variants, 

we also tested for association within the glioma, glioblastoma, and pheochromocytoma 

and paraganglioma (GBM/LGG/PCPG) cohort to exclude the possibility of tissue-specific 

effects. In total, we observed broad splicing changes across 377 events (Figure 3B), which 

are also observed in 326 (243 for LGG only) events (Spearman correlation, Bonferroni 

corrected p value <0.05) within the GBM/LGG/PCPG cohort, excluding the possibility that 

this association was mainly driven by tissue identity. Here, we report a link between IDH1 
variant and splicing, which is noteworthy since the importance of tumor-specific alternative 

splicing has already been established (Lefave et al., 2011; Venables et al., 2009).

Tumor-Specific Splicing Patterns

While significant differences in splicing between tumor and normal samples have been 

described before (Sebestyén et al., 2015; Srebrow and Kornblihtt, 2006), our analysis 

strategy allowed us to draw a more complete picture of the splicing landscape over a large 

array of different tumor types and subtypes. Observations described in the previous sections 

have shown that a large fraction of the identified events are either quite rare in general or 

are observed across multiple cancer types but remain rare within the individual tissue, which 

complicates differential analysis. Also, tissue-specific splicing confounds the assessment 

of significant differences between tumors and normal samples across cancer types. Our 

strategy was therefore 2-fold: (1) uncovering rare splicing outliers in tumor samples that 
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recur over multiple cancer types (PSI value deviates strongly from all other samples), and 

(2) differentially analyzing the broader changes in splicing within the cancer types where 

tissue-matched normal samples are available.

We identified a large set of 2,570 outlier events in 936 genes, 56 (6%) of which are included 

in the COSMIC (Catalogue of Somatic Mutations in Cancer) cancer gene census list. One 

prominent example is the tumor suppressor PTEN, which shows recurrent skipping of exon 

3 in multiple cancer types (Figure 4A top) with a strong signal in COAD, LUSC, and uterine 

corpus endometrial carcinoma (UCEC), not correlating with sample size for the individual 

groups. Although alternative splicing of PTEN in the context of cancer has been described 

before (Agrawal and Eng, 2006; Okumura et al., 2011), the skipping of exon 3 has so far 

been mostly linked to predisposition for heritable disorders (Celebi et al., 2000; Chen et 

al., 2017). Another example not well linked to splicing is the metastasis suppressor gene 

NDRG1 (Kovacevic et al., 2011) (Figure 4A bottom). Although in each cancer type only 

very few outlier samples exist (with BRCA showing the strongest signal), a clear recurrence 

was apparent with 14 of the 32 cancer types showing at least one notable outlier. When 

comparing the splicing pattern with an outgroup set of more than 3,000 normal samples for 

31 tissues from the GTEx study, we found none of the outliers to be present (Figure 4A).

In addition to rare outliers, we also analyzed broader shifts in splicing within the individual 

cancer types through a differential analysis of splice form usage between tumor and normal 

samples. We recovered a significant number of genes from the cancer gene census set 

as recurrently differentially spliced across tumor types (Figure 4B), partially showing pan-

cancer properties (TPM3 in BRCA, HNSC, READ, and lung cancers). One of the genes we 

found most frequently differentially spliced across all tumor types is PKM. While alternative 

splicing of exon 9 exclusion giving rise to a change from PKM into PKM2 has been reported 

previously (Clower et al., 2010; David et al., 2010), suggesting a role not only in the 

alteration of metabolic function but also in tumor cell proliferation, we detect alternative 

3′ site usage for exon 2. Another gene worth highlighting in the context of tumor-specific 

splicing is BCL2L1 (BCL-x), which produces two splice forms with opposite functions 

via differential 5′ splice site usage regulated by RBM4 expression, switching between anti-

apoptotic or pro-apoptotic states (Wang et al., 2014). Among the top differentially spliced 

genes, we find a significant enrichment of cancer census genes (5 out of 50, p < 0.003, 

fold change 3.45, hypergeometric test). In addition, we also observed differential splicing in 

numerous other factors previously connected to cancer progression, such as NUMB, which 

encodes a negative regulator of NOTCH and has been previously linked to lung cancers 

(Pece et al., 2011). We found NUMB to be differentially spliced not only in lung cancers 

but also in UCEC (Figure S3). In summary, the joint ranking of differentially spliced genes 

provides a rich resource for the development of new hypotheses.

Increased Complexity of Splicing in Cancer

In addition to the differential usage of splice forms, we were also interested in the 

identification of exon-exon junctions (EEJs), predominantly observable in tumor samples. 

We call such tumor-specific EEJs “neojunctions”. Over all samples of the study, we identify 

≈251,000 such neojunctions, with an average of 930 per sample (Figures 4C and S4A 
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and S4B). Despite being similar in sample size, LUAD and UCEC had generally higher 

numbers of neojunctions than LUSC or prostate adenocarcinoma. We found the strongest 

outliers in bladder urothelial carcinoma (BLCA), UCEC, LUAD, BRCA, and COAD. We 

observed a marked distinction between tumors and normal samples, where normal samples 

had substantially lower levels of splicing burden than tumor samples (note that, according 

to our definition, normal samples can also have neojunctions). This difference appeared 

to vary across cancer types. Although BLCA, CESC, LUSC, and LUAD showed a very 

strong distinction, other cancer types, such as liver hepatocellular carcinoma or KICH, 

had no difference between tumor and normal samples. Notably, on the other end of the 

spectrum, cholangiocarcinoma seems to have an opposite pattern, with normal samples 

showing a consistently higher number of neojunctions. Further, different tumor types 

showed differences in their most extreme complexity values, which cannot be explained 

by library size or mutational load (Figures S4C and S4D).

To answer the question of which genes contribute most often to the set of neojunctions that 

could potentially be used as diagnostic or therapeutic markers, we derived a neojunctions-

based ranking. Surprisingly, we observed EEJs that show RNA-seq support in over 50% of 

samples of specific tumor types but are virtually non-existent in TCGA normal samples or 

GTEx (Figure 4D). Further, we found a large degree of recurrence across cancer types but 

also observed tissue-specific patterns.

There is a large degree of variation among the cancer types with the largest numbers of 

neojunctions in BLCA, UCEC, LUAD, BRCA, and COAD that we cannot easily attribute 

to technical factors. We hypothesize that the large number of neojunctions in some samples 

can be attributed to a partial breakdown of the splicing machinery that may be the result 

of somatic mutations or dysregulation of splicing-related factors. In analogy to the term 

chromothripsis (Stephens et al., 2011), we call this effect syndeo mechanism thripsis, or 

syndeothripsis. We have identified 110 and 37 TCGA tumor samples with high and very 

high degree of splicing aberration (Figures S4E and S4F), respectively. The splicing burden 

in those samples goes far beyond what we observe in most normal samples and we therefore 

suggest that they are affected by syndeothripsis.

Neojunctions Lead to Potential Neoepitopes

The direct oncogenic effects of tumor-specific alternative splicing are only one of the many 

consequences splicing can have in a cancer context. We saw evidence indicating that a 

large fraction of the increased splicing diversity often seems to be a passenger rather than 

being the driving effect; in particular, we did not find an enrichment of neojunctions in 

the cancer census gene set (in contrast to the enrichment for differential exon usage). It is 

quite possible that the increased splicing complexity is due to a lower accuracy, or more 

“noise” (Pickrell et al., 2010), of splicing in cancer cells that may have a disrupted splicing 

machinery, although we did not find a direct correspondence between mutational load and 

detected junctions (Figure S4G). However, this additional transcriptomic complexity can 

potentially be used to inform cancer therapy. The classic argument is that a fraction of 

somatic alterations specific to the tumor is translated and can potentially lead to specific 

neoepitopes. Following this argument, we studied whether a similar effect can be observed 
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for tumor-specific alternative splicing. This is motivated by our prior observation that 

such events are at least an order of magnitude more abundant than somatic variants. 

We will denote tumor-specific peptides generated through splicing and predicted to be 

major histocompatibility complex (MHC)-I binders as alternative splicing-derived putative 

neoepitopes (ASNs).

Due to the limited availability of proteomics data for TCGA samples, we have restricted 

the scope of this study to 63 donors for BRCA and ovarian serous cystadenocarcinoma 

(OV). Based on patient-specific splicing graphs, we derived all polypeptides generated by 

an EEJ. This resulted in a median of 539,925 EEJ-spanning polypeptides per donor (Figure 

5A and Table 1). From these polypeptides, we extracted a list of candidate ASNs based on 

a pipeline of Clinical Proteomic Tumor Analysis Consortium (CPTAC) mass spectrometry 

(MS) data confirmation (Mertins et al., 2016; Zhang et al., 2016) and MHC-I binding 

affinity prediction (Andreatta and Nielsen, 2016) incorporating information on the human 

leukocyte antigen (HLA) type of each donor (Figure 5A). When considering only RNA-seq-

confirmed EEJs, this resulted in, on average, 1.7 ASNs from 1.2 EEJs for each of the 

samples. For 43/63 (68%) of all considered samples we identified at least one ASN that was 

CPTAC confirmed and that was a predicted MHC-I binder (Figure 5B). If we do not require 

RNA-seq confirmation of the specific EEJ in a sample, the number of CPTAC-confirmed, 

MHC-I binding 9-mers increases significantly (on average ≈11 9-mers from eight EEJs 

per sample, Figure S5A). Generally, we expect the real number of ASNs to be higher as 

it would also include 9-mers not spanning an EEJ but completely residing inside a newly 

included exon or inside a retained intron (not counted in this analysis). Furthermore, a 

recent study showed that junction-spanning peptides resulting from alternative splicing are 

underrepresented in protein MS datasets due to the cleavage specificity of trypsin (Wang et 

al., 2017).

In order to compare ASNs with putative neoepitopes derived from SNVs, following an 

analogous protocol, we generated a list of all SNV-derived 9-mers that are observed in the 

respective tumor DNA, can be confirmed by CPTAC mass spectra, and are predicted MHC-I 

binders. On average we find 0.6 SNV-derived putative neoepitopes derived from 0.4 SNVs 

per sample. Overall, we found at least one SNV-derived putative neoepitope for 19/63 (30%) 

of all considered samples. Compared with other studies, these numbers appear relatively 

low. This can be explained by our requirement of MS validation, which retains only about 

1% of otherwise viable peptides due to the low sensitivity of MS. For both cancer types, we 

found more ASNs than putative neoepitopes derived from SNVs (Figure 5B). Considering 

ASNs in addition to SNV-derived putative neoepitopes significantly increased the fraction 

for which at least one CPTAC-confirmed putative neoepitope can be confirmed from 30% to 

75% (Figure 5B).

We used RNA-seq data to determine the expression of all neojunctions as a proxy for 

neojunction-derived 9-mer expression. Similarly, we used the product of RNA-seq-based 

expression estimates for an exon segment with an SNV and the respective variant allele 

frequency as a proxy for SNV-derived 9-mer peptide expression. For comparison, we also 

provide average exon fragment RNA expression as a proxy for overall 9-mer expression. 

The expression distribution for neojunctions is notably different from the SNV-derived and 
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overall 9-mer expression distribution. Generally, neojunction-derived 9-mers show slightly 

lower expression than SNV-derived 9-mers (Figure 5C). CPTAC-confirmed SNV-derived 

putative neoepitopes show a higher overall associated RNA expression than ASNs, but there 

are fewer of them per sample.

Independent of the source of a neoepitope, potential therapeutic utility arises from recurrent 

observation across multiple patients. SNVs are typically rare, and we did not observe any 

recurring CPTAC-confirmed SNV-derived putative neoantigens. However, we did find that 

15 ASNs in our study are observed across several samples within the same cancer type and 

five ASNs recur in both cancer types (Figure S5B and Table S1).

DISCUSSION

Alternative splicing events have previously been shown to contribute to cancer development 

and progression. Several examples of such mechanisms are known, but only a few 

comprehensive studies on transcript changes are available (Climente-González et al., 2017) 

and a complete picture of alternative splicing complexity and its potential to generate 

neoantigens is still missing.

In this work, we focus on five types of alternative splicing events, namely intron retention, 

exon skipping, mutually exclusive exons, and alternative 3′ and alternative 5′ splice site 

changes (Cartegni et al., 2002; Hatje et al., 2017; Roy et al., 2013; Wang et al., 2008). 

Our study builds on a previously published tool (Kahles et al., 2016) and analyzes specific 

splicing event types involving a small number of exons from RNA-seq data without the need 

to know complete transcripts. This study is a major contribution toward a comprehensive 

analysis of alternative splicing events across all suitable TCGA samples (another study 

without focus on cancer was performed in Nellore et al., 2016). Most previous studies 

considered isoform expression of known transcripts. For instance, a recent study analyzed 

the impact of isoform switches on gene function (Climente-González et al., 2017). 

We combine the splicing phenotypes with variants obtained from re-analysis of exome 

sequencing data for an sQTL association study. A previous study considered alternative 

splicing across 48 tissues from up to 620 donors (GTEx Consortium et al., 2017; Saha et 

al., 2017). Another work considered genetic determinants of alternative splicing in blood 

(Zhang et al., 2015). Both studies were restricted to cis associations of common germline 

variants with known isoform expression. Large QTL association studies of common variants 

with gene expression were reported on both TCGA (Gong et al., 2017; Li et al., 2013) and 

non-TCGA datasets (GTEx Consortium et al., 2017). In our study, we focus on variants that 

have been shown to occur as somatic variants in some individuals but may also occur in the 

germline genome in others. Those variants are typically substantially less frequent (between 

0.1% and 5% across the cohort) than most common germline variants. The available 

data provide sufficient statistical power to detect trans-sQTL events that were difficult to 

detect previously (Fonseca et al., 2017; GTEx Consortium et al., 2017; Lehmann et al., 

2015). Finally, our study comprehensively analyzes the extent to which alternative splicing 

in tumors leads to cancer-specific RNA transcripts that are translated into tumor-specific 

proteins and, hence, may be targeted by immunotherapy. This has been shown for specific 

genes for B cell lymphomas and ovarian cancers (Barrett et al., 2015; Vauchy et al., 2015). 
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Here we use the data from TCGA and GTEx to identify alternative splicing events that 

are tumor specific and integrate them with re-analyzed CPTAC MS data (Mertins et al., 

2016; Zhang et al., 2016) to show for two tumor types that the resulting mRNAs are indeed 

translated into tumor-specific proteins that contain peptides with the potential for MHC 

presentation.

We built a catalog of alternative splicing events found in these samples with hundreds 

of thousands of events of which ≈80% are not annotated in GENCODE. In addition, we 

show that in tumor samples we can observe on average ≈20% more alternative splicing 

than in matched normal samples. The analysis of RNA-seq data to extract splicing events 

is computationally demanding and we hope that the identified and quantified alternative 

splicing events for all Pan-Cancer Atlas donors can be used as a resource to simplify future 

analyses. One limitation of this study, however, is that we only analyze bulk RNA-seq and 

whole-exome sequencing data and we therefore have limited power to detect and understand 

subclonal effects.

To understand the impact of somatic variants on alternative splicing events, we performed 

a large-scale association study of tumor variants with alternative splicing variation across 

the genome. In order to characterize individual variants and to avoid a burden-type strategy, 

we based our analysis on tumor variant calls that overlap with recurrent highly confident 

somatic variant calls allowing us to leverage changes at the germline as well as the tumor 

levels. Association mapping in trans is technically challenging and requires large cohorts 

such as the one considered here. In particular, identifying and addressing confounders 

appropriately is often challenging. Here we have accounted for common confounders in the 

model and additionally checked our results against correlation with purity, ploidy, patient 

sex, as well as mutational load. Besides the aforementioned strong effect of mutational 

load, we did find that the variant in PPP2R1A is sex biased, which is expected as this 

gene is a known driver of ovarian/uterine cancer. We also observed a correlation between 

purity and one of the SF3B1 mutations. Eventually, this strategy allowed us to identify 

a small number of known (SF3B1, U2AF1) and a larger number of additional (TADA1, 
PPP2R1A, IDH1) distal sQTLs that affect multiple alternative splicing events. Overall, 

385 genes have a splicing event that is the target of one of these sQTLs. This illustrates 

the power of the pan-cancer analyses of TCGA data to generate valuable hypotheses for 

further mechanistic studies; for instance, to understand how a somatic variant in IDH1 
leads to widespread changes in alternative splicing across the genome. It is likely that 

splicing and expression patterns are changed as an indirect, downstream effect of altered 

histone and demethylase patterns. The link of TADA1 to alternative splicing events may be 

more direct, since TADA1 interacts with SF3B5 and also shows a similar distribution of 

affected AS types as the known mutations in SF3B1. PPP2R1A has previously been reported 

to affect nonsense-mediated decay (NMD) (Sayani et al., 2008). We hypothesize that the 

loss-of-function somatic mutation in PPP2R1A leads to a disruption of NMD function, 

which then leads to a detection of AS variants that would otherwise get degraded by NMD. 

This would explain why we find associations with alternative splicing. In summary, this 

sQTL analysis, utilizing a large sample set size, reveals promising additional long-range 

associations with changes in exon composition of multiple genes.
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Our study of the alternative splicing landscape demonstrated that taking information on 

alternative splicing events into account is beneficial for characterizing cancer subtypes. 

A systematic analysis of splicing events in tumors enabled us to identify genes that 

are recurrently alternatively spliced across multiple cancer types. These events include 

well-understood examples of alternative splicing changes promoting tumor development 

(e.g., BCL2L1, PKM) but also alternative splicing in cancer genes for which the effect is 

not yet well understood (e.g., NUMB). However, in this context we would like to note 

that even though TCGA is a tremendous resource for cancer research, certain biases are 

inherent to the dataset (mostly related to the design of the study), which might not be 

representative in certain circumstances. For instance, TCGA tumors are treatment naive, 

consist predominantly of primary tumors, and are biased toward larger tumors with sufficient 

size to extract analysis material. Within this study we cannot directly address this sampling 

bias other than pointing it out and interpreting our results within its context.

One important element of this study was to determine the number of additional EEJs, which 

we called neojunctions, that appear predominantly in tumors. We found that some samples 

have a large degree of splicing aberration, where we can identify thousands of neojunctions. 

Overall, we identified ≈251,000 neojunctions with an average of ≈930 neojunctions per 

sample, and many of them are recurrent: ≈18,000 of those neojunctions appear in at least 

100 samples. For comparison, there are only 13 somatic SNVs that were found in at least 

100 tumors (the highly recurrent SNV BRAFV600E being one of them). The vast number of 

neojunctions and the high level of recurrence are very promising for future work.

To further develop the hypothesis of the importance of alternative splicing for the immune 

response to cancer, we have analyzed to what extent neojunctions contribute to the 

translation of potential neoepitopes. This required the development of an analysis pipeline 

to go from neojunctions to the predicted translations of peptides around the neojunctions 

to the MS confirmation, and the MHC-I binding prediction in order to determine which 

peptides are potential neoepitopes. Overall, by considering splicing-derived in addition to 

SNV-derived peptides, the fraction of samples with at least one CPTAC-confirmed putative 

neoepitope increases from 30% to 75% for BRCA and OV tumors. In addition, the splicing-

derived putative neoepitopes have a high degree of recurrence, suggestive of potential use in 

immunotherapeutic intervention.

In addition to the already completed analyses, we are currently investigating further 

extensions and refinements. While the current work only focuses on MHC-I alleles for 

peptide binding predictions, incorporation of MHC-II alleles appears to be beneficial as 

well (Sun et al., 2017). Also, MHC binding is essential but not sufficient for a peptide 

to be capable of inducing an immune response. Both the actual expression and processing 

of the peptide as well as its immunogenicity need to be validated. The tandem MS-based 

proteomics analysis employed in this study aims at validating peptide expression. However, 

proteomics analysis alone cannot validate processing let alone presentation of a given 

peptide by MHC. An important improvement will be to replace this step; e.g., with MS-

based immunopeptidomics (Bassani-Sternberg et al., 2016). Subsequently, immunogenicity 

of the detected naturally processed neoepitopes could be determined via CD8+ T cell killing 

(Vitiello and Zanetti, 2017). In addition, it may also be helpful to use more sensitive protein 
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MS techniques; for instance, data-independent acquisition MS (Gillet et al., 2012). Lastly, 

our current choice of cancer types was mainly driven by availability within the TCGA and 

CPTAC cohorts. We are actively working on extending this work to other cancer types and 

into a more controlled experimental setup.

In summary, in this study we considered the many differences of alternative splicing in 

cancer compared with normal cells and suggest that these differences are characteristic 

for individual cancer types and could be used for the design of immunotherapeutic 

interventions, such as chimeric antigen receptor T cell therapy or personalized anti-cancer 

vaccines.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Gunnar Rätsch (gunnar.ratsch@ratschlab.org).

METHOD DETAILS

Data Download—Raw RNA-sequencing samples in FASTQ format and whole-exome 

sequencing alignment files in BAM format were downloaded from the CancerGenomicsHub 

(CGHub) at UCSC (Wilks et al., 2013) using the cgtools software. CGHub has been 

decommissioned over the course of this project’s duration. All data is now available at 

the Genomic Data Commons (https://gdc.cancer.gov/, more information below). Proteomics 

data for TCGA breast and ovarian cancer samples were downloaded from the CPTAC data 

portal (Edwards et al., 2015).

RNA-Seq Alignment—All previously downloaded RNA-seq samples were individually 

aligned using a uniform processing pipeline based on the STAR aligner (Dobin et al., 2013). 

Due to the long duration of the whole project and the extensive analyses, we used two 

different alignment strategies to include further samples in a second run. While almost all 

analyses were performed with both strategies, the sQTL analysis was completed on strategy 

1 only and the neoepitope analysis was completed on the junctions resulting from the 

intersection of strategies 1 and 2., For the remaining analysis, we compared all results and 

found no significant differences between the two alignment strategies.

Strategy 1: The STAR software (version 2.4.0i) was used in a 2-pass setup, where the first 

alignment pass was used to identify non-annotated junctions in the input data, allowing 

for the construction of a genome index containing non-annotetd junctions. The second 

pass alignment was then performed against the junction-aware index, allowing for a more 

sensitive recovery of non-annotated splice junction from the data. A complete set of 

command line parameters:

1st Pass.: STAR –genomeDir GENOME –readFilesIn READ1 READ2 –runThreadN 4 

–outFilterMultimapScoreRange 1 –outFilter MultimapNmax 20 –outFilterMismatchNmax 
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10 –alignIntronMax 500000 –alignMatesGapMax 1000000 –sjdbScore 2 –align 

SJDBoverhangMin 1 –genomeLoad NoSharedMemory –readFilesCommand cat –

outFilterMatchNminOverLread 0.33 –outFilter ScoreMinOverLread 0.33 –sjdbOverhang 

100 –outSAMstrandField intronMotif –outSAMtype None –outSAMmode None.

Re-indexing.: STAR –runMode genomeGenerate –genomeDir GENOME_TMP 

–genomeFastaFiles GENOME_FASTA –sjdb Overhang 100 –runThreadN 4 –

sjdbFileChrStartEnd SJ.out.tab (from 1st pass)

2nd Pass.: STAR –genomeDir GENOME_TMP –readFilesIn READ1 READ2 –runThreadN 

4 –outFilterMultimapScoreRange 1 –out FilterMultimapNmax 20 –outFilterMismatchNmax 

10 –alignIntronMax 500000 –alignMatesGapMax 1000000 –sjdbScore 2 –

align SJDBoverhangMin 1 –genomeLoad NoSharedMemory –limitBAMsortRAM 

70000000000 –readFilesCommand cat –outFilterMatch NminOverLread 0.33 –

outFilterScoreMinOverLread 0.33 –sjdbOverhang 100 –outSAMstrandField intronMotif –

outSAMattributes NH HI NM MD AS XS –outSAMunmapped Within –outSAMtype BAM 

SortedByCoordinate –outSAMheaderHD @HD VN:1.4 –out SAMattrRGline ID SM:

Strategy 2: Again, this strategy comprises a two-pass alignment approach. As a difference 

to strategy 1, a newer version of the STAR aligner was used (2.5.3a), that re-creates the 

index augmented with non-annotated junctions on the fly and does not require manual 

rebuild of the reference genome index. Hence only a single run per sample was necessary. 

The full list of command line parameters was as follows:

STAR –genomeDir GENOME –readFilesIn READ1 READ2 –runThreadN 4 –

outFilterMultimapScoreRange 1 –outFilterMultimap Nmax 20 –outFilterMismatchNmax 

10 –alignIntronMax 500000 –alignMatesGapMax 1000000 –sjdbScore 2 –

alignSJDBoverhang Min 1 –genomeLoad NoSharedMemory–limitBAMsortRAM 

70000000000–readFilesCommand cat –outFilterMatchNminOverLread 0.33 –

outFilterScoreMinOverLread 0.33 –sjdbOverhang 100 –outSAMstrandField intronMotif 

–outSAMattributes NH HI NM MD AS XS –sjdbGTFfile GENCODE_ANNOTATION 

–limitSjdbInsertNsj 2000000 –outSAMunmapped None –outSAMtype BAM Sorted 

ByCoordinate –outSAMheaderHD @HD VN:1.4 –outSAMattrRGline ID::<ID> –

twopassMode Basic –outSAMmultNmax 1

RNA-Seq Quality Control and Filtering—For each RNA-seq library we ran the FastQC 

analysis tool (version 0.11.6) and collected library statistics. Further we collected alignment 

statistics and computed a bias score between 3 and 5′ end of each gene to measure possible 

degradation. Based on these measurements, we developed a scoring scheme to exclude 

samples. A sample could be flagged as low-quality if at least 3 of key FastQC criteria 

were labeled as fail (criteria: per base quality, per sequence quality, gc content, N content, 

sequence overrepresentation), the degradation score was larger than Q3 + 1.5xIQR, the GC 

content was more than 1.5xIQR below Q1 or above Q3 or the number of reads was more 

than 1.5xIQR below Q1 or above Q3. A sample was excluded, if it was flagged for at least 

three low quality criteria, the degradation score was larger than Q3 + 3xIQR, the GC content 
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was more than 3xIQR below Q1 or above Q3 or the number of reads was more than 3xIQR 

below Q1 or above Q3.

Tumor Variant Calling—We have used Picard (version 1.87) and the Genome Analysis 
Toolkit (GATK, version 3.4.46) (McKenna et al., 2010) for variant calling. We followed 

the good-practice guidelines for variant calling with GATK (Van der Auwera et al., 2013). 

We omitted a duplicate-marking of the input files as the alignment versions downloaded 

from CGHub already had duplicates marked. Each alignment file was then stripped of all 

unmapped reads and re-indexed using samtools (version 1.2).

Utilizing the capture-region information for the exome capture procedure of each file 

and dbSNP (version 138), the 1000 Genome Project Phase 1 and the Mills and 1000G 

gold standard set as compendium of known sites, we used GATK for base quality score 

recalibration.

Re-calibration Step 1: java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -R 

<genome.fasta> -I <alignment.bam> -knownSites <known_sites> -L <capture_region> -o 

<outfile1> -nct <threads>

Re-calibration Step 2: java -jar GenomeAnalysisTK.jar -T PrintReads -R <genome.fasta> 

-I <alignment.bam> -BQSR <outfile1> -o <outfile2> -nct <threads>

Variant calling was then performed using the GATK Haplotype Caller. The calling limit was 

defined as a +/− 1kb window around all genes in the GENCODE annotation (v19), including 

all intron regions.

Variant Calling: java -Xmx4g -Xms512m -Djava.io.tmpdir=<TMPDIR> -jar 

GenomeAnalysisTK.jar -T HaplotypeCaller -R <genome.fasta> -I <alignment.bam> –

dbsnp <dbsnp_v138.vcf> -o <outfile> –output_mode EMIT_ALL_CONFIDENT_SITES 

-ERC GVCF –variant_ index_type LINEAR –variant_index_parameter 128000 -pairHMM 

VECTOR_LOGLESS_CACHING -mbq 15 –minPruning 5 -S STRICT –activeRegionOut 

<outfile_region> –activityProfileOut <outfile_profile> -L <calling_limit.bed> -nct 

<threads>

The gVCF files created in the previous step for each sample were then merged in an iterative 

process until less than 100 merged files remained:

java -jar GenomeAnalysisTK.jar -T CombineGVCFs -R <genome.fasta> –variant <s1> … 

–variant <sN> -o <outfile_merged1>

The merged gVCF files were then used for joint variant calling on each chromosome 

independently using the GATK:

java -Xmx16g -jar GenomeAnalysisTK.jar -T GenotypeGVCFs -L <chr> -nt <threads> 

–dbsnp <dbsnp_v138.vcf> -R <genome.fasta> -variant <outfile_merged1> … –variant 

<outfile_mergedN> -o <outfile_final>
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Tumor Variant Filtering—Tumor variant calls have been filtered in the following way: 

Variants that have less than 100 samples with valid calls, quality of less than 100, are 

multi-allelic or indels have been removed from analysis. We further required more than 

5 alternate alleles for each polymorphic position. All variants have been encoded into an 

additive scheme with 0 representing the homozygous reference state, 1 the heterozygous 

state and 2 the homozygous alternate allele. In this study, we ignore the existence of 

variants that appear sub-clonally. For somatic variant calls the unfiltered MC3 calls from 

PanCanAtlas have been used (version 0.2.8; Synapse ID: syn7834470). From that variant 

call set we extracted single nucleotide variants (SNVs) but excluded variants tagged by the 

following criteria:

• StrandBias

• contest

• oxog

• ndp

• pcadontuse

• nonpreferredpair

• badseq

• gapfiller

• common_in_exac

• PoN

We also required that at least three variant callers agree on a variant call and excluded 

variants which have a higher than 5% minor allele frequency in the 1,000 genomes cohort. 

Non-recurrent variant calls (variants which appear in only one sample) have also been 

excluded from further analysis. This filtering ensures a high-quality variant call set which 

includes intronic variants at exon boundaries.

The somatic and tumor variant calls have subsequently been intersected, resulting in a total 

of 4,041 variant calls considered in this analysis.

Gene Expression and Splicing Event Quantification—For expression counting we 

used a custom python script that counted a read towards a gene if at least one base of the 

read overlapped an exonic position of the gene. We did not count secondary alignments (as 

indicated in the BAM files with flag 256) and masked regions from the annotation where 

multiple genes overlapped. We also generated a second set of expression counts (non-alt) 

that excluded all genomic positions from counting that were annotated with both intron and 

exon.

Alternative splicing events were detected and quantified using the SplAdder toolkit (Kahles 

et al., 2016). Briefly, with the pipeline we generated a sample-specific splicing graph per 

sample and gene, integrating additional information based on RNA-seq alignment data. For 

each gene all graphs of all samples were then merged into a joint splicing graph. If a graph 
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of a gene had more than 10,000 edges, we excluded it from further merging. Lastly, we 

pruned edges from the merged graphs if they were supported by less than 10 samples in the 

cohort. This procedure resulted in a single merged graph per gene for all samples.

Subsequently, we quantified nodes and edges of the merged graph for all samples based on 

the RNA-seq alignments. Edges were quantified as number of supporting spliced alignments 

and exons as mean read coverage over all exonic positions. From the quantified graphs 

we detected all alternative events of the following types: exon skipping, intron retention, 

alternative 3′ splice site and alternative 5′ splice site (Figure S1A). For each event we then 

computed percent spliced in (PSI) values based on the previously quantified splicing graphs.

Detection of Cancer-specific Introns—To account for cohort size and read length 

effects, this analysis was performed on a randomly selected subset of 40 tumor samples 

from each tumor type (for all types with sufficient number of samples) and the RNA-seq 

reads were trimmed to a uniform length of 50 nt if their length was exceeding this threshold. 

The detection and quantification of alternative splicing events was otherwise performed as 

described above.

Characterization of Neojunctions—Starting with the splicing graphs for all genes that 

we generated previously, we removed all intron edges that could be confirmed with at 

least 2 reads in at least 1% of samples (~30) from the GTEx cohort. Before thresholding, 

junction counts were normalized for library size differences. Further, samples with a library 

size (measured as the upper quartile expression of autosomal genes) of less than 2,500 

were excluded from this analysis to exclude artifacts caused by low complexity libraries 

not caught by the global QC. We then computed splicing complexity (the number of 

neojunctions) as the sum of the total number of splice graph edges confirmed with at least 3 

reads in a sample and at least 20 reads over the whole cohort as total sum over all genes of a 

sample.

For a ranking of neojunctions, we sorted all EEJs with an increased specificity towards 

tumor samples requiring a minimum number of spliced alignments across the EEJ per 

sample to count it as expressed (tumor: 10 spliced reads, normals: 3 spliced reads, GTEx: 

2 spliced reads). Further, we removed all junctions that were present in more than 1% 

of GTEx or TCGA normal samples or had a higher mean expression in TCGA normals 

compared to TCGA tumor samples (within the same cancer type). We then ranked all EEJs 

by predominant occurrence in tumor samples based on Fisher’s exact test. To aggregate over 

multiple events in a gene, we show only the event with the strongest effect.

Identification of Rare Splicing Outliers—For outlier detection we applied a set of hard 

filter criteria on our full set of detected alternative splicing events. To allow for a stable 

and comparable analysis, we only checked for outliers in cancer types with at least 100 

samples available. For each event we required that the maximum spread of PSI values in 

the GTEx cohort as well as within the TCGA normal sample is at most 0.3. We further 

excluded an event if it i) had less than 80 samples with sufficiently many reads (N = 10) 

to compute a PSI, ii) had a spread of PSI values in the respective cancer type of less than 

0.4. We then computed the number of samples with a PSI value of at least 10 times the 
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inter-quartile range above/below the upper/lower quartile and marked them as outliers. If 

we found less than 5 or more than 100 outliers for the event and cancer-type, there were 

no TCGA normal samples with sufficient read count (N = 10) available or the minimum 

PSI overall normal samples was lower than the smallest tumor sample PSI, we excluded the 

event. All remaining events were noted as outliers in the respective cancer type.

t-SNE—We have generated t-SNE figures for every event type (exon-skip, alternative events 

and intron retention) as well as for a list of concatenated events based on a matrix of sample 

by event matrix of percent spliced in values. All t-SNE figures have been produced using 

the package sklearn (Pedregosa et al., 2011). The aforementioned matrix has been filtered 

to remove events which had more than 30% samples missing values. A value is missing, if 

we were unable to compute a stable PSI value, which was the case when we had less than 

10 spliced reads available in the denominator. Samples have been filtered if more than 10% 

of events had samples missing. Remaining missing values have been mean-imputed. Next, 

we performed a PCA based on a linear kernel of this data matrix. The first 100 principal 

components have been used for the t-SNE generation. t-SNE with learning rate 500 and 

perplexity 50 have been used for visualization throughout this work unless stated otherwise.

Differential Analysis of Splicing Events—The differential splicing analysis was run 

on all tumor types that had at least 50 tumor samples and 10 tissue-matched normal samples 

available. For each tumor type independently, we randomly subsampled the available groups 

to 50 tumor and 10 normal samples. We then used SplAdder to perform a differential test 

(based on a generalized linear model) between the two groups, utilizing the split-alignment 

counts acress the junctions of an event. To account for additional variability in the tumor 

samples, we repeated the testing 9 times, each time on a different random subset. For each 

event, the final p value was recorded as the median of the 9 results. If the same gene had 

more than one splicing event tested, we kept the one with the minimal p value. The results 

from all individual tissues were then aggregated into a common ranking using Fisher′s 

method for meta-analysis.

Filtering of Events and Variants for Somatic trans-Association—As phenotypes 

we considered a total of 94,749 exon skipping, 30,755 alternative 5′ and 48,365 alternative 

3′ events for all samples that had a total of at least five reads across all junctions in 

the splicing event. We considered tumor sample population-level variant calls that are 

confirmed by at least three somatic variant callers as high-quality somatic variants in at 

least two donors in the MC3 variant calls, including intronic regions. For each of these 

positions, we re-analyzed the tumor whole exome sequencing data in order to determine 

the genotype in all samples. This strategy considered germline as well as somatic variants 

for the association analysis. Therefore, we leveraged the occurrence of single nucleotide 

variants on the germline genome in conjunction with somatic single nucleotide variants to 

determine functional effects of these variants.

Statistical Association of Genetic Variation and Alternative Splicing—A linear 

mixed model has been used (Lippert et al., 2014), accounting for population structure as 

a random effect and cancer type as fixed effect to account for cancer specific variation 
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as well as batch effects. We also included gender and gene expression as fixed effects to 

account for potential detection bias. All splicing event quantifications have been quantile 

normalized to match a standard normal distribution. Depending on the amount of read 

support of individual splice events, we used up to 8,255 samples for the QTL-analysis. More 

specifically, we required that the sum of reads across all junction for every sample and splice 

event are covered by more or equal to 5 reads.

The splicing index is being used as a quantitative phenotype. In order to address some 

unwanted properties of this phenotype we have performed an inverse normal transform 

on all PSI’s estimated by SplAdder. To avoid ties, we have added a small amount of 

random pseudo-noise in the range of 10−5 to each estimate before transformation. Splicing 

events which exclusively exhibited ties, have been removed from analysis. We also excluded 

phenotypes in which less than 10% of the samples had any valid estimates.

We applied a Bonferroni multiple testing correction on cis-associations and trans-

associations separately accounting for the total number of variants (cis-associations, p value 

< 6.19e-6) as well as the total number of events and variants tested (trans-associations, p 

value < 3.55e-11).

In the resulting set of sQTL, we have removed all events which showed over-inflation 

for the variants tested (more than 20 variants significantly associated). Further, we tested 

all variants for association with mutational load (Spearman Correlation) and removed all 

variants showing any evidence of correlation (nominal p value < 0.01). Mutational load has 

been calculated as total number of SNV based on MC3 calls from PanCanAtlas have been 

used (version 0.2.8 PUBLIC; Synapse ID: syn7834470).

Derivation of Splicing-Derived Peptides—Based on the splicing graphs, all intron-

spanning polypeptides (encoding the translated amino acid sequence of a node pair) for a 

subset of 63 TCGA cancer samples (including BRCAand OV) were derived. For each gene, 

we generated a foreground splicing graph by collapsing the reference transcripts of each 

gene into a graph and augmenting it with patient-specific germline and somatic variants as 

well as additional junction information from RNA-seq across the TCGA cohort as follows.

The polypeptides were obtained by seeding the splicing graph traversal at the first CDS of 

the canonical transcripts and then following the splicing graph structure along any existing 

edges in read strand order. While traversing the graph, all possible read-frame shifts that 

could exist while translating an exon/CDS were taken into account. We define an intron-

spanning polypeptide as the peptide generated by translating the pair of exons connected 

by the intron with respect to a certain reading-frame. The polypeptides were generated 

both for the reference DNA sequence and the personalized DNA sequences. Personalized 

DNA sequences are comprised of three subsets obtained by introducing variants into the 

reference genome as follows: (i) the germline variants of a particular donor only, (ii) the 

somatic variants of a particular donor only, and (iii) both the germline and the somatic 

variants. To obtain background sequences, we generated polypeptides that result from 

translating canonical transcripts annotated in the GENCODE reference annotation (version 

19). Furthermore, we generate background peptides by using a splicing graph derived 
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from GTEx control tissue samples. For each donor, we also generate a personalized GTEx 

background set by introducing germline variants.

MHC-I Binding Predictions—MHC class I binding predictions were performed using 

NetMHC-4.0 (Andreatta and Nielsen, 2016). Donor HLA-I types originate from a previous 

study on the same TCGA samples (Shukla et al., 2015) and were downloaded from the 

PanCanAtlas Jamboree server.

For each tumor sample, MHC-I binding affinity and corresponding ranks were determined 

for all 9-mers derived from background and personalized protein sequences with respect to 

all donor HLA-I alleles supported by NetMHC-4.0. (For seven donors only three HLA-I 

alleles were supported, for 17 donors all six were. Median number of supported alleles was 

5.) For each 9-mer NetMHC-4.0 outputs a binding affinity rank per allele. This rank is based 

on a reference set of 400,000 random natural peptides. Peptides with a predicted binding 

affinity rank of better than 2% are considered binders. NetMHC-4.0 was used as follows:

MHC-I Binding Prediction: netMHC -a <donor_allele_string> -l 9 -f <proteins.fasta>

Identification of Expressed Peptides—For each of the 63 TCGA tumor samples under 

consideration, we generated individual polypeptide databases comprising reference-based 

and personalized versions of all sample-specific splicing-derived and reference annotation-

derived protein sequences. Personalized versions of the reference annotation-derived protein 

sequences were generated analogously to those of the splicing-derived sequences.

OpenMS (Kohlbacher et al., 2007; Röst et al., 2016) was used to identify polypeptides 

from a sample′s polypeptide database as follows: In order to allow to control for false 

discovery rates, decoy sequences were added to the database. Subsequently, we used MS-

GF+ to search the corresponding CPTAC data set for tryptic sequences from the database. 

A false discovery rate of 5% on the peptide-spectrum match level was used to filter the 

identified polypeptides. Any 9-mer contained in at least one of the identified polypeptides is 

considered CPTAC-confirmed. The following OpenMS commands were used to perform the 

polypeptide identification:

Add Decoy Sequences: DecoyDatabase -in <input.fasta> -out <decoy_db.fasta>

Search CPTAC Data Set: MSGFPlusAdapter -ini MSGF_iTRAQ.ini -in <cptac_spectra> 

-out <output.idXML> -database <decoy_db.fasta> -executable <path_to_msgfplus> 

-java_memory 80000 -threads 6

The file MSGF_iTRAQ.ini is available at https://github.com/ratschlab/

pancanatlas_code_public.

Control for False Discovery Rate: PeptideIndexer -in <msgf_output.idXML> -fasta 

<decoy_db.fasta> -out <pi_output.idXML> -allow_unmatched -enzyme: specificity ‘semi’

FalseDiscoveryRate -in <pi_output.idXML> -out <fd_output.idXML>
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IDFilter -in <fd_output.idXML> -out <fdr_filtered.idXML> -score:pep 0.05

Alternative Splicing-Derived Neoepitope Candidates—Starting from a sample’s 

splicing-derived polypeptide sequences we extracted all intron-spanning peptides of length 

9. Due to the lack of normal RNA samples, tumor-specific splicing events cannot be 

accurately determined. In order to increase specificity, we consider all splicing events 

observed in GTEx as normal and exclude all GTEx 9-mers (including personalized peptides) 

from the list of alternative splicing-derived neoepitope candidates. Furthermore, all 9-mers 

also observed in the reference genome or the personalized reference genome, i.e., the 

reference genome after introduction of the respective donor′s germline variants and/or the 

somatic variants, were removed from the list. Furthermore, in order to increase specificity, 

we only considered 9-mers derived from EEJs also contained in the splicing graph generated 

on the new RNA-seq alignments (strategy 2).

SNV-Derived Neoepitope Candidates—Starting from a donor’s personalized reference 

genome representing either somatic variants only or both germline and somatic variants, 

all peptides of length 9 containing a somatic variant are extracted. All 9-mers also found 

in the reference genome or in the personalized genome containing germline variants 

only are removed from this list. Moreover, analogous to the identification of alternative 

splicing-derived neoepitope candidates, all GTEx 9-mers (including personalized peptides) 

are excluded.

Estimation of RNA Expression of 9-mer Peptides—RNA expression of 9-mers 

overall was determined by using the average RNA expression of the corresponding exon 

fragment as a proxy. For SNV-derived 9-mers this expression was multiplied by the 

respective variant allele frequency. We estimated the RNA expression of neojunction derived 

9-mers by library size-normalizing the read counts confirming the respective junction.

Re-analysis on Representative Sample Subset—As a means to account for various 

sampling differences in the TCGA RNA-seq data set, we generated a representative sub-

cohort with a reduced variability to repeat some of the key analysis. From the set of 

whitelisted samples passing our initial QC, we selected 10 tumor and 10 normal samples 

for all cancer types that had at least 10 tumor and 10 normal samples available. We pre-

processed the fastq files of these samples and randomly subsampled each sample to contain 

48,000,000 reads. All reads exceeding 50nt were trimmed down to 50nt. For alignment, 

we used strategy 2 as described above. All downstream analyses were analog as described 

above.

DATA AND SOFTWARE AVAILABILITY

Supplementary data accompanying this manuscript is available at the Genomic Data 

Commons (GDC) of the National Cancer Institute under the following URL: https://

gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018.

Research code that was used to implement methods described above along with further 

descriptions is publicly available on GitHub under the following address: https://github.com/

ratschlab/pancanatlas_code_public.
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Highlights

• Systematic analysis of alternative splicing landscape across 8,705 cancer 

patients

• Somatic trans-sQTL analysis identifies drivers of global splicing aberrations

• Many tumors contain numerous neojunctions not typically found in normal 

samples

• Neojunctions can be confirmed by MS and form a class of potential 

neoantigens
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Significance

Immunotherapy is currently a promising direction for treating cancer patients. Not all 

cancer types are suited for this type of approach. Among those that show potential 

benefit from immunotherapeutic treatment, deriving suitable antigens for a targeted 

vaccine is a considerable challenge. Tumor-specific splicing presents a large new class of 

splicing-associated potential neoantigens that may affect the immune response and could 

be exploited in immunotherapy; e.g., in personalized tumor vaccines. By considering 

neojunction-derived, in addition to SNV-derived, peptides as potential antigens, the 

fraction of samples for which at least one putative neoantigen can be identified and 

confirmed by mass spectrometry proteomics increases from 30% to 75%.
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Figure 1. Project Overview
Flow diagram of data and analyses presented in this work. The left schema represents 

approximate body source sites for the samples of the 32 analyzed cancer types. Bar 

charts describe numbers of tumor and matched normal samples for each cancer. The 

numbers for tumor samples represent cases where both tumor RNA-seq as well as whole-

exome sequencing (WXS) data are available. The numbers for normal represent matched 

normal RNA-seq. All samples underwent uniform preprocessing (middle, top), including 

sequence alignment, expression quantification, and alternative splicing analysis (middle, 

RNA). Furthermore, samples were used for tumor variant calling and somatic variant 

calling by the Multi-Center Variant Call (MC3) project (center). In addition, data from 

other sources, such as the GTEx project, the Broad Firebrowse, and Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) were included (middle bottom). Different data 

types were then combined into four integrative analysis sections. For the identification of 

splicing quantitative trait loci (sQTL, right, top), we associated RNA-seq-derived splicing 

quantifications with WXS-derived genetic variants, to identify cis and trans effects. To 

highlight quantitative splicing differences between tumor and normal samples, we used 

the splicing quantifications to test for significant differences between tumor and normal 

(illustrated with ***) and ranked the results across all cancers (right, second). To discover 

neojunctions only present in cancer samples but unobserved in normals or a tissue-matched 

outgroup, we integrated TCGA RNA-seq data and GTEx RNA-seq data to determine the 

degree of splicing aberration per sample, marking stark splicing outliers (right, third). Lastly, 

we analyzed the neojunctions and tested the extent they are translated into proteins, utilizing 
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CPTAC data, confirming a large number of peptides. Many confirmed peptides were also 

predicted to be MHC-I binders and are excellent neoantigen candidates, promising for 

immunotherapy (right, bottom). See also Figures S1–S5.
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Figure 2. Detection of Tumor Alternative Splicing and Splicing Landscape
(A) Detection of alternative splicing events. For each cancer type, we considered 40 

randomly chosen samples and jointly identified alternative splicing events (exon skipping 

events are shown) containing junctions that each can be confirmed with a minimum (min) 

of 20 spliced reads in at least one sample for the respective cancer type. The darker bar 

fractions correspond to known alternative splicing events and the lighter bar fractions to 

additional events that are not part of the GENCODE (v19) annotation.

(B) Comparison of the number of alternative splicing events on 40 matched tumor (T) and 

normal sample (N) pairs for TCGA cancer types with at least 40 normal samples, for events 

containing junctions confirmed with at least five reads (top) or 20 reads (bottom) in the 

respective cancer type.

(C) Landscape of alternative splicing for all considered TCGA samples computed on exon 

skipping PSI scores only. Each point represents a sample, colored according to its TCGA 

project code. The position of each sample is computed as a t-distributed stochastic neighbor 

embedding (t-SNE) representation of the higher-dimensional splice event PSI matrix. Tumor 

samples are shown as circles and normal samples as triangles. The dashed box represents an 

area detailed in (D).

(D) Samples in the splicing landscape highlighted for subtypes of BRCA. Normal samples 

are shown as triangles and tumor samples as circles colored according to subtype. Samples 

of all other cancer types are shown in gray.
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Figure 3. Large-Scale Somatic cis- and trans-sQTL Analysis
(A) Two-dimensional Manhattan plot with location of a variant (x axis) associated (p ≤ 

0.05 after Bonferroni correction separately for cis and trans associations) with an alternative 

splicing event at a separate location (y axis). Points along the diagonal correspond to cis 
associations (window 1 Mb) and the remaining points correspond to trans associations. The 

marginal bar plots show the number of splicing events found to be associated with a single 

variant (top) and the number of associations found for each alternative splicing event (right). 

The colored points indicate whether an alternative splicing event or sQTL is within an RNA 

binding gene (green), cancer census gene (blue), or cell cycle gene (orange). The pie charts 

on top of the bar show the breakdown of splicing event type composition of the sQTL 

targets. Brown indicates alternative 3′ events, gray alternative 5′ events, and green exon skip 

events.

(B) Heatmaps of selected trans-sQTL: PSI z scores of alternative splicing events (columns) 

significantly associated in trans with the variant. The color bar on the left shows the 

mutation status for each sample (rows). For visualization purposes, the heatmaps are 

downsampled to highlight the differences.
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(C) Pie charts from (A) detailing the distribution of splicing event targets across three 

categories (alternative 5′, alternative 3′, and exon skip events).

(D) Protein-protein interaction network of TADA1 and some selected partners (e.g., SF3B5).

See also Figure S2.
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Figure 4. Differential and Outlier Splicing
(A) Strip plots showing outlier splicing for an exon skipping event in PTEN (top) and an 

alternative 3′ splice site event in NDRG1 (bottom). Each column represents a cancer type 

with its matched normal directly adjacent if available (left of dashed line) and GTEx normal 

samples (right of dashed line). Each dot corresponds to the PSI value of the selected splicing 

events in one sample. Outlier samples are emphasized through increased marker size with 

black outline.
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(B) Result of differential splicing analysis between tumor and matched normals for 14 

cancer types. Rows correspond to the 40 most significantly altered genes from the COSMIC 

cancer census set. Shading corresponds to −log10(p value). Columns represent cancer types.

(C) Number of neojunctions per sample for 32 cancer types. Each dot represents the number 

of tumor-specific introns of a single sample not observed in the annotation and not (or only 

very rarely) in tissue-matched GTEx samples. If at least five tumor-normal samples were 

available, the median of neojunctions is indicated by a horizontal dotted red line. Cancer 

types are sorted from left to right by the mean number of neojunctions.

(D) Overview of tumor introns exclusively detected in cancer samples but not in matched 

normals. The leftmost panel corresponds to TCGA tumor samples, the middle panel to 

TCGA matched normal samples, and the right panel to tissue-matched GTEx samples. 

Shading indicates the fraction of samples that have a tumor-specific intron confirmed with 

RNA-seq in the corresponding sample group. Rows are sorted according to a ranking that is 

the result of significance testing between tumor and matched normal samples. For multiple 

introns per gene, the most significant intron was chosen.

See also Figures S3 and S4.
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Figure 5. Alternative Splicing-derived Putative Neoepitopes (ASNs)
(A) Overview of the ASN detection and validation workflow. Starting from the personalized 

splicing graph including sample-specific germline and somatic SNVs and the GENCODE 

genome annotations, polypeptides are generated across the junctions of all introns 

(including neojunctions). Expression of the resulting polypeptides is validated using CPTAC 

mass spectra. From the expressed polypeptides, 9-mer substrings spanning junctions are 

enumerated and filtered based on their presence in a non-cancer background set. For the 

remaining 9-mers, MHC binding predictions (NetMHC) are obtained with respect to the 

individual’s HLA-I type. Predicted MHC-I binders (percentile rank <2.0) are considered 

ASNs. The analysis is repeated for somatic SNV-derived 9-mer peptides for comparison.

(B) Comparison of the contribution of alternative splicing and SNVs to the CPTAC-

confirmed putative neoepitope landscape by cancer type. Average number of CPTAC-

confirmed neojunction- and SNV-derived 9-mers per sample (left). Average number of 

CPTAC-confirmed alternative splicing and SNV sites generating putative neoepitopes per 

sample (center). Sample fractions with at least one CPTAC-confirmed alternative splicing- 

or SNV-derived putative neoepitope (right). “UNION” corresponds to the combination of 

both variant types. “Total” refers to the combination of both cancer types. Only neojunctions 

RNA-expressed in the respective sample or with a minimum RNA expression of 20 spliced 

reads in at least one of the samples are considered.

(C) Violin plot showing the RNA expression distribution over all expressed neojunction- 

and SNV-derived 9-mers as well as the overall 9-mer expression distribution. Expression 

of neojunctions is estimated using the library-size normalized read count confirming the 

neojunction. For SNV-derived peptides expression is determined by multiplying normalized 
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segment read coverage by the SNV somatic variant allele fraction, and for overall 9-mer 

expression normalized segment read coverage of all 9-mers is used. The set of SNV-derived 

9-mers is used as a representative peptide set for overall 9-mer expression. Filled violins 

with dotted margins represent the distribution over all 9-mers in the respective set; solid 

lines represent the distribution over the subset of CPTAC-confirmed 9-mers.

See also Figures S4 and S5 and Table S1.
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Table 1.

Distribution of Intron-Spanning Polypeptide Sources

Type Median Mean

Germline variant 87,466.00 88,536.17

Somatic variant 172.00 610.94

Germline + somatic variant 42.00 208.63

Reference 518,831.00 518,831.00

Total 606,917.00 608,186.75
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

TCGA Unified MC3 Variant Calls Ellrott et al., 2018 https://www.synapse.org/#!Synapse:syn7214402

Comprehensive set of alternative splicing events This Paper https://gdc.cancer.gov/about-data/publications/
PanCanAtlas-Splicing-2018

HLA types Shukla et al., 2015 https://www.synapse.org/#!Synapse:syn5974638

Neoepitopes This paper https://www.synapse.org/#!Synapse:syn12180140

Tumor variants used for association This paper https://www.synapse.org/#!Synapse:syn12179113

Variants significantly associated with splicing This paper https://gdc.cancer.gov/about-data/publications/
PanCanAtlas-Splicing-2018

RNA-Seq samples from GTEx cohort (full list of 
used IDs available at https://gdc.cancer.gov/about-
data/publications/PanCanAtlas-Splicing-2018)

GTEx Consortium et al., 2017 https://www.gtexportal.org/home/

RNA-Seq samples from TCGA cohort (full list of 
used IDs available at https://gdc.cancer.gov/about-
data/publications/PanCanAtlas-Splicing-2018)

Blum et al., 2018 https://gdc.cancer.gov/

Protein MS samples from CPTAC 
cohort (full list of used IDs available 
at https://gdc.cancer.gov/about-data/publications/
PanCanAtlas-Splicing-2018)

Zhang et al., 2016Mertins et al., 
2016

https://cptac-data-portal.georgetown.edu/
cptacPublic/

Software and Algorithms

SplAdder Kahles et al., 2016 https://github.com/ratschlab/spladder

LIMIX Lippert et al., 2014 https://github.com/limix/limix

GATK McKenna et al., 2010 https://software.broadinstitute.org/gatk/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Samtools/HTSlib Li et al., 2009 http://www.htslib.org/

Custom analysis scripts This Paper https://github.com/ratschlab/
pancanatlas_code_public
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