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Abstract

Brain network interactions are commonly assessed via functional (network) connectivity, captured 

as an undirected matrix of Pearson correlation coefficients. Functional connectivity can represent 

static and dynamic relations, but often these are modeled using a fixed choice for the data 

window Alternatively, deep learning models may flexibly learn various representations from the 

same data based on the model architecture and the training task. However, the representations 

produced by deep learning models are often difficult to interpret and require additional posthoc 

methods, e.g., saliency maps. In this work, we integrate the strengths of deep learning and 

functional connectivity methods while also mitigating their weaknesses. With interpretability 

in mind, we present a deep learning architecture that exposes a directed graph layer that 

represents what the model has learned about relevant brain connectivity. A surprising benefit 

of this architectural interpretability is significantly improved accuracy in discriminating controls 

and patients with schizophrenia, autism, and dementia, as well as age and gender prediction 

from functional MRI data. We also resolve the window size selection problem for dynamic 

directed connectivity estimation as we estimate windowing functions from the data, capturing 
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what is needed to estimate the graph at each time-point. We demonstrate efficacy of our method 

in comparison with multiple existing models that focus on classification accuracy, unlike our 

interpretability-focused architecture. Using the same data but training different models on their 

own discriminative tasks we are able to estimate task-specific directed connectivity matrices for 

each subject. Results show that the proposed approach is also more robust to confounding factors 

compared to standard dynamic functional connectivity models. The dynamic patterns captured by 

our model are naturally interpretable since they highlight the intervals in the signal that are most 

important for the prediction. The proposed approach reveals that differences in connectivity among 

sensorimotor networks relative to default-mode networks are an important indicator of dementia 

and gender. Dysconnectivity between networks, specially sensorimotor and visual, is linked with 

schizophrenic patients, however schizophrenic patients show increased intra-network default-mode 

connectivity compared to healthy controls. Sensorimotor connectivity was important for both 

dementia and schizophrenia prediction, but schizophrenia is more related to dysconnectivity 

between networks whereas, dementia bio-markers were mostly intra-network connectivity.

Keywords

Dynamic directed connectivity; Interpretable deep learning; Resting state fMRI; Brain disorders

1. Introduction

Functional connectivity has emerged as a promising tool for understanding the brain’s 

functional architecture and has been widely used (Greicius et al., 2003; Lee et al., 2013; 

Rogers et al., 2007; Van Den Heuvel and Pol, 2010a). Disruptions in the brain’s functional 

connectivity are often linked to brain disorders evident in patients’ behavior (van den 

Heuvel and Pol, 2010b). For example, schizophrenic patients have high level of functional 

dysconnectivity between brain networks (Culbreth et al., 2021; Fu et al., 2017; Lynall et 

al., 2010; Morgan et al., 2020; van den Heuvel et al., 2010; Yu et al., 2011; Zhang et al., 

2019; Zhu et al., 2020) and exhibit dysregulated dynamic connectivity across multiple brain 

networks (Supekar et al., 2019). Alzheimer’s disease (AD) is also known to disrupt brain 

dynamics leading to wide-spread cognitive dysfunction (Haan et al., 2011).

The association of brain disorders with abnormal static or dynamic functional connectivity 

highlights the need to develop models that can identify disorder-specific connectivity 

aberrations. This observation guides development of various approaches to brain 

connectivity analysis (Arslan et al., 2018; Kazi et al., 2021; Kim and Ye, 2020; Ktena et al., 

2017; 2018; Ma et al., 2019; Parisot et al., 2018; Yan et al., 2017). However in most existing 

approaches, the functional connectivity matrices are not informed by the prediction task but 

instead estimated prior to training; thus, they depend entirely on the chosen input window 

of data samples. The independence from the downstream task results in inflexible estimation 

of connectivity matrices as the estimate is unchanged regardless of whether the task is to 

predict a brain disorder, age, or other quantity. Kim et al. (2021) proposed a method where 

the functional connectivity structure is computed based on the learned representations of the 

data, but even this method lacks a learnable connectivity estimation method. We argue that 

task-dependent connectivity matrices can be estimated by a deep learning (DL) model using 
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learnable weights. DL models are flexible in their ability to learn a variety of representations 

from the same data based on the architecture and ground-truth signal used in training.

However, using a DL method to estimate a connectivity matrix can be challenging without 

the presence of the ground-truth graph during training. Another problem of many DL models 

is lack of consistency and interpretability in the learned representations. Saliency maps 

commonly used to address interpretability of these models (Angelov et al., 2021; Lewis et 

al., 2021; Ras et al., 2021; Simonyan et al., 2014) may be difficult to interpret (Liu et al., 

2021). Arguably, the difficulty of interpreting representations is the reason why studies using 

DL models incorporate inflexible but interpretable feature selection steps for connectivity 

estimation, for example Pearson correlation coefficients (PCC) (Freedman et al., 2007).

In most of the current studies, functional connectivity estimates are either static or 

dynamically computed using a sliding window approach dependent on the window size 

and stride (Armstrong et al., 2016; Damaraju et al., 2014; Fu et al., 2020; 2018; Gadgil et 

al., 2021; Yao et al., 2020). Unable to capture non-stationarity, static matrices miss essential 

information about dynamics. For example, dynamic functional connectivity estimates show 

re-occurring patterns which cannot be captured by their static counterparts (Allen et al., 

2012; Calhoun et al., 2014; Hutchison et al., 2013). Using a static graph learning method 

to capture a dynamical system may reduce classification performance (Xu et al., 2020). 

Kipf et al. (2018) show improved results by just dynamically re-evaluating the learned static 

graph during testing. The improved performance for the relevant task is understandable as 

the dynamic connectivity provides essential information about the system, for instance, 

capturing re-occurring patterns. The brain’s functional activity is also perceived to be 

highly dynamic and hence cannot be faithfully captured with a static or even window-based 

approach (Yaesoubi et al., 2018).

Furthermore, studies using functional connectivity to measure connectivity between brain 

regions or networks do not capture the direction of interaction and only measure undirected 

statistical dependence such as correlations, coherence, or transfer entropy. Correlation 

can arise for many reasons; for example, due to a common cause when an unobserved 

network affects two networks that are observed (Pearl, 2000; Spirtes et al., 1993). Arguably, 

dynamics of interaction among brain networks is beyond simple correlations and correlation 

may only partially describe it. Whereas, effective connectivity is a more general way 

to represent dynamic and directed relationships among brain’s intrinsic networks. As 

introduced by Friston (2011) effective connectivity falls into a model-based class of methods 

while multiple other methods, including those in the model-free class have been since 

developed (Bielza and Larranaga, 2014; Chiang et al., 2017; Chickering, 2002a; 2002b; 

Deshpande et al., 2011; Goebel et al., 2003; Gorrostieta et al., 2013; Mitra et al., 2014; 

Schreiber, 2000; Seth et al., 2015; Spirtes and Glymour, 1991; Ursino et al., 2020; Vicente et 

al., 2011).

Like these approaches, to estimate brain networks’ connectivity that is 1) directed, 2) 

interpretable, 3) flexible, and 4) dynamic, we have developed an approach called the 

Directed Instantaneous Connectivity Estimator (DICE): a predictive model to estimate 

dynamic directed connectivity between brain networks, represented as a dynamically 
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varying directed graph by predicting the downstream binary label. Our model may be 

placed into the category of model-free connectivity methods as it does not model the data 

generation process. We defer to using “directed (network) connectivity” (D(N)C) for the 

graphs that DICE estimates.

Unlike existing supervised DL models that typically produce difficult-to-interpret 

representations, we designed our model primarily with interpretability in mind. Our model 

reveals what it learned about the dynamics of brain network connectivity without using 

post hoc interpretability methods. Effectively, we have built a “glass-box” layer within 

a traditionally “black-box” DL model. In contrast to commonly used hidden layers, the 

“glass-box” layer propagates a weighted adjacency matrix of a directed graph, ensuring 

that it is interpretable in the context of the classification task. Hence, by estimating DC 

based on the task and using only the estimated connectivity structure for classification, our 

model learns to capture task-relevant networks and their connectivity, leading to a flexible 

estimation of an interpretable DC. By estimating DC instantaneously (window-size = 1), 

DICE removes the need for the window-size parameter used in many dynamic connectivity 

studies.

To thoroughly validate DICE’s performance, we conduct a series of experiments on four 

neuroimaging datasets that span three disorders (schizophrenia, autism, and dementia) and 

cover a wide age range. We train the model on classification tasks for each of these 

brain disorders, age prediction, and gender classification, and analyze the resulting DC 

of the “glass-box” layer. Surprisingly, our deliberate focus on stable interpretable results 

has an enhancing side effect on DICE’s predictive performance. As we show, the model’s 

predictions are better or on par with state-of-the-art methods that were developed with a 

focus on classification performance rather than interpretability. We show that when learning 

to classify subjects based on a specific criterion, DICE estimates interpretable DCs specific 

to that criterion. For gender and mental disorder classification, subgraphs emphasized by 

the learned DCs are discriminative of gender and mental disorders, respectively. We also 

demonstrate that DICE learns interpretable DCs distinct to dementia, gender, and age 

prediction for the same subjects by enhancing connectivity for networks that pertain to 

the training signal. Our flexible estimation of DC structures advances the results of Salehi et 

al. (2020), which show that functional parcel boundaries change for an individual based on 

the cognitive state. We show an increased utility of the inferred directionality for increasing 

the precision of explainable group differences. As a result, DICE can resolve more states 

in fMRI dynamics than is resolvable in typical dynamic functional network connectivity 

analyses. Additionally, DICE incorporates a temporal attention module that highlights 

crucial time steps relevant to the task, further improving the interpretation of predictions 

for the dynamics. The learned DC structures and temporal attention weights are stable and 

consistent across randomly-seeded trials.

2. Materials and methods

2.1. Materials

We use resting state functional magnetic resonance imaging (rsfMRI) data as input to our 

model. fMRI measures blood oxygenation level-dependent (BOLD) signal, which captures 
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the functional activity of the brain over time. We test our model by classifying three different 

brain disorders, predict gender and age of subjects. For each brain disorder we perform 

binary classification of healthy controls (HC) and patients. Four datasets used in this study 

are collected from FBIRN (Function Biomedical Informatics Research Network1) Keator 

et al. (2016) project, from release 1.0 of ABIDE (Autism Brain Imaging Data Exchange2) 

Di Martino et al. (2014) and from release 3.0 of OASIS (Open Access Series of Imaging 

Studies3) Rubin et al. (1998). Healthy controls from the HCP (Human Connectome Project) 

(Van Essen et al., 2013) are used for gender prediction. Refer to Table 1 for details of the 

datasets.

2.1.1. Preprocessing—We use two typical brain parcellation techniques; independent 

component analysis (ICA) and regions of interest (ROIs) based on a predefined atlas. The 

preprocessing pipeline used depends on the parcellation technique and the pipeline used in 

state-of-the-art studies for the dataset. All the preprocessing was done before training the 

model.

ICA parcellation:  For all experiments conducted using ICA as brain parcellation technique 

the fMRI data was preprocessed using statistical parametric mapping (SPM12, http://

www.fil.ion.ucl.ac.uk/spm/) under the MATLAB 2021 environment. A rigid body motion 

correction was performed to correct subject head motion, followed by the slice-timing 

correction to account for timing difference in slice acquisition. The fMRI data were 

subsequently warped into the standard Montreal Neurological Institute (MNI) space using an 

echo planar imaging (EPI) template and were slightly resampled to 3 × 3 × 3 mm3 isotropic 

voxels. The resampled fMRI images were then smoothed using a Gaussian kernel with a full 

width at half maximum (FWHM) = 6 mm.

We selected subjects for further analysis (Fu et al., 2021) if the subjects have head 

motion ≤ 3° and ≤ 3 mm, and with functional data providing near full brain successful 

normalization (Fu et al., 2019). 100 ICA components are estimated using a novel fully 

automated Neuromark pipeline “neuromark_fmri_1.0”4 described in Fu et al. (2019). 

This method is capable of capturing robust imaging features that are comparable across 

subjects, datasets, and studies, which is beneficial for those studies need replication. The 

Neuromark framework leverages an adaptive-ICA technique that automates the estimation 

of comparable brain markers across subjects, datasets, and studies. A set of component 

templates were used as references to guide the estimation of single-scan components for 

the data. These component templates were created via a unified ICA pipeline. They were 

constructed using an independent resting-state fMRI data with large samples of healthy 

subjects from the genomics superstruct project (GSP). The GSP data include 1005 subjects’ 

scans that passed the data QC. High model order (order = 100) group ICA was performed on 

the GSP data, and then the independent components (ICs) from the GSP data were used as 

the references to extract components for each dataset used for experiment in this study. The 

1We use FBIRN phase III.
2 http://fcon_1000.projects.nitrc.org/indi/abide/ 
3 https://www.oasis-brains.org/ 
4 https://trendscenter.org/data/ 
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Neuromark framework extracts the components for each subject respectively, which means 

that the estimation of features of each subject is not influenced by the others. However, the 

choice of components (and number of components) can influence accuracy, but our study is 

not focusing on determining the best number of ICs rather use the available components and 

let the model decide the task-dependant components.

Region parcellation:  State-of-the-art methods use different preprocessing pipelines for 

different datasets. For comparison with these methods on HCP, ABIDE, and FBIRN 

datasets, we select the same preprocessing pipelines as in the relevant comparing method. 

We use the HCP (Van Essen et al., 2013) data which was first minimally pre-processed 

following the pipeline described in Glasser et al. (2013). The preprocessing includes 

gradient distortion correction, motion correction, and field map preprocessing, followed 

by registration to T1 weighted image. The registered EPI image was then normalized to 

the standard MNI152 space. To reduce noise from the data, FIX-ICA based denoising was 

applied (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). To minimize the effects of 

head motion subject scans with framewise displacement (FD) over 0.3mm at any time 

of the scan were discarded. The FD was computed with fsl motion outliers function of 

the FSL (Jenkinson et al., 2012). There were 152 discarded scans from filtering out with 

the FD, and 942 scans were left. For all experiments, the scans from the first run of 

HCP subjects released under S1200 were used. ABIDE (Di Martino et al., 2014) was 

pre-processed using C-PAC (Aertsen and Preissl, 1991). The preprocessing includes; slice 

time correction, motion correction, skull striping, global mean intensity normalization, 

nuisance signal regression, band pass filtering, and finally functional images were registered 

to anatomical space (MNI12). After preprocessing using C-PAC, 871 out of 1112 subjects 

were chosen based on the visual quality, inspected by three human experts which looked 

for brain coverage, high movement peaks and other artifacts resulted by scanner (Abraham 

et al., 2017; Cao et al., 2021; Parisot et al., 2018). To pre-process FBIRN data, SPM12 

pipeline was used as explained in previous section with few extra steps. After the smoothing 

using a Gaussian kernel, the functional images were temporally filtered by a finite impulse 

response (FIR) bandpass filter (0.01 Hz-0.15 Hz). Then for each voxel, six rigid body head 

motion parameters, white matter (WM) signals, and cerebrospinal fluid (CSF) signals were 

regressed out using linear regression.

We used two atlases for brain parcellation; Schaefer et al. (2017), and Harvard Oxford (HO) 

(Desikan et al., 2006) with 200, and 111 regions respectively. For each region, average value 

is computed for all the voxels falling inside a region, thus resulting into a single time-series 

for each region. After dividing data into regions, each time-series was standardized by their 

zscore having zero mean and unit variance.

2.2. Method

Our DICE model recieves the time-courses of the ICA components or ROIs represented as 

a matrix of size N * T (Number of components/ROIs * Number of time-points) and learns a 

set of T directed graphs representing the dynamic DC or DNC between spatial components 

(e.g., ICA-based spatial components, regions from an atlas), which we designate as nodes 

of a graph by predicting the binary labels. Let G represent the set of graphs where G = 
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{g1, g2, … , gT} where T is the total time-points and gt = (Vt, Et), where, Vt and Et 

represent the nodes and edges present at time-point t. To create the graph gt we first use 

a bidirectional long short-term memory (biLSTM) (Schuster and Paliwal, 1997) module to 

create the embedding ht
i of node i at time t. We then use a self-attention module (Vaswani 

et al., 2017) which takes all such embeddings at each time t and create a weight matrix 

among nodes thus providing the DC (graph) between nodes at each time-point. To create a 

final graph Gf for downstream classification, we use a temporal attention model that assign 

a weight to each gt and compute the weighted sum of the set G. We explain the working 

and purpose of each module in detail in the following sections. Figure 1 shows the complete 

architecture.

2.2.1. biLSTM—The time-point value xti for node i at time t can be effected by many 

different factors and relations. Capturing these relations can increase model interpretability 

and improve downstream classification performance. In a time-series (fMRI data), one 

of these factors is the values/data at previous time-points x1…t − 1
i . In fMRI data, this 

relationship is unknown and is hard to capture and hence cannot be computed using a 

fixed method/formula (hand-crafted features). The difficulty is further increased by a) low 

temporal resolution of fMRI data and b) the fact that it is unknown how farther in time 

the effects of a time-point remains in a time-series. These effects are different for each 

subject and can even vary among nodes of the same subject. LSTMs have proved to be 

extremely effective for time-series/sequence data where the model takes an input from a 

sequence at time-point t and create representation for current and also predict representation 

for future time-courses based on the representation of previous time-points. LSTMs learn the 

temporal relationships between data through the cell’s memory and forget gate. These gates 

are optimized on the data and downstream task (ground-truth signal) and the relationships 

between data are learned instead of computed. The working of the LSTMs can be explained 

by the following set of equations. σ represents sigmoid activation, and ⊙ is the Hadamard 

product (Million, 2007).

it = σ Wiixt + bii + Wℎiht − 1 + bℎi
ft = σ Wifxt + bif + Wℎfht − 1 + bℎf
gt = tanh Wigxt + big + Wℎght − 1 + bℎg
ot = σ Wioxt + bio + Wℎoℎt − 1 + bℎo
ct = ft ⊙ ct − 1 + it ⊙ gt
ht = ot ⊙ tanh ct

(1)

In the above equations, it, ft, and ot represent the input, forget and output gates at time 

t respectively. ct represents the cell state (memory), gt represents candidate for the cell 

state, and ht represents the representation/embedding for the input at t. Wix and Whx 

represent the weights for the input and hidden vectors for the respective gate x ∈ {i-input, 
f-forget, o-output}. Similarly bix, bhx are the biases for the respective gate x ∈ {i, f, o}. 

We use a biLSTM to create representation ht for each node i. Thus ht
f = LSTM xt, ht − 1 , 

ht
b = LSTM xt, ht + 1  and ht = concatenate(ht

f, ht
b). Here ht

f and ht
b are representation for 

forward and backward pass. We use LSTM for each node (component/region) individually, 
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sharing weights of LSTM among the nodes. As shown in Eq. (1), LSTM’s usually take 

a vector xt as input at each step, however, we give xti (scalar value) as input to the 

LSTM along with hidden vector and receive ht
i for the node i at time-point t, which 

solves the window size problem occurring in dynamic-FNC studies. To make it easier to 

understand, one can assume that in our model the window size is 1. This allows us to 

later instantaneously compute connectivity matrix (links/edges) between the nodes at each 

time-point. The biLSTM receives temporal values of each component/region separately but 

share the weight matrices across regions. This allows the biLSTM to learn the temporal 

connections by looking at multiple nodes but does not learn spatial dependencies among 

nodes. For this exact reason we use self-attention across nodes.

2.2.2. Self-Attention—A node in a graph can be linked with other nodes represented as 

the edge connectivity between them. The connectivity between nodes influence the value 

of a node xti  at a certain time-point. Thus it is important to measure the connectivity 

between nodes for the construction and interpretation of the graph. In our fMRI data where 

each xi is a brain region/component, capturing the DC or DNC between nodes shows how 

brain networks are linked with each other and the direction of flow of information between 

brain networks. The estimated matrices can then be used to explain brain working and brain 

disorders. Connectivity between brain regions is independent of the structural connectivity 

and thus is unknown. To capture the directed connectivity between brain regions, we use a 

self-attention module.

Self-attention module captures the weights between n inputs of a sequence. Since in a 

dynamic system (brain network), the connectivity between nodes can change at any instance, 

therefore, at each time-point t we pass a sequence of n vectors ht
1…ht

n, n = total nodes, as 

input to the self-attention module and create the weight matrix Wt, where each Wt ∈ ℝn * n is 

the connectivity weight matrix of input nodes at time-point t.

The self-attention module creates three embeddings, namely, key (k), value (v), and query 

(q) and creates new embeddings for each input using these embeddings. The following set of 

equations can sum up the whole process. For simplicity, we omit the t from these equations. 
⊤ represents transpose and ⊕ represents concatenation.

ki = hi ⊤ W(k), vi = hi ⊤ W(v), qi = hi ⊤ W(q)

K = ⊕i = 1
n ki ⊤ , wi = softmax qiK

W = ⊕i = 1
n wi

(2)

Here W ∈ ℝn * n is the connectivity matrix between n nodes in the graph. As brain disorder 

are associated with disruptions in the connectivity of brain’s intrinsic network, we only 

use our learned directed connectivity matrices W for downstream classification and not 

the features, thus forcing the model to estimate the differences in connectivity between 

the two classification groups (e.g., HC and patients). As DICE is tuned to estimate the 

DC or DNC for the groups of subjects and output the it, DICE captures and shows the 

basis of downstream classification. The DC or DNC estimated by the model can be easily 
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represented as a graph which are extremely easy to interpret. The self-attention glass-box 

layer shows task-dependant nodes (brain regions) and their connectivity.

The features that represent time-courses are used to learn/estimate the DC or DNC 

structure. As the true connectivity/graph structure is never available in many applications 

to directly compare with, we propose that a connectivity matrix leading to state-of-the-art 

classification performance makes it more reliable than using the representations/embeddings 

for classification.

2.2.3. Temporal attention—As we use only the connectivity matrices learned by the 

model for downstream classification. For this purpose, we need to create a single weight 

matrix Wf based on the W1−T matrices. For the downstream classification task, not all the 

time-points are equally important, hence it is crucial to incorporate a temporal attention 

module which assigns weight to each Wt and calculate a weighted average of all the weight 

matrices. We introduce a novel temporal attention module which we call global temporal 

attention (GTA).

GTA:  To give the attention module a global view of the graph, we present GTA. The global 

view allows the model to learn how each DC contributes to the global graph or structure of 

the data in the downstream task. We create an average of all the T DC and call it Wglobal 

representing the global view. We then compare the similarity of each local Wt with the 

global view and use them to create the temporal attention vector α. Figure 2 shows the 

architecture details.

Wglobal = 1
T ∑t = 1

T Wt

Wt = Wt ⊙ Wglobal

α = ( ⊕t = 1
T (((( flat (Wt))WMLPl1)WMLPl2)WMLPl3)

(3)

Here ⊙ is the Hadamard product (Million, 2007) between matrices. Wf is computed as:

Wf = ∑
t = 1

T
Wtαt (4)

2.3. Training

We used GTX 2080 with PyTorch as ML framework for our experiments. The hidden 

dimensions for the biLSTM was set to 100, whereas, self-attention including key, query, and 

value modules, were all set to 48. The dimensions of multi-layer perceptron (MLP) layers 

for calculating temporal attention vector were η1 * len(flat(Wt)), η2 * len(flat(Wt)), and 1 

with η1 = η2 = 0.05. We noticed in our experiments that multiple heads of self-attention 

increases stability of the estimated DC. We used batch normalization after the first MLP 

layer. ReLU activation was used in our model between the MLP layers. A final two-layer 

MLP was used to get logits for binary classification problem with Wf as input with 

dimensions 64 and 2. We used cross-entropy loss with Adam optimizer. Let θ represent 
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the parameters of the entire architecture, y being the predictions and y the true labels, the 

loss is calculated as:

loss = CrossEntropy (y, y) + λ‖θ‖1 (5)

θ* = argminθ(loss) (6)

We also experimented with additional loss terms to encourage the model to estimate 

connectivity matrices where the values of the main diagonal are closer to 1. Please refer 

to Section Appendix B for details. We used L1-regularization to get a sparser solution. λ 
(regularization weight) was set as 1e−6 and learning rate was 2e−4. Based on the experiment, 

we reduced the learning rate either when validation loss reached plateau by a factor of 

0.5 or exponentially with γ = 0.99. Early stopping was used to stop training the model 

based on validation loss and patience of 25. For each dataset (ICA components or ROIs), to 

have a fair result, we perform n-fold testing where the value of n depended on the dataset 

and methods we compared against. For each test fold we performed experiments with 

10 randomly-seeded trials. We report the mean AUC-ROC (Area Under Curve - Receiver 

Operating Characteristic) across the n test folds and the 10 randomly-seeded trials as it is 

a more reliable metric than simple accuracy for binary classification tasks. For example, 

for FBIRN data we had 18 test folds and for each fold we performed 10 trials, which 

gives us a list of 180 AUC-ROC values and we report the average of these values. In some 

cases we also report other metrics as well, such as accuracy. Due to the size of the data, 

we made some hyper-parameter changes for HCP region-based (ROIs) experiments. The 

hidden dimension size for bilstm and self-attention module was set to 64 and 32. η1 was 

set to 0.005. Furthermore, because of memory constraints encountered during HCP region 

experiments, during both training and testing we divide the total time-points (1200) into a 

set of three, each having 400 time-points. We create logits for all and compute the mean to 

get final logits. Batch size was set to 32.

2.3.1. Hyper-parameters selection and fine-tuning—All the parameters (hidden 

dimensions, number of layers, η1, η2, λ, learning rate, γ, patience, batch size) mentioned 

in Section 2.3 were set as hyper-parameters. We fine-tuned these hyper-parameters based 

on the average performance of the model on validation dataset across all the folds. We did 

not perform hyper-parameters tuning based on the test folds and we report only test-set 

results. We also want to note here that we permuted the order of subjects for each dataset 

and performed the experiments using the permuted order. This was done to avoid imbalance 

of subjects in the folds. On the same lines, when dividing the data into n-folds (test folds) we 

tried to balance the number of subjects of both classes in each fold. For example, in case of 

FBIRN data with 311 subjects and 151 and 160 subjects in class 0 and 1 respectively. When 

performing 18 fold testing, each test fold consisted of 151
18  subjects from class 0 and 160

18
subjects from class 1 and the rest of the data was used for training and validation, where 

we kept the validation set size same as the test set size. The validation set was used for 

hyper-parameters tuning, early stopping during training and selecting the model to apply on 

the test data. We made sure that no subject (or sessions of a subject) repeated across training, 
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validation and test sets. The exact size of training, validation and test set can be calculated 

using the criteria mentioned above and the total number of subjects and number of folds 

mentioned in Table 1. In some of the experiments keeping the same number of subjects in 

each fold created a small data leakage at the end. For the results reported, the maximum 

leakage was for FBIRN dataset with 18 test folds. For this purpose, we performed another 

experiment on FBIRN dataset where the last fold had all the left out subjects to prevent any 

data leakage. This had no effect on the performance of the model. Refer to Table A.11 for 

results.

3. Experiments

To test if DICE accomplishes all the goals, we perform detailed experiments by classifying 

three brain disorders, classify male and female groups for HCP and OASIS subjects, and 

predict age for OASIS subjects. We perform experiments for all datasets using ICA time-

courses and perform experiments on FBIRN, ABIDE and HCP data using regions-based 

(ROIs) data as well. In this paper we refer to matrices capturing functional connectivity 

between networks at a whole-brain level as functional network connectivity (FNC) (Allen et 

al., 2011b; Jafri et al., 2008) and when operating on ROIs – as FC. We report the average 

results for all the trials. Depending on the experiment, we compare our classification results 

with state-of-the-art DL methods (Arslan et al., 2018; Gadgil et al., 2021; Kim and Ye, 2020; 

Mahmood et al., 2021; 2019; 2020; Weis et al., 2019; Zhang et al., 2018a) and ML methods 

(Support Vector Machine (SVM), Logistic Regression (LR)). To avoid any discrepancy 

we report the results of the DL methods directly from the published studies, even though 

some studies use test data instead of validation data for selecting the best performing model/

parameters. For ML methods we used the python package Polyssifier5 which selects the best 

model/parameters based on the performance on validation data.

To show the efficacy of our model, we divide our results into three broad categories. In the 

following sections we show a) classification performance of our model, b) learned DC and 

DNC and c) the effects of temporal attention module.

3.1. Classification

Figure 3 shows the classification performance of our model using ICA data, Table 2 shows 

the performance using region-based (ROIs) data of FBIRN and HCP, and Table 3 shows 

results on ABIDE region-based (ROIs) data.

Our model beats every state-of-the-art method used for comparison in this study in almost 

every metric for both ICA and region-based (ROIs) fMRI data across all datasets when using 

similar input data (fMRI). As our model does not use phenotypic information about subjects, 

it lacks behind (Cao et al., 2021; Parisot et al., 2018) on ABIDE. Parisot et al. (2018) 

reports a decrease of ~ 2.5 AUC by using a different phenotypic information which clearly 

shows the dependence on phenotypic data. Whereas, Ktena et al. (2018) reports much lower 

AUC score by using only fMRI data. ML methods fail completely even on ICA data, We 

attribute this failure to two reasons. 1) The number of dimensions (m) being much higher 

5 https://github.com/alvarouc/polyssifier 
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than the number of subjects (n), thus creating the curse of dimensionality (m >> n) and 2) 

The ML methods do not compute a graph structure for estimating the connectivity between 

the networks/components and instead mostly work with independent networks/components. 

According to our knowledge, no other model gives such high classification score across 

four neuroimaging datasets. The high classification score of the model computed using only 

the learned DC structure increases the confidence in the correctness of the learned DC 

structures.

3.2. Directed connectivity

The learned interpretable, task-dependent (flexible) directed connectivity structures by our 

model is the most important contribution of our work. As this is a novel work, we show in 

detail, different aspects of the learned connectivity structures. We a) compare our learned 

DNC with FNC computed via PCC, b) compare the differences in DC and DNC between 

multiple classification groups, c) show how direction matters in connectivity, something 

which is not captured by FC and FNC, d) dive into the fact mentioned in introduction that 

unlike computed FNC (using PCC) our learned DNC is task dependent and changes based 

on the downstream task (ground-truth signal) and e) show the dynamic connectivity states 

for FBIRN data for HC and schizophrenia (SZ) subjects. All the aspects (a-e) discussed in 

detail in following sections show the correctness and interpretability of the learned DC and 

DNC. The interpretability of the connectivity matrices estimated by our model give insight 

into how brain networks are linked with each other and with the downstream classification 

task. This is very crucial to understand brain disorders and relevant brain networks. Unlike 

typical FC and FNC which ranges from −1 to 1, our learned matrices are based on attention 

and hence ranges from 0 to 1. More information on this in Appendix B.

3.2.1. DNC vs FNC—As the true connectivity between brain networks is not known, 

we compare our learned DNC with FNC. Figure 4 shows the DNC learned by our 

model and the FNC computed using PCC using ICA components for FBIRN dataset. 

The DNC is Wf explained in Section 2.2.3. Both DNC and FNC is the mean matrix for 

highest performing fold of FBIRN dataset with 16 subjects. The 100 ICA components 

are divided into informative (53) and noise (47). We show the connectvity between 53 

non-noise components. These components are further divided into 7 domains/networks 

following (Allen et al., 2011a). Both matrices clearly show high intra-domain connectivity. 

The learned DNC shows similar pattern of FNC which increases the confidence in the 

DNC learned by our model but there are very important differences between the two. Inter-
network connectivity: We see that our estimated DNC finds much more inter-network 

connectivities than the FNC which is mostly intra-network and has very low scores between 

networks. Directionality: Regarding the direct influence, DNC estimated by our model is 

directed and shows components in visual affecting components through out the domains, 

such information is not present in the FNC which is un-directed (symmetric across main 

diagonal) and does not show the direction of connectivity. Refer to Section 3.2.2 for more 

detail on this.
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To compare the connectivity matrices in terms of classification results, we use an LR model 

and perform classification by first training and testing the model using PCC-based FNC and 

then by our estimated DNC as input. Refer to Table 4 for comparison.

3.2.2. Directed connectome—Capturing directed connectivity is one of the methods 

to understand the direction and flow of information in the brain. Learning the direction 

of connectivity is one of the main advantages of our model as it might explain the direct 

influence of brain networks upon each other. To show the direction between components, we 

divide the DNC of FBIRN subjects into two connectomes showing the direction. Figure 5 

left shows the edges from a to b where a > b. For example the edge between (8,23) shows 

the edge from 23 to 8, whereas, Fig. 5 right shows the opposite. It is clear from the figure 

that direction matters and the connectivity between brain regions is beyond simple statistical 

dependence. For example, Fig. 5 shows that the components in visual network (VIN) affect 

components in other networks and the edges in the opposite direction are relatively much 

fewer. We also see direction of connectivity from cognitive control (CC) to sensorimotor 

(SM). Existing studies (Breukelaar et al., 2017; Cole and Schneider, 2007; Tsai et al., 2019) 

show that cognitive control is responsible for activities like attention, remembering and 

execution, things which are required when doing a motor task controlled by sensorimotor. 

Such directionality is important to study brain’s working in more detail and is not present in 

FNC used by existing methods. The results are further discussed in Section 4.1

3.2.3. Connectivity differences among groups—As hypothesized that brain 

disorders are linked with the connectivity of brain’s intrinsic networks, we show how the 

learned DC and DNC changes for subjects belonging to different groups. Figure 6a shows 

the DNC estimated by our model of HC and SZ subjects for FBIRN data whereas Fig. 

6b shows DNC of male and female groups for OASIS dataset. Both results are computed 

using ICA pre-processed data. For ICA based DNC, there are similarity between the two 

matrices as they come from the same joint ICA. However, there are visible difference 

between the two for multiple networks like visual (VI), cognitive control (CC), default-mode 

(DM) and cerebellum (CB). The biggest difference between HC and SZ groups seems 

to be in the connectivity strength for VIN. For OASIS results 6 b we see that females 

show high connectivity scores in default-mode network (DMN) compare to males and low 

sensori-motor network (SMN) connectivity compare to males, this has been verified by 

existing studies (Filippi et al., 2013; Kim et al., 2021; Mak et al., 2016; Ritchie et al., 

2018). To verify this by numbers, we use statistical testing to compare the two groups (male, 

female) and compare average connectivity for male and female in DMN and SMN. Table 5 

shows the statistical results.

Figure 7 performs the same experiment for region-based (ROIs) data. Here the regions for 

both sides of the brain (left and right) are divided into 7 domains following shaefer (Schaefer 

et al., 2017). Again, in Fig. 7b for HC we see high connectivity score between regions of 

the same network. We also see connectivity between regions of same network across left 

and right side of the brain. The diagonals on top and bottom of the main diagonal shows 

this. Whereas the DC of SZ subjects is weakly connected compared to HC and is mostly 

shows intra-network connectivity. The sparsity explains and support the existing literature 
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explaining SZ as functional dysconnectivity between brain networks (Culbreth et al., 2021; 

Lynall et al., 2010; Morgan et al., 2020; van den Heuvel et al., 2010; Yu et al., 2011; Zhang 

et al., 2019; Zhu et al., 2020).

Figure 7 b compares male and female groups based on region-based (ROIs) HCP data. 

We see similar patterns of hyper-connectivity of DMN and hypo-connectivity of SMN in 

females as compared to males. As the region-based (ROIs) parcellation divides the brain into 

left and right, we also see that females have high intra-network connectivity between left and 

right side of the brain as compared to males.

To verify the visual results, we use statistical testing to compare the DMN and SMN 

between males and females. The stats confirm the visual results with 1) female DMN 

showing higher connectivity than female SMN and male DMN, and 2) male SMN showing 

higher connectivity than male DMN and female SMN. We also see that the networks are 

highly statistically different. Refer to Table 7.

3.2.4. Task dependent DNC—Human brain can be divided into multiple parts/regions 

where each region is linked with a set of tasks. For example, the hippocampus is associated 

with memory. Thus it is important to know which region/network(s) are linked with 

the downstream task (e.g. disorder classification). Finding the linked regions/networks 

would help us understand the disorder and allow to study the association of these regions/

network(s) with the disorder in more detail. In this section, we see how the DNC structure 

learned by our model changes and identifies different networks for the same subjects based 

on the downstream task. For this purpose, we perform an experiment, where we compare 

the estimated DNC for OASIS data when predicting dementia, age and gender of the 

same subjects. The number of subjects were balanced with both HC and patients equalling 

50% of the total subjects but had ~ 62% female subjects. Figure 8 shows that our model 

produces task dependent DNC and the networks/domains showing high connectivity for 

each task adheres to the existing literature. The Fig. 8a shows the DNC learned when 

classifying subjects for dementia. We see high connectivity for components in the SM, DM, 

and CB networks. These networks are linked with dementia in existing literature, which 

support the results of our method. Whereas when classifying gender of same subjects, the 

estimated DNC is different and show high connectivity for components in DM and reduced 

connectivity for SMN. Figure 8d shows the FNC computed via PCC for the same subjects. 

As FNC computed using PCC is only data dependent, the FNC would remain same for all 

the tasks and shows the inflexibility of the method. Figure 8 therefore shows a) our model 

learns task dependent DNC and b) our model accurately finds networks linked with the 

downstream classification task. We see this as a significant advantage over studies which 

compute a fixed/static FNC using PCC and hence is independent of the downstream task. 

We see that Fig. 8b which is the learned connectivity structure when predicting age does not 

show high connectivity between networks and the connectivity values for SMN and DMN 

are almost same. This could be a reason of small age variance in the dataset.

We use statistical scores to verify the visual results. Table 8 shows the statistical difference 

between the three DCs as a whole and between DMN and SMN. We also compare the 

estimated DCs with FC 8 d.
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We see that all three DNCs are extremely statistically different. It is also proven that DMN 

is given higher connectivity scores for gender prediction whereas, SMN connectivity is 

much higher when predicting dementia comparing to gender and age prediction tasks. To 

clear how the connectivity values change for DMN and SMN we point out the average 

connectivity scores of the networks for dementia and gender classification and compare it 

with the values of DMN and SMN computed via PCC. The connectivity values in FC for 

SMN and DMN are 0.580 and 0.487 respectively (and would remain same irrespective of 

the classification task). Whereas, when classifying dementia our model show much higher 

SMN average value of 0.64 and a little decreased value of 0.478 for DMN showing a focus 

on SMN despite having more female subjects in the test set. When predicting gender for 

the same subjects the DNC estimated by our model has a decreased SMN value of 0.555 

and increased value of 0.527 for DMN hence focusing less on SMN and more on DMN 

when compared to the dementia classifying task thus verifying that our estimated DCs are 

task-dependent and not only data dependent. We discuss the meaning and significance of 

this result in Section 4.3.

To see the matrices as graph of nodes (regions) and edges (connectivity), we plot Fig. 8a 

and c on the brain and show the results in Fig. 9. The figure shows high number of nodes 

and edges among components of VIN and SMN and among the two networks for dementia 

classification 9 a, and high number of nodes and edges among components in DMN for 

gender classification 9 b.

3.2.5. Dynamic connectivity states—Studies like (Allen et al., 2012; Calhoun et 

al., 2014; Hutchison et al., 2013; Sakoğlu et al., 2010) show that human’s brain FC is 

dynamic and can be used to find patterns which are not visible in static FC studies. These 

studies show that dynamic FC show re-occuring patterns. To study these patterns, dynamic 

connectivity of the human brain is divided into distinct k states (Damaraju et al., 2014; Fu et 

al., 2021; Rashid et al., 2014). There are multiple methods proposed to find the k states with 

k-means being one of the most used methods. These studies show that the transition and 

time spent in each state is different for patients (SZ, dementia, autism) and HC. To validate 

our results and to find such patterns we use k-means to find k (5) such states using the DCs 

estimated by DICE for FBIRN dataset. We calculate and compare the time spent by both 

groups (SZ and HC) per state.

Figure 10 shows that SZ subjects spend more time in weakly connected states (1,3) than HC 

which stay in states which show high connectivity score for visual (VI) and sensorimotor 

(SM). We also see that HC tend to change state more often than SZ which spend ~ 66% time 

in one state (number 3). Existing studies (Miller and Calhoun, 2020a; 2020b; Yaesoubi et al., 

2018) show that window-less approach can find dynamic patterns that are not captured by 

the vastly used window-based approach. As DICE is an instantaneous model, we investigate 

if DICE can capture more dynamic states than the window-based dynamic-FNC studies. For 

this purpose, using elbow method (Marutho et al., 2018), we found that the best k for the 

estimated DCs is not 5, and set k = 10 and show the resultant states in Fig. 11. We see 

the model captures additional states that were not visible with k = 5. The additional states 

found show the pattern of directionality, specially in the states where HC spend more time 

than SZ. For example, in Fig. 10, state 2 show dense connectivity for components in VIN 
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and the direction is from VI to other states, and state 5 show similar direction but with 

sparse connectivity. Figure 11 captures the additional state (9) which shows the opposite 

direction, that is, VIN has mostly incoming edges. We believe this state represents the brain 

activity when different networks (e.g. SMN) are giving input to VIN to control the vision. 

We discuss this result in Section 4.4.

3.3. Temporal attention

Our temporal attention module finds the important time-points that are relevant for the 

downstream task (e.g. gender prediction). As not all time-points are equally important for 

the downstream task, and fMRI data has low temporal resolution, the temporal attention 

is an effective way of finding important bio-markers for neuroimaging dataset. Finding the 

relevant time-points can help reduce the data and allow to focus on activities at specific 

points. Figure 12 shows the weights assigned to the subjects of FBIRN.

We show weights for 16 subjects (8 per class) with 10 randomly-seeded trials. The results 

show that the temporal attention module is very stable and assign similar weights to the 

time-points for every trial.

To further check the correctness of the time-points selected by our model and how these 

time-points are useful in terms of classification performance, we perform an experiment 

where after training the model, we use Wt of the top 5% values to train an LR model and 

then use the top 5% time-points of the test data to test the model. Similarly we perform 

experiments for bottom 5% values as well. Table 10 shows the comparison for the three 

brain disorder dataset. The results show that the LR model provides high AUC score by 

just using 5% of the important time-points. Thus, it proves that a) not all time-points are 

important for classification of the downstream task and b) our model accurately finds the 

important time-points. We use an LR model for this experiment to show that the learned 

top and bottom 5% values are not limited to our DICE model but is generalized such that 

an independent LR module gives high classification performance using the top 5% data 

identified by our model and does not learn on the low 5% data. Finally, our experiments also 

show that not using the temporal attention reduces the model classification performance by 

upto 10% A.12.

4. Discussion

Our experiments revealed a number of interesting properties of DICE and uncovered 

some interpretable directed connectivity graphs that we feel are of high utility for the 

neuroimaging field. As supported by results, models with glass-box layer like DICE have a 

high potential for studying resting-state dynamics of the brain. In the following, we discuss 

the most pertinent results.

4.1. Inter-network and directed connectivity

Results in Sections 3.2.1 and 3.2.2 show that DICE infers DNC that agrees with the essential 

findings of the FC studies (Arslan et al., 2018; Kawahara et al., 2016; Kazi et al., 2021; 

Kim and Ye, 2020; Ktena et al., 2017; 2018; Ma et al., 2019; Parisot et al., 2018; Yan 

et al., 2017) and provides two additional aspects: inter-network connectivity and direction 
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of connectivity. The inter-network connectivity is of great significance as the brain is not 

made up of isolated networks and many tasks require information passing and neurons firing 

through multiple networks. Thus making it crucial to find how these networks are connected 

to each other if connected at all for patients and controls. Capturing the dysconnectivity 

between networks for patients can lead to knowledge discovery about the functionality of 

the human brain and the effects of brain disorders on it. Furthermore, finding directionality 

between networks is also of great significance. We showed in experiments that our model 

captures the direction of connectivity between networks. The direction of connectivity 

from VI to other networks, and from CC to SM networks is justifiable. Existing studies 

(Breukelaar et al., 2017; Cole and Schneider, 2007; Tsai et al., 2019) show that cognitive 

control is responsible for functions like attention, remembering, and execution. These 

functions are often required when doing a motor task controlled by sensorimotor, which 

hints at the direct effect of the CC network on the SM network, captured by DICE. 

Regarding VI and other networks, we know that VI is mostly a means of input (visuals) 

to our brain, which is then processed by different parts of the brain. Thus, most of the flow 

of information is from VI to other networks and few in the opposite direction, which is 

required to control VI for accomplishing different motor tasks controlled by SM. Therefore, 

our experiments also show that most incoming connections to VI are through the SM 

network, thus accurately capturing the flow of information between networks. This flow of 

information is not captured in simple correlations. We believe these two aspects are crucial 

to understanding brain working and are currently missed in connectivity estimation methods 

such as FNC.

Directed connectivity directed influence of an intrinsic brain network on other networks. 

Estimating the direction of connectivity may simplify targeted interventions that are 

instrumental in establishing causal relations. Capturing causality between networks further 

helps to understand complex systems and answer counter-factual questions (Schölkopf et 

al., 2021), and is left to future work. Our model finds non-negative relations between 

components/nodes, which we consider dependencies or relevance rather than correlations. 

However, we understand that the negative correlations in FC and FNC are also helpful and 

provide descriptive information. We think it might be an easy fix to incorporate negative 

relations in connectivity matrices estimated by DICE. We discuss this in Section Appendix 

B.

4.2. Interpretability

Section 3.2.3 shows how the DC and DNC estimated by DICE are interpretable in how 

accurately they capture the difference in connectivity between 1) schizophrenia patients and 

controls and, 2) male and female groups. In classifying schizophrenia patients from controls, 

our model learned the most significant differences were in the VI, SM, and DM networks. 

Controls show robust connectivity of VI and SM with each other and with other networks, 

which is missing for SZ patients. The finding of dysconnectivity and/or lower connectivity 

scores for VI and SM networks for SZ patients is not surprising as there exists ample 

evidence in prior studies of schizophrenia leading to multiple abnormalities related to visual 

and motor functions such as perception of contrast and motion, detection of visual contours, 

and control of eye movements to name a few (Butler et al., 2008; Chen et al., 1999; Kéri 

Mahmood et al. Page 17

Neuroimage. Author manuscript; available in PMC 2023 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2002; Silverstein and Rosen, 2015). These abnormalities certainly affect motor skills 

which we feel is a reason for the low connectivity for SM and VI networks captured by 

our model for SZ patients. DICE also captures hyper-connectivity in DMN for SZ patients 

which is reported by existing studies (Guo et al., 2017).

Whereas in classifying gender in the same dataset, DICE emphasized hyper-connectivity in 

the DM network and hypo-connectivity for the SM network for females compared to males. 

The differences captured in the DC and DNC for both tasks are supported by existing studies 

(Culbreth et al., 2021; Filippi et al., 2013; Kim et al., 2021; Lynall et al., 2010; Mak et al., 

2016; Morgan et al., 2020; Ritchie et al., 2018; van den Heuvel et al., 2010; Yu et al., 2011; 

Zhang et al., 2019; Zhu et al., 2020) that show the role of the DMN in gender classification 

and VI dysconnectivity for schizophrenic patients. Similarly to existing studies (Ingalhalikar 

et al., 2014; Zhang et al., 2018b), DICE shows that female subjects have higher connectivity 

between the contralateral homologue brain networks relative to males.

DL models are commonly viewed as black-box models because of the difficulty of 

interpretation and not easily explained performance on the tasks they are trained on. These 

models can show excellent performance on tasks such as classification based on the reasons 

that are not substantially revealing about the input data nor their dynamics. One reason is 

shortcut learning (Geirhos et al., 2020): a DL model can classify images with or without 

airplanes with high accuracy by paying attention exclusively to the background (blue 

sky). Although predictive, such models cannot help in knowledge discovery. To control 

for shortcut learning we would like to be able to see why predictions are made. One 

approach is making DL model interpretable. For that a posthoc method is often used, e.g., 

saliency maps (Angelov et al., 2021; Lewis et al., 2021; Ras et al., 2021; Simonyan et 

al., 2014). Such methods explain the input data by finding which part(s) of the input the 

model is most sensitive to. Saliency maps have shown some good results in computer 

vision tasks in 2d images. The use of saliency maps in neuroimaging and temporal data 

has different challenges (Liu et al., 2021) as the output maps are noisy, difficult to interpret 

and does not provide good boundaries nor the connection between different salient regions. 

Selection of the method for obtaining saliency maps is also something to consider as some 

of the methods are architecture based. Hence, using saliency maps to get task-specific 

brain’s connectivity graph is not feasible using current methods. To overcome the black-box 

nature of DL models and avoid using a posthoc method, we focused on the interpretability 

of the model’s results. For this purpose, as brain disorders are commonly associated 

with disruptions in the connectivity pattern of brain networks, we use only the learned 

connectivity matrices by our model for the downstream classification or prediction tasks, 

thus making the model extract the abnormality in connectivity relevant to the ground-truth 

signal. One way to conceptualize about our approach is to think of the generated DC and 

DNC as a “glass-box layer” (clear and interpretable) layer as noted in Fig. 1. This approach 

combines flexibility (the layer is trainable) with interpretability and enables the model to 

capture differences in the connectivity of the groups in classification task. Regression is also 

possible with our approach, although we leave it for the future work. Our “glass-box layer” 

approach enables learning the essential networks and their connection to other networks 

relevant to the training signal and directly output that without using a posthoc method. As 

the DC and DNCs estimated by our model are based on learnable functions, the output 
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matrices can have slightly different values when the model is retrained, which is an attribute 

of DL models. Therefore, all the connectivity matrices shown in the paper are averaged over 

several randomly-seeded trials.

4.3. Task-dependent flexible DNC

We fully utilize the flexibility of our DL model to learn task-dependent (ground-truth signal) 

directed connectivity structures. We show in Section 3.2.4 that our model estimates DNC 

structures for the same subjects that are distinct to the ground-truth task of dementia, 

age, or gender. Hence our model can show the networks and their connectivity crucial 

for specific downstream tasks. The networks identified by the model through the learned 

DNC for dementia classification (SM, CB, VI) match the results of prior studies (Albers 

et al., 2015; Filippi et al., 2017; Grant et al., 2014; Ingalhalikar et al., 2014; Jacobs et 

al., 2017). Whereas, for gender prediction, the most prominent network identified by the 

network was DM, which again matches existing literature (Filippi et al., 2013; Kim et 

al., 2021; Mak et al., 2016; Ritchie et al., 2018). We feel this is a strong validation of 

the ability of DICE to find disorder-dependent networks and connectivity patterns. We 

showed in Fig. 8a that our model focused more on SMN than DMN despite having almost 

two-thirds of female subjects in the test set. This result is significant because the model 

learned that the SMN connectivity, is more important than DMN for the downstream task of 

dementia classification and hence enhances the signals for SMN. This eliminates the need to 

acquire strictly matched subjects with only the difference(s) for which you want to find the 

relevant networks and connectivity. For example, when trying to find the networks related to 

schizophrenia using PCC, one needs to find two groups (schizophrenia patients and controls) 

that do not have any other differences. Extraneous differences would create ambiguity 

regarding whether the networks identified are related to the disorder (schizophrenia) or some 

other difference, e.g., gender. Instead of explicitly confronting the confounding factors by 

regressing them out or taking equivalent measures, DICE performs the “de-confounding” 

implicitly based on the training labels.

Another notable property of our model is that it finds the relevant networks and the 

connectivity structures (sub-graphs) without receiving them during training, making DICE a 

self-supervised graph learning model.

4.4. Dynamic DNC and temporal-attention

As hypothesized, and shown in previous studies (Allen et al., 2012; Calhoun et al., 2014; 

Hutchison et al., 2013; Sakoğlu et al., 2010) results in Section 3.2.5 show that connectivity 

between brain’s intrinsic network is dynamic, and dynamic connectivity can capture patterns 

which are missed by static models. Notably, controls and SZ patients spend different 

amounts of time in each state 10. Controls spend more time than SZ patients in strongly 

connected states, especially for visual and sensorimotor networks. On the other hand, SZ 

patients spend time in weakly connected states and do not often spend time in other states. 

Similar patterns were observed in FNC studies (Damaraju et al., 2014; Rabany et al., 2019; 

Rashid et al., 2014; Wang et al., 2014; Yang et al., 2022).
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Moreover, using all subjects in the FBIRN (Keator et al., 2016), our model finds additional 

states doubling the state resolution. We explain this temporal resolution increase by 

instantaneity of directed connectivity estimation in DICE in contrast to using a sliding 

window. Therefore, estimating connectivity instantaneously makes the model robust and 

finds patterns that are missed when using a window-based approach. Another explanation 

and an additional factor is the increased richness of representation via a directed graph - 

the connectivity matrices of DICE have twice the number of parameters compared to FC 

and FNC. Our experiment with k=10 states show similar patterns of strongly and weakly 

connected states but they now vary in the direction of the connectivity. This result shows 

that both the connectivity strength and direction of connectivity are dynamic (changes over 

time). As this state is rare (based on time spent), it would be harder for window-based 

approaches to capture it. It would be interesting to see when and how the direction of 

connectivity changes and how external factors like performing a task can trigger these 

changes. This, however, is a topic of the future work.

Finally, we show that not all time-points of the fMRI data are equally important to 

the downstream prediction task and discriminative connectivity matrices exhibit temporal 

dynamics. Using temporal attention, our model finds important time-points relevant to the 

ground-truth signal used in training. This further helps in interpretability as our model 

finds the time-points where the brain activity shows signals relevant to the task. Potentially, 

this would also be important in task data where the subject is asked to perform different 

tasks, and the DICE model can be used to find out which task revealed the symptoms of 

the underlying disorder. Our experiments show that temporal attention assigns stable and 

consistent weights to time-points across different randomly-seeded tasks. We also notice that 

a) just 5% of time-points are sufficient for achieving high classification performance and b) 

exclusion of temporal attention (assigning the same weight to every time-point) negatively 

affects classification performance. Consistent temporal attention values across randomly-

seeded trials further strengthens the evidence of temporally dynamic discriminative DCs 

and the value of attention mechanism. As our experiments show, our attention module 

is indeed reliable per the definitions and potential issues discussed by Jain and Wallace 

(2019) and Wiegreffe and Pinter (2019). As a learnable method, DICE and other “glass-box 

layer” models need to be able to consistently across training runs assign temporal attention 

values and estimate connectivity between nodes, whereas inflexible methods computing 

correlations such as PCC do not have this property. In a way, flexibility of the learnable 

model comes with an additional requirement of stability of learned interpretations. Even 

though our DICE model works well by showing high classification performance and 

assigning consistent self and temporal attention values on relatively small datasets, as we 

show, having more subjects for training leads to an even more consistent assignment of 

temporal weights in our experiments.

5. Conclusions

Our work demonstrates importance of learnable interpretable estimators of dynamic, 

directed, and task-dependent connectivity graphs from fMRI data. DICE learns to estimate 

interpretable dynamic and directed graphs that represent the directed connectivity among 

brain networks. The end-to-end training process removes the need for existing external 
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methods such as PCC and K-means, which are interpretable but inflexible and strictly 

depend on the input data. Implementing DICE with glass-box layer allowed us to bypass the 

need for a posthoc method for interpreting learned model representations.

Connectivity matrices estimated by DICE show how brain connectivity changes across 

disorders, genders, and age. The learned connectivity matrices help understand the human 

brain and its disorders as the actual ground-truth connectivity matrix is not available. 

Furthermore, we moved from FC and FNC to DC and DNC to learn the direction of 

connectivity and simultaneously removed the issue of window sizing of input data by 

making the model instantaneous. The learned connectivity matrices provide knowledge 

that adheres to existing studies. Utilizing flexibility of DL models in learning data 

representations, we show that using the same data, distinct connectivity structures can 

be learned based on the downstream task and the ground-truth signal. This flexibility 

allows acquiring more information from the data by using different training labels, which 

would require a much more involved process of data selection and manual filtering out of 

confounding factors for methods that are fully determined by the data, like PCC. Our model 

highlights different networks linked with the downstream classification task, e.g., the default 

mode network for gender prediction. Unlike other interpretable models that may pay for 

it with a decrease in classification performance (Dhurandhar et al., 2018; Johansson et al., 

2011; Luo et al., 2019; Shukla and Tripathi, 2012), DICE beats state of the art methods in 

multiple classification problems on four neuroimaging datasets.

For classification DICE uses the learned connectivity structures. Together with the temporal 

weights these structures are reasonably consistent across varying seeds. Notably, DICE’s 

performance drops without the use of temporal attention. The temporal attention module 

of the model finds interpretable bio-markers crucial to performing the classification task 

and shows that only a small fraction of time-points is enough for attaining maximum 

performance. Notably, not all time points are discriminative, as evident from the sparse 

distribution of temporal attention weights in Fig. 12 and high predictive power of just the top 

5% of the attention weights of Table 10.

As the ground truth for the dynamic graph structure in resting state fMRI is unavailable, we 

believe there is a need for models with “glass-box layer“ like DICE that can estimate this 

structure based only on the data and classification labels.

In future work, we would like to omit pre-processing with a dimensionality reduction 

method—like the used here ICA or region-based parcellation—and train a model end-to-end 

on the voxel-level data. This, however, may require substantially larger datasets and may not 

be as useful as the current model for an average sized research dataset. As DICE estimates 

the direction of connectivity, for future work, we would like to examine how the direction of 

connectivity changes through time and during tasks for HC and patients.
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Appendix A.: Ablation study

In this section, we show the stability of our DICE model in terms of classification 

performance by changing different hyper-parameters. We also show that as we did not 

extensively fine-tune the model for different experiments, it is possible to achieve better 

classification performance than reported in the paper. In Table A.11 we show the effect 

of number of test folds on classification performance. Table A.12 shows the effect on 

performance when changing the size of hidden dimensions. Also, as FBIRN experiments 

with 18 fold testing created the biggest leakage, the experiment without leakage was 

necessary for completeness and shows model performs similarly. All other experiments had 

leakage of 1–2 subjects whose effect should be insignificant. In Table A.13, we show that it 

is possible to get a bit different classification results than ones reported in the main body by 

permuting the subjects in different order.

Table A1

We show the effect of the different number of test folds on the classification performance of 

the model using ICA data. We also do an experiment (18, no leakage) where the last fold had 

all the remaining subjects to prevent any data leakage. We see that the model shows similar 

performance on different number of test folds with an increase in performance with a greater 

number of folds.

Dataset Number of test folds Mean AUC Median AUC

FBIRN 4 0.859 0.861

FBIRN 18 0.86 0.861

FBIRN 18, no leakage 0.86 0.861

ABIDE 5 0.705 0.71

ABIDE 10 0.722 0.732

OASIS 5 0.741 0.749

OASIS 10 0.752 0.758
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Table A2

We show how hidden dimensions of different modules of the model affect classification 

performance. As we do not fine-tune the hyper-parameters rigorously for each experiment, 

it is possible to get better results than ones reported in the main body of the paper. Similar 

results were seen for other datasets as well. We also show how removing the temporal 

attention reduces the model’s classification performance. None means the final connectivity 

matrix Wf was just the average of each Wt.

Dataset biLSTM dim. Self-attention dim. γ 2 Temporal Attention Mean AUC Median AUC

FBIRN 100 48 0.05 GTA 0.86 0.861

FBIRN 100 48 0.05 None 0.733 0.764

FBIRN 100 64 0.05 GTA 0.858 0.861

FBIRN 128 64 0.025 GTA 0.865 0.875

FBIRN 128 64 0.025 None 0.761 0.778

FBIRN 64 32 0.05 GTA 0.849 0.858

Table A3

We show how permuting the order of the subjects can lead to a small variation in the 

classification performance.

Dataset biLSTM dimension
Self-attention 
dimension γ 2 Permutation Mean AUC Median AUC

FBIRN 100 48 0.05 Randomly done 0.86 0.861

FBIRN 128 64 0.025 Randomly done 0.865 0.875

FBIRN 100 48 0.05 Default order 0.86 0.889

FBIRN 128 64 0.025 Default order 0.858 0.875

Appendix B.: Added loss term and DNC with negative weights

Connectivity of a node with itself equal to one is the only known and correct bias we can use 

while estimating connectivity matrix between nodes. Therefore we experimented by adding 

a new loss term in Eq. (5) and create following two variations.

loss = CrossEntropy (y, y) + β 1 − 1
N tr tanh Wf + λ‖θ‖1 (B.1)

loss = CrossEntropy(y, y) + β 1 − 1
N tr sigmoid Wf + λ‖θ‖1 (B.2)

The second term in Eqs. (B.1) and (B.2) is used to encourage the model to produce 

connectivity matrices with the average value of the main diagonal closer to 1. tr represents 

the trace of a matrix. β is a regularization coefficient and we kept it at 0.75. β equal to 1 

does push the diagonal closer to 1 but leads to reduction in classification performance. We 
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found in our experiments that the second term results in more stable and easier to visualize 

matrices across multiple trials. The added term did not significantly affect the classification 

performance as shown in Table B.14 with tanh and sigmoid activation. Figure B.13 shows 

the same matrix as Fig. 6a created with the new loss Eq. (B.1).

We also re-create Fig. 4 using the new loss Eqs. (B.1) and (B.2) and show the estimated 

DNC in Fig. B.14. The added loss terms noticeably increase the values on the diagonal 

of the connectivity matrices closer to 1. Notably, the difference between diagonal and 

non-diagonal values is higher in DNC with tanh loss term than sigmoid based DNC. We 

expect that this is probably because the output value for non-negative input (0) in sigmoid is 

0.5 and not 0 as in tanh. Hence, the loss for sigmoid is in the range [0–0.5] and not [0–1]. 

The choice of the function depends on the application and factors such as the presence of 

self edges, negative edges, the range of the edge weights etc.

Table B1

We compare the classification performance on FBIRN ICA data with the new term added 

in the loss function. There is not a significant difference in performance, though marginal 

improvement is seen with sigmoid activation.

Dataset Added loss term Mean AUC Median AUC

FBIRN None 0.86 0.861

FBIRN tanh 0.859 0.861

FBIRN sigmoid 0.862 0.875

Fig. B1. 
DNC estimated by DICE model using the loss Eq. (B.1). We used the same FBIRN subjects 

as in Fig. 6a.
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Fig. B2. 
Comparison of the DNCs learned with the additional regularization terms in the loss 

function against the DNC created using original loss and PCC FNC. As expected, 

regularization pushes the diagonal closer to 1. Also the difference between values of 

diagonal and non-diagonal elements is higher in tanh based DNC B.14 b as compared to 

sigmoid based DNC B.14 c. Similarly to Fig. 4 these matrices are averaged across multiple 

tries.

Fig. B3. 
DNC estimated by DICE model by incorporating negative weights in self-attention module. 

We used the same FBIRN subjects as in Fig. 4a. The diagonal is manually assigned 0 

weight.

As FC and FNC are computed using PCC method to measure the correlations, it has 

negative correlations as well. These negative correlations are used in different studies 

and have meaningful interpretations. Therefore, we try to accommodate negative values 
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in the DC and DNC estimated by our model. This can be done easily by making a 

small tweak in the self-attention part of the model. Equation (2) uses softmax function 

to get the weights and forces them in the range 0–1. Negative weights can be achieved 

by replacing the softmax function with tanh. We recreate Fig. 4a by estimating negative 

weights as well. We see in Fig. B.15 that DICE can capture the negative weights by making 

a small tweak in the self-attention part but detail experiments are required to check the 

classification performance, stability, and interpretation if negative weights are incorporated. 

Also, incorporating negative weights require some hyper-parameter changes as well. We 

leave this for future work.
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Fig. 1. 
DICE architecture using biLSTM, self-attention and temporal attention. We use self-

attention between the embeddings of all components/nodes at each time-point to estimate 

the DC Wi. Temporal attention is used to create a weighted sum of the T DC. Architecture 

details of temporal attention is shown in Fig. 2.
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Fig. 2. 
GTA architecture for temporal attention. W1−T matrices are summed to create Wglobal. 

Using Wglobal and Wi attention score αi is created for each time-point. Refer to equations in 

3 and 4 for working details. Here f denotes the average function.
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Fig. 3. 
AUC comparision of DICE model with four different methods (MILC Mahmood et al. 

(2020), STDIM Mahmood et al. (2019), logistic regression (LR), support vector machine 

(SVM)), over four different datasets using ICA time-courses (Ref to Section 2.1.1). Our 

method significantly outperforms SOTA methods. We performed Autism experiments with 

869 subjects (all TRs) as well. As we do not have a pre-training step we compare with 

not-pre-trained (NPT) version of MILC and STDIM. Input to ML methods were the same 

ICA time-courses, not the FNC matrices. We did not find any notable studies for gender 

classification of HCP subjects using ICA components as notable methods used ROIs based 

data. We compare the results using ROIs in Table 2.
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Fig. 4. 
We compare our estimated DNC with computed FNC using PCC method. 4 a is the 

connectivity matrix generated by our model for FBIRN dataset. We used a test fold of 

16 subjects and computed mean FNC for all subjects (10 trials per subject). 4 b is the 

mean connectivity matrix of the same subjects generated by PCC. Both figures show 

similar intra-network connectivity patterns, which verifies the correctness of the connectivity 

matrix learned by our model. Our estimated DC is directed and captures more inter-network 

connectivity than FNC. To match the positive weights of our model, we have normalized the 

FNC from 0 to 1 instead of −1 to 1.
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Fig. 5. 
We show the top 10% directed edges of FBIRN DNC. The numbers represent the 53 

non-artifact components. The figure clearly shows the high intra-domain connectivity which 

matches the existing literature. Direction clearly matters as visual components affect other 

components but not the opposite way. The direction of edges between CC and SM networks 

is also of significance.
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Fig. 6. 
We compare the estimated DNC across the binary classification groups using ICA data. 

Figure 6a is the estimated DNC on FBIRN data for HC and SZ patients. We see high inter 

and intra-connectivity in SM and VI networks for HC, which is missing in SZ patients. 

Figure 6b compares DNC between male and female groups using OASIS data. Female group 

shows hyper-connectivity in DMN and hypo-connectivity in SMN when comparing to male 

groups.
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Fig. 7. 
We compare the estimated DCs of HC with SZ and male with female using region-based 

(ROIs) FBIRN and HCP data. 7 a show high weakly connected brain networks for SZ 

subjects whereas 7 b show hyper-connectivity of DMN and hypo-connectivity for SMN for 

females as compared to females. The black and grey color denotes the regions in left and 

right side of the brain. Refer to Table 7 for a statistical comparison between female and male 

DCs.
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Fig. 8. 
We show how our model estimates flexible DNC structures based on the ground-truth signal. 

We train our model for different classification tasks and use same test subjects to compare 

the estimated DNC for the subjects. All figures are mean DNC estimated for the same 

subjects with 5 randomly-seeded trials. 8 a is the mean connectivity matrix estimated by 

our model when trained to classify dementia. We see high connectivity values for SC, SM, 

and CB networks. 8 c is the mean DNC for the same subjects when the model is trained 

for gender prediction. We notice lower SM network connectivity and higher connectivity for 

DM network when predicting gender of OASIS subjects. 8 d is the FNC computed using 

PCC. The FNC is independent of the task and would remain fixed (inflexible).
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Fig. 9. 
We map on the brain, the nodes and top 10% edges of the DCs, estimated for dementia 

and gender classification tasks, performed on OASIS dataset (same subjects). The size of 

the nodes is the sum of the outgoing and incoming edge weights. The arrows shows the 

direction of connectivity. We see a high number and size of nodes and edges for SMN 

and VIN for dementia 9 a, whereas for gender 9 b we see high node and edge size for 

DMN. Compare the red (DM) nodes and edges in Fig. 9a with b in the left side figures. 

Figure 9a also shows high connectivity between SM and VI networks which is missing in 
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Fig. 9b (right side figures). This reveals the networks and edges (graphs and subgraphs) 

relevant to the classification signal (e.g disorder) without need of comparison with other 

data. The results and their impact are further discussed in Section 4.3. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 10. 
Five states computed using k-means on the DCs estimated by our model for FBIRN dataset. 

First row shows the k means of the estimated DCs, second row shows the percentage time 

spent by both groups in each state, with the total time points being 155. Time spent in each 

state by SZ and HC differ significantly and matches the existing literature. We see that a) 

time spent in each state is different by HC and SZ, b) SZ spend much more time in state 

3 (weakly connected) than HC, c) HC spend more time than SZ in states (2,4, 5) which 

show high connectivity for VI, and SM networks, and d) Standard deviation of time for 

SZ is much higher (320.47) than HC (206.26) which shows that SZ stay in one state much 

more than HC which tend to change state more often. The stars denote the significance 

of difference in time spent in each state by the two groups. Table 6 shows the p-value 

significance ranges.
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Fig. 11. 
We show 10 states captured by k-means on the temporal DCs estimated by DICE on FBIRN 

complete dataset. The rows shows the means and the percentage of time spent by HC and 

SZ subjects in each state. We see that DICE can capture more states than the standard 

(4–5) states captured by window-based approaches. The additional states not present in Fig. 

10 show the change of direction in connectivity. State 9 shows the opposite direction of 

connectivity between VIN and other networks, where VIN has mostly incoming edges. The 

ratio of time spent by HC and SZ subject in different states is similar to the results of Fig. 

10.
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Fig. 12. 
Temporal Attention weights for one of the test folds (16 subjects) of FBIRN. Attention 

weights are computed using GTA module. X and y axis represent time-points and subject 

number respectively. We show that for each subject, the attention weights remain stable 

across multiple randomly-seeded trials (10). The values of the 10 trials are used to create the 

confidence interval for each subject. The consistency is greatly increased with an increase 

in number of training subjects. Note: For each subject we added the subject number to the 

attention weights to separate the weights, as for each subject the weights have a range of 0 – 

1. Dark and light colors represent SZ and HC subjects respectively.
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Table 4

We compare the D/FNCs on the basis of AUC score on FBIRN dataset. We train and test a logistic 

regression (LR) model using FNCs computed by PCC, and using DNCs estimated by DICE. Performance 

using estimated DNCs is in reaching distance of ML methods using hand-crafted features (FCs). Appendix A 

show some experiment details that lead to an even improved classification results.

Method Input Mean Max Min Std Dev

LR PCC FNC 0.883 1 0.72 0.085

LR Our DNC 0.86 1 0.62 0.096
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Table 10

AUC score comparison on brain datasets with ICA components by using all, top 5% and bottom 5% time-

points only. We train and test a logistic regression (LR) model using the time-points identified by DICE and 

compare the results when using top and bottom 5% time-points. We see that using only top 5% time-points are 

enough to almost reach the AUC using all time-points.

Method FBIRN OASIS ABIDE

100% DICE 0.86 0.752 0.722

Top 5% LR 0.85 0.743 0.706

Bottom 5% LR 0.566 0.548 0.532
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