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Abstract

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapeutics, triggering studies 

to understand the molecular and cellular wiring of response and resistance. Our increased 

understanding of the underlying biology of response to ICI has enabled the investigation of tumor-

intrinsic and -extrinsic features that may predict therapeutic outcomes. In parallel, liquid biopsy 

measurements of circulating tumor DNA (ctDNA) can be used to assess real-time molecular 

responses and guide clinical decisions during ICI. The combination of these approaches provides a 

deeper understanding of cancer biology, immunoediting, and evolution during ICI and promise to 

extend the utility of immunotherapies for patients with cancer.

CLINICAL LANDSCAPE OF IMMUNE CHECKPOINT INHIBITORS

Immune checkpoint inhibitors (ICIs) block regulatory pathways that dampen T cell activity 

and immune responses, mechanisms that are in place to achieve immunological tolerance 
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(1). Cancer cells can co-opt immune checkpoints to evade immune surveillance, which has 

opened a therapeutic window of opportunity for ICI over the past decade. Since the 2011 

approval of the prototypical ICI, the anti–CTLA-4 antibody ipilimumab, for the treatment 

of advanced melanoma (2), immune checkpoint inhibition has become a standard treatment 

option across solid tumors. As of early 2022, ICIs have been approved by the U.S. Food 

and Drug Administration (FDA) for the treatment of 17 distinct solid tumor histologies in 

addition to two tumor-agnostic indications for microsatellite instability (MSI)–high tumors 

(3).

Focusing on non–small cell lung cancer (NSCLC) as a notable example, the therapeutic 

landscape for advanced disease has radically changed. In 2012, treatment for most patients 

diagnosed with advanced NSCLC consisted of first-line platinum doublet chemotherapy 

followed by docetaxel single-agent chemotherapy at the time of progression, with no 

other standard treatment options available. After the demonstration in 2015 that the anti-

programmed cell death protein-1 (PD-1) ICI, nivolumab, improved survival for patients 

with pretreated NSCLC, there has been a succession of new approvals to the extent that 

there are now multiple first-line combination and single-agent ICI treatment options for 

patients with newly diagnosed advanced NSCLC (4). Currently, with the exception of 

oncogene-addicted NSCLC, the vast majority of patients with NSCLC receive PD-1 or 

programmed cell death ligand 1 (PD-L1) containing therapy as a first-line treatment (5, 

6). Clinical decision-making with respect to treatment selection for NSCLC is based on 

PD-L1 expression and genomic testing for tumor-specific (somatic) mutations; as such, 

PD-L1 immunohistochemistry is recommended for all newly diagnosed advanced NSCLC 

alongside with tumor next-generation sequencing (7).

Translation of ICI therapies from advanced to earlier stage disease has been slow but is 

lastly coming to fruition with improved outcomes associated with consolidation anti–PD-

L1, durvalumab, for unresectable NSCLC after definitive chemoradiation and eradication 

of disease and both neoadjuvant and adjuvant ICI for resectable disease (8-10). Recent 

findings from the CheckMate 816 trial, comparing neoadjuvant chemo-immunotherapy to 

standard chemotherapy, have highlighted the potential for in vivo assessment of pathological 

complete response (pCR) to therapy as a potential early indicator of benefit from therapy 

(10).

In contrast to the clear clinical benefits reported with PD-1 pathway blockade, trial results 

from single-agent ICIs targeting nonredundant coinhibitory checkpoints have been largely 

disappointing thus far (11-13). Combined PD-1 and CTLA-4 blockade has been shown to be 

effective (14, 15); however, patients receiving anti–CTLA-4 agents have a lower incidence 

of immune-related adverse events, with ICI combinations increasing the incidence, severity, 

and onset of toxicities (16). In 2022, we have seen the first approval of an ICI-targeting 

LAG-3, relatlimab, in combination with anti–PD-1, nivolumab, for advanced melanoma, 

and thus it appears that the paradigm of adding new agents to a PD-1–blocking antibody 

backbone will continue to be implemented in clinical practice (17).
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CLINICALLY INTEGRATED BIOMARKERS OF ICI RESPONSE

PD-L1 expression

To date, the most commonly used predictive biomarker for ICI response is PD-L1 expression 

as determined by immunohistochemistry; however, the clinical utility of PD-L1 testing 

varies based on the cancer type evaluated and the ICI therapy considered (18, 19). 

PD-L1 is expressed on tumor cells, and through its interaction with PD-1, the PD-1/

PD-L1 axis regulates adaptive immune responses, ultimately promoting tumor escape 

from immune surveillance (20). Inhibition of PD-1/PD-L1 by anti–PD-1 or anti–PD-L1 

monoclonal antibodies has been shown to be the most effective in tumors with high PD-L1 

expression in cancer cells or tumor-infiltrating immune cells (21, 22), establishing the use 

of PD-L1 assays as a companion diagnostics test for ICI. PD-L1 status can be used to 

select patients most likely to attain longer survival with pembrolizumab across cancers—

atezolizumab for urothelial cancer, NSCLC, and triple-negative breast cancer; ipilimumab 

and nivolumab for NSCLC; and cemiplimab for NSCLC (23). However, several phase 3 

trials failed to reproduce the association between PD-L1 expression and outcomes with 

ICI treatment in these scenarios (4, 24). Variability with PD-L1 scoring and reporting, 

interassay heterogeneity especially with respect to immune cell staining, assay sensitivity, 

and analytical characteristics call for further standardization and harmonization of PD-L1 

immunohistochemistry assays (25). PD-L1 expression can be evaluated together with 

genomic and tumor microenvironment features to strengthen its predictive value within 

multimodal models of ICI response.

Tumor mutation burden and MSI

Tumor mutation burden (TMB) is the prototypic measure of tumor foreignness where a 

higher tissue-based TMB has been associated with benefit from ICI in multiple studies 

(26-28) including randomized (14, 29) and nonrandomized clinical trials (30). TMB has 

been shown to predict response to ICI in a dose-dependent fashion, as patients with the 

highest TMB tumors attained longer survival after immunotherapy (31). This phenomenon 

is markedly exemplified in hypermutated tumors in the context of patients with mismatch 

repair deficiency that typically have the highest fraction of responses to ICI (32). TMB is 

defined as the number of nonsynonymous mutations per megabase of coding sequence. The 

premise of TMB as a predictive biomarker for ICI relies on the potential of these mutations 

to generate antigens, known as mutation-associated neoantigens (MANAs), that are foreign 

to the immune system and can therefore elicit an antitumor immune response (33). Together, 

these findings led to a tissue-agnostic FDA approval for TMB as a companion diagnostic 

biomarker for the ICI, pembrolizumab for tumors with TMB >10 mutations per megabase. 

Nevertheless, although the value of TMB in predicting ICI response is well documented for 

cancer types such as NSCLC and melanoma, its predictive value is not well supported for 

patients with glioma, prostate cancer, and breast cancer (34).

Moreover, several technical and biological limitations preclude the broad use of TMB as 

a universal biomarker of response for ICI (35). TMB is an imperfect biomarker of ICI 

response with inherent challenges related to lack of standardization and a universal threshold 

that defines TMB-high tumors (31, 36). Conceptually, the generalizability of the threshold 
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of 10 mutations per megabase included in the FDA approval for pembrolizumab is limited 

by the cancer lineage–dependent dynamic range of TMB that renders a pan-cancer TMB 

threshold challenging. To add to the biological complexities, tissue TMB estimates are 

subject to sampling bias and are affected by low tumor purity, as the power of detection 

of mutations markedly decreases with decreasing tumor purity especially in the context 

of clonally heterogeneous tumors harboring a higher fraction of subclonal mutations (37). 

Although the dilution effect of tumor purity may be compensated bioinformatically (37) or 

through deeper targeted next-generation sequencing and improved machine learning–based 

TMB determination (38), TMB remains part of the constellation of features that determines 

an effective antitumor immune response.

Endogenous mutagenic processes, such as mismatch repair deficiency, induce a higher 

TMB in the context of DNA repair errors, with about 4% of human cancers harboring an 

MSI footprint that confers sensitivity to ICI (39, 40). MSI tumors have a high number of 

alterations throughout the genome, including in microsatellite regions that result from a 

deficiency in mismatched DNA repair machinery. MSI-high tumors harbor a higher somatic 

mutation burden, which generates a higher immunogenic neoantigen burden (41), thus 

predisposing to tumor clearance in the context of ICI (39). A number of clinical trials have 

shown the clinical utility of MSI as a biomarker of response to ICI and patient selection 

criterion (42, 43), exemplified in the tumor-agnostic FDA approval for pembrolizumab for 

patients with tumors harboring MSI and for nivolumab for patients with MSI-high colorectal 

cancer.

GENOMIC LANDSCAPES OF THERAPEUTIC RESPONSE AND RESISTANCE 

REVEAL A CONSTELLATION OF EMERGING HOST AND TUMOR 

FEATURES

Emergence of primary and acquired resistance to ICI constitutes the key barrier to further 

improving patient outcomes. Clinical outcomes with ICI depend on the complex cancer-

immune system interactions and are driven by several tumor-intrinsic and tumor-extrinsic 

features that mediate immunoediting mechanisms (Fig. 1). This dynamic and multifaceted 

process mandates the development of combined predictive models by means of integrative 

molecular and cellular analyses that capture the interplay between cancer and immune cells 

during therapy (Table 1).

Nuanced TMB subsets and global genomic features

Emerging studies support differential weights of somatic mutations within TMB in 

shaping antitumor immune responses and ultimately therapeutic outcomes (36, 44). Low 

intratumoral clonal heterogeneity and a higher clonal mutation load have been associated 

with favorable clinical outcomes with ICI, especially in NSCLC and melanoma tumors 

(44, 45). Mutations in haploid regions of the genome of ICI-treated mesotheliomas have 

also been reported to predict response to ICI, as these are less likely to be lost during 

tumor evolution and may drive sustained tumor elimination in the tumor microenvironment 

(46). Tied into TMB, mutational spectra signatures have also been linked with therapeutic 

response to ICI, especially in relation to tobacco and ultraviolet exposures for patients with 
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NSCLC and melanoma, respectively (37, 47). These environmental carcinogen exposures 

induce a higher mutation accumulation rate that, in turn, predisposes to therapeutic response 

in the context of high TMB (37). Subclonal mutagenesis may be reflected in a higher 

contribution of the APOBEC3 signature in the tumor’s mutational spectra and, as such, may 

be linked with inferior outcomes with ICI in NSCLC and breast cancer (48).

In addition to TMB, genome-wide copy number analyses of cancers have revealed that 

tumor aneuploidy may be associated with poor outcomes to ICI. This may be, in part, 

attributed to deletions of key immune-regulating genes and reduced cytotoxic immune 

cell infiltration resulting in tumor immune evasion (49). Nevertheless, the contribution of 

tumor aneuploidy to ICI resistance, especially in the setting of homologous recombination 

deficiency and an increased loss-of-heterozygosity (LOH) genomic content, may be context 

dependent and merits further evaluation (50). Together, TMB can be refined by considering 

both sequence and structural genomic alterations in cancer genomes, and additional studies 

are needed to support this notion and clinical translation.

Tumor foreignness and neoantigen repertoire as a predictor of ICI response

MANAs stem from somatic mutations and are presented by major histocompatibility 

complex (MHC) class I or MHC class II molecules to T cell receptors (TCRs) of CD8+ 

or CD4+ T cells, respectively (33). Because neoantigens are specific to cancer cells, T cells 

are able to recognize them as nonself antigens and elicit an antitumor immune response (33). 

Although several machine learning approaches have been developed to computationally 

derive MHC class I– and II–restricted neopeptides from next-generation sequencing data, 

these efforts have largely yielded similar prediction accuracy for computationally identified 

MANA load compared to TMB (27, 37, 51, 52). Clonal neoantigens, shared among all 

tumor cells, may confer sensitivity to ICI, whereas subclonal neoantigens, only present 

in a subset of tumor cells, may not be sufficient to elicit effective and robust immune 

responses (45). Neoantigen MHC binding and presentation are key features that determine 

tumor foreignness, and an increased neoantigen binding affinity for MHC class I molecules 

has been reported to be linked with ICI response (53, 54). Neoantigen fitness, primarily 

determined by differential presentation, “nonselfness,” and microbial antigen mimicry, has 

been shown to drive sustained tumor rejection and clinical responses in patients with 

pancreatic cancer (55, 56). Neoantigens derived from oncogenic hotspots, such as KRAS 
and PIK3CA, have also been shown to elicit T cell responses (57, 58). In addition 

to MANAs encoded by single-nucleotide variants, neoantigens derived from frameshift 

mutations have been shown to attain high-affinity MHC binding and contribute to ICI 

sensitivity (59). In tumors with a low burden of single-nucleotide variants, MANAs derived 

from gene fusions have been shown to drive cytotoxic T cell responses (60). Furthermore, as 

only mutations in expressed genes would yield MANAs that could potentially be presented 

and induce the priming and activation of neoantigen-specific T cells, the expression of 

transcripts containing singlebase substitutions may be more informative than TMB (61).

Historically, antitumor immune responses have been considered to be driven by human 

leukocyte antigen (HLA) class I–restricted neoantigen-driven cytotoxic CD8+ T cell 

responses. Nevertheless, tumor rejection in the context of immunotherapy has been shown 
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to require the activity of both antigen-specific CD8+ and CD4+ T cells, suggesting the 

nonoverlapping but complementary role of HLA class I– and class II–restricted neoantigens 

(62). In addition to MANAs, cancer cells reexpress cancer germline antigens as a 

mechanism of immune evasion; these antigens, although less studied, may determine clinical 

outcomes with ICI (63). Collectively, these studies support the notion that, similar to somatic 

mutation burden, neoantigen quality rather than quantity is a key feature driving tumor 

elimination in the context of ICI, and understanding neoantigen features that predominantly 

contribute to ICI response can enhance their translation to more robust predictors of ICI 

response.

HLA genetic variation and antigen presentation potential

The metastatic potential of the tumor and the eventual clinical outcome of the host does 

not merely depend on tumor cells intrinsically endowed with the ability to proliferate, 

invade, and metastasize but rather on a dynamic equilibrium between the tumor and the 

host’s immune system. Central to this notion is the role of antigen presentation capacity in 

potentiating antitumor immune responses. Germline HLA class I evolutionary divergence 

may determine response to immune checkpoint blockade (64, 65) but requires further study. 

In addition, disruptive neoantigen presentation due to HLA down-regulation or loss through 

LOH events, ß-2-microglobulin loss, or dysregulation of other proteins involved in protein 

cleavage and neopeptide transport have been described as potential mediators of primary 

and acquired resistance to immune checkpoint blockade, but these mechanisms are rare and 

potentially occur in a context-specific manner (66).

Nevertheless, the impact of germline HLA class I and II zygosity in clinical responses with 

ICI has not been universally documented, as germline HLA genotypes and diversity alone 

may not be independent biomarkers of anti–PD-1 clinical efficacy (37, 67, 68). Integration 

of HLA germline variation with somatic status in a TMB-stratified manner has been shown 

to be informative in identifying tumors most likely to respond to ICI (37). Furthermore, 

germline HLA variation can shape the evolutionary landscape of cancer by exerting a 

negative selective pressure on mutations related to highly presented peptides (69, 70). In 

considering features that affect tumor visibility by the immune system and ultimately lead 

to tumor rejection in the context of ICI treatment, one has to consider the constellation 

of tumor and immune-related processes that modulate functional antigen presentation 

capacity in the tumor microenvironment. Germline HLA diversity and promiscuity has to 

be combined with somatic LOH events in the tumor cells or epigenetic silencing of the HLA 

loci and considered in the context of a given host and an evolving tumor.

Oncogenic drivers associated with ICI therapeutic resistance

Specific genomic features are linked with therapeutic response to ICI in a pan-cancer 

manner, whereas others are cancer type specific. Mutations in oncogenic drivers that 

have immune regulatory functions have been linked with resistance to ICI (71). PTEN 
loss has been linked to ICI resistance through induction of an immunosuppressive tumor 

microenvironment, a decrease in T cell infiltration and inhibition of T cell mediated tumor 

killing, and cytotoxic activity from loss of immunosuppressive cytokines, such as vascular 

endothelial growth factor (72, 73). Similarly, activation of the Wnt/β-catenin pathway 
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has been linked with exclusion of tumor-infiltrating T cells, suppressed recruitment of 

dendritic cells impairing T cell priming, and ultimately an ineffective antitumor immune 

response (74). Inactivating mutations in the JAK1/2 genes have been linked with defective 

interferon-γ signaling resulting in ICI resistance in both the primary and acquired resistance 

settings (66, 75, 76). STK11/KEAP1 comutations have been shown to drive primary ICI 

resistance through PD-L1 regulation and subsequent T cell exclusion (77). Up-regulation 

of MYC contributes to an immunosuppressive environment by up-regulating PD-L1 and 

CD47 that both inhibit T cell activity (78), whereas suppression of MYC signaling 

through epigenetic therapy may reverse immune suppression (79). More broadly, oncogene-

addicted tumors, such as those tumors harboring epidermal growth factor receptor (EGFR)–

activating mutations, are thought to be less responsive to ICI, which is mainly attributed 

to the lower TMB of these tumors and tumor immune exclusion (80). Intriguingly, in 

EGFR mutant NSCLC, response varies among different EGFR mutant alleles, again 

highlighting the importance of considering the specific genomic context (81). In addition 

to considering oncogenic drivers independently, evaluation of co-occurring mutations 

in a context-dependent manner is key in understanding the genomically heterogeneous 

landscape of response and resistance to ICI (82). Patients with NSCLC harboring KEAP1 
mutations have a shorter survival compared to patients with single KEAP1 mutation or 

wild-type tumors (83). Collectively, these findings support the notion that understanding the 

nuances of the genetic landscape of tumors in terms of oncogenic drivers and comutation 

patterns may collectively provide important predictors of response to ICI. Nevertheless, the 

significance of each alteration’s contribution to sculpting the tumor microenvironment and 

drive tumor immunoediting has yet to be uncovered.

Evolving cancer genomes and neoantigen loss

Patient selection strategies tailored to the molecular footprint of cancer genomes may 

nevertheless fail when based on analyses of a single time point due to the challenges 

of using static biomarkers to interpret dynamic processes of the tumor-immune system 

cross-talk. The evolutionary trajectories of cancer cells as they go through bottlenecks 

imposed by immunotherapy represent an avenue of biomarker identification for response 

to ICI, as understanding how cancer cells gain a fitness advantage and escape immune 

surveillance allows for timely translation to clinical practice and the rational design of 

ICI treatment strategies. Cancer lineages have been extensively studied in the context of 

natural clonal evolution or during targeted therapies (84), with fewer studies in the context 

of immunotherapy. Acquired resistance to immune checkpoint blockade has been shown 

to emerge in the setting of clonal neoantigen loss by chromosomal deletions and LOH, 

followed by selection and expansion of the resistant clone (85). These observations highlight 

the importance of evolving changes in cancer genomes as a mechanism of secondary 

resistance to ICI and exemplify the importance of considering the evolving cancer genome 

during ICI rather than solely relying on snapshot analyses of tumors before ICI initiation.
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HALLMARKS OF ICI RESISTANCE POINT TOWARD A SUPPRESSIVE 

TUMOR MICROENVIRONMENT

The phenotype of the tumor microenvironment, assessed through gene expression analyses, 

has been linked with response to ICI, either alone (86) or in combination with TMB (87). B 

and T cell interactions in tertiary lymphoid structures have also been linked with response 

to immunotherapy (88-90). Several transcriptomic signature-based models, predominantly 

related to adaptive immunity, have been proposed to predict therapeutic response for 

patients treated with immune checkpoint blockade (91-94); however, generalizability of 

these approaches has been limited by lack of validation in independent cohorts (95). In 

addition to bulk gene expression approaches, single-cell RNA sequencing approaches are 

gaining momentum for tumor microenvironment phenotyping and deconvolution of the 

heterogeneity of immune cell populations. Single-cell RNA profiling together with TCR 

sequencing have been used to determine the phenotype of CD8+ tumor–specific tumor-

infiltrating lymphocytes and their respective properties, allowing for the recognition of 

specific cells in the tumor microenvironment that elicit an antitumor immune response (96, 

97). Although in-depth RNA or TCR sequencing–based single-cell resolution analyses have 

shed light into the tumor microenvironment complexity and heterogeneity in the context 

of immunotherapy, these approaches have not yet been translated into biomarker selection 

strategies (98).

INTEGRATIVE APPROACHES TO CAPTURE ICI RESPONSE

Despite the growing body of molecular studies using single time-point “snapshot” 

analyses, there is a paucity of studies that investigate the evolutionary trajectory of cancer 

cells in conjunction to the evolving characteristics of the host. These challenges are 

particularly pronounced in the context of therapies that induce global host effects, such as 

immunotherapy. Tumor-host interactions in the context of immunotherapy extend beyond 

the tumor microenvironment; however, our understanding of molecular mechanisms of 

response and resistance to these therapies primarily comes from modeling local rather than 

systemic interactions. Multi-omic features can be integrated by machine learning approaches 

to more accurately classify patients at risk of disease progression on ICI. This approach 

is exemplified in integrative genomic meta-analyses where smaller studies are pooled 

and sequence data are reanalyzed to study tumor-intrinsic and tumor microenvironment 

features of response and resistance to ICI in a variety of human cancers (44). Clonal 

TMB, total TMB, and frameshift nonsense-mediated decay-escaping mutation load together 

with CXCL9 expression, indicative of priming and recruitment of cytotoxic T cells, have 

been shown to significantly contribute to ensemble models that capture tumor and tumor 

microenvironment features (44). The overarching clinical question remains as to how to 

incorporate this biologic complexity in clinical trial design and navigate away from one-

immunotherapy-fits-all approaches toward precision immuno-oncology (Fig. 2).
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LIQUID BIOPSIES ARE EMERGING DYNAMIC APPROACHES FOR 

DETERMINING AND TRACKING ICI RESPONSE

Circulating tumor burden as a real-time cancer biomarker

Despite important progress in understanding the mechanisms of ICI resistance, the 

underlying cause of therapeutic resistance for many patients may not be determined, and our 

ability to predict clinical responses is currently limited. In this setting, there may be value 

in the use of noninvasive cell-free DNA (cfDNA) approaches to capture dynamic changes 

in tumor burden during therapy. Liquid biopsies have emerged as powerful noninvasive 

means of detecting and measuring the presence of tumor-derived DNA in the circulation 

and tracking tumor evolution during therapy. In patients with cancer, a portion of cfDNA 

originates from the tumor and is called ctDNA. ctDNA is shed into the blood stream 

through cellular apoptosis and necrosis and can be noninvasively sampled and analyzed. 

There is an ever-increasing number of studies that demonstrate the clinical utility of liquid 

biopsies at almost every stage of management of patients with cancer, including screening 

and early detection, detection of minimal residual disease, treatment selection, therapeutic 

response monitoring, and identification of resistance (Fig. 3). The development of digital-

based polymerase chain reaction and next-generation sequencing technologies combined 

with bioinformatic analyses has provided sensitive and specific quantitative approaches 

to detect mutant sequences from ctDNA typically in the background of vast amounts of 

wild-type DNA in the circulation. The development of ultrasensitive platforms that use 

deep and redundant sequencing together with sequencing error suppression algorithms allow 

for sensitive and specific detection of low-frequency sequence and structural alterations 

in ctDNA (99-106). Because mutations in cfDNA can be related to clonal hematopoiesis, 

parallel deep sequencing of white blood cells can allow for accurate classification of variants 

by origin (107), which further enables tracking of bona fide tumor-specific alterations in 

the circulation. Liquid biopsy approaches are gaining momentum in immuno-oncology 

as they can be used to rapidly and accurately determine clinical responses. In looking 

at the landscape of ICI clinical trials, molecular response–driven approaches are urgently 

needed to interpret outcomes and guide therapy. Liquid biopsies not only can provide an 

independent measure of therapeutic response but may also improve on current radiographic 

response criteria that may underestimate the benefit from ICI and the unique patterns and 

timing of response (99, 102).

Blood-derived TMB

Blood-derived determination of MSI and TMB (bTMB) has been evaluated as a surrogate 

for tissue-derived MSI and TMB (108-112). The blood-based MSI status and bTMB 

provides several advantages over tissue analyses including the accessibility and noninvasive 

nature of liquid biopsy collection as well as capturing tumor heterogeneity that may 

otherwise be lost due to tumor biopsy sampling and tumor purity. Blood-based MSI has 

been shown to correlate well with tissue-based analyses and may be used to identify 

patients who have a high likelihood to attain a response with ICI (110). In principle, bTMB 

evaluates the same components as tissue TMB, mainly the number of somatic mutations 

per megabase, with bTMB requiring the removal of clonal hematopoietic mutations that 
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may confound analyses. A higher bTMB has been shown to correlate with longer survival 

after immunotherapy (108, 109). bTMB predicted response to atezolizumab in the POPLAR 

(NCT01903993) and OAK (NCT02008227) NSCLC clinical trials using a threshold of 

16 mutations per megabase as the optimal cutpoint. Similarly, bTMB analyses from the 

MYSTIC trial that assessed first-line durvalumab ± tremelimumab for metastatic NSCLC 

(NCT02453282) supported the predictive value of bTMB, however, using a different 

threshold. In addition, the B-F1RST trial of atezolizumab in NSCLC (NCT02848651) failed 

to validate the association between progression-free survival and bTMB ≥ 16 mutations per 

megabase (113). High bTMB has been shown to correlate with longer overall survival in 

the Impower110 (NCT02409342) and B-F1RST (NCT02848651) clinical trials assessing 

first-line atezolizumab in NSCLC (113, 114). Although these results are promising, further 

validation and standardization of bMTB as a predictor of ICI response is warranted.

Promise of ctDNA as a dynamic real-time biomarker of response to ICI

Tumor-derived variant mutation allele fractions (MAFs) measured at serial time points 

during ICI provide insights into tumor burden kinetics and enable the monitoring of changes 

in MAFs over time that are reflective of therapeutic response (99, 102-104). Collectively, 

these analyses have revealed distinct patterns of ctDNA-based molecular responses that 

are reflective of patients’ clinical outcome, such that patients with a ctDNA molecular 

response have a reduction in ctDNA, which is reflective of long-term clinical benefit. 

In contrast, for patients with primary resistance to immune checkpoint blockade, ctDNA 

has limited fluctuations or displays a rise after therapy initiation (99, 102). Although the 

quantitative variation in ctDNA has been clearly linked with therapeutic outcome in the 

context of ICI, a unified consensus of the definition for molecular response is lacking, which 

may be explained by differences in overall design among reported studies, the tumors and 

therapies that were evaluated, the timing of liquid biopsy assessments, and the specific assay 

characteristics (99, 103). Similarly, the optimal timing to measure ctDNA response and the 

durability of ctDNA molecular responses are not well documented. Further standardization 

and prospective trials will ultimately be needed to develop and validate molecular response 

criteria that will be useful clinically.

As ICI is now incorporated in the therapeutic armamentarium for patients with early stage 

cancer, there is an unmet need for noninvasive approaches to inform outcomes. ctDNA 

clearance has been associated with tumor regression at the time of resection for patients 

with NSCLC receiving neoadjuvant ICI (99), and analyses from the CheckMate 816 trial of 

neoadjuvant nivolumab with platinum-doublet chemotherapy showed that ctDNA clearance 

was reflective of longer event-free survival (10). Implementation of liquid biopsies in the 

setting of adjuvant immunotherapy for assessing minimal residual disease is already in 

progress. Representative examples include the LUN0115 (NCT04585477), CtDNA lung 

RCT (NCT04966663), and AAAT0800 (NCT04625699) phase 2 trials that select patients 

with NSCLC and detectable ctDNA after surgery for adjuvant immunotherapy (Table 2). 

The IMvigor011 phase 3 trial evaluates adjuvant atezolizumab for patients with muscle-

invasive bladder cancer who have detectable ctDNA after cystectomy (NCT04660344). The 

PERSEVERE trial stratifies patients with triple-negative breast cancer by ctDNA positivity 

to optimize outcomes (NCT04849364). Additional trials include the c-TRAK TN trial, 
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where patients with triple-negative breast cancer and detectable ctDNA are randomized to 

pembrolizumab versus observation (NCT03145961), and a study of pembrolizumab after 

surgery in patients with MSI-high solid tumors for individuals with detectable ctDNA 

(NCT03832569; Table 2). These clinical trials emphasize the potential utility of liquid 

biopsies for detecting minimal residual disease and molecular responses during adjuvant 

immunotherapy.

Liquid biopsy–informed ICI clinical trials

The expanding clinical utility of ctDNA approaches has set the foundation for a paradigm 

shift toward interventional trials that rely on liquid biopsy–informed molecular responses 

to guide therapy (Table 2). The integration of serial liquid biopsies to actively guide 

clinical decisions represents a new approach whereby patients may benefit from the 

detection of response earlier and more accurately than routine computed tomography 

scans and modify treatment modality should resistance emerge. Interventional trials that 

coordinate clinical decisions with liquid biopsy detected molecular responses are currently 

underway. Examples include the BR36 trial that investigates first-line pembrolizumab 

in metastatic NSCLC where early ctDNA dynamics are used to identify patients with 

molecular response who continue single-agent immunotherapy and patients with molecular 

progression who are randomized to receive pembrolizumab or pembrolizumab and platinum 

doublet therapy (NCT04093167). Similarly, the plasma-adapted first-line pembrolizumab 

clinical trial (NCT04166487) in patients with metastatic NSCLC assesses serial liquid 

biopsies from patients treated with pembrolizumab to determine molecular responses with 

non-responders changing treatment to pembrolizumab and chemotherapy. The ATLAS 

interventional trial evaluates metastatic NSCLC response to nivolumab and ipilimumab 

using ctDNA with addition of chemotherapy for individuals who do not attain a molecular 

response (NCT04966676). The phase 3 MERMAID trial uses a tumor-informed ctDNA 

panel to direct postoperative therapy for patients with resected NSCLC (NCT04385368). 

The ctDNA-guided (CAcTUS) interventional trial for patients with melanoma uses ctDNA 

to guide clinical decisions on when to switch from targeted therapy to immunotherapy 

(NCT03808441; Table 1). The multitude of emerging trials in this space reflects the 

enthusiasm in using ctDNA analyses for earlier and more efficient determination of response 

to ICI and modifying patient intervention accordingly.

FUTURE DIRECTIONS

Most therapeutic strategies aiming to overcome ICI resistance are not biomarker-based 

(115); therefore, despite their conceptual relevance, personalized immuno-oncology 

approaches using tumor analyses and ctDNA measurements are most likely to be successful 

in predicting, preventing, and overcoming resistance. Given the strong association reported 

in the CheckMate 816 trial between pCR and event-free survival together with a subset 

analysis from the same study suggesting an association between ctDNA clearance and 

clinical outcomes, one could envisage the use of dynamic biomarkers in future neoadjuvant 

and adjuvant trials. ctDNA approaches have the potential to enrich the trial population with 

patients most likely to benefit from adjuvant therapy while minimizing exposure to toxicity 

for those already cured by neoadjuvant therapy and surgery.
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Given the incremental integration of liquid biopsies in clinical cancer care, it is important 

to note that we may be reaching a plateau in sensitivity of mutation-based liquid biopsy 

approaches and their relatively high cost may limit their widespread use in clinical trials. 

To this end, a new generation of liquid biopsy approaches may offer new avenues to 

further use cfDNA analyses in clinical practice. For example, blood cfDNA fragmentome 

analyses in healthy individuals have revealed DNA fragments derived from hematopoietic 

cells, whereas cfDNA in patients with cancer contains an admixture of hematopoietic and 

tumor preserved DNA fragments (116, 117). The unique chromatin landscape reflected in 

these fragmentation profiles can be identified by means of whole-genome sequencing and 

leveraged using machine learning approaches to distinguish between healthy and cancer 

state with high performance (116, 117). These approaches may greatly reduce the design 

complexity of targeted next-generation sequencing panel assays and negate the need of 

matched tumor tissue for removal of hematopoietic artifacts, allowing for more sensitive 

and lower cost analyses. As initial studies have demonstrated the use of fragmentome 

approaches in response monitoring for targeted therapies, the evaluation of these methods in 

ICI response monitoring will be of great interest in the future.
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Fig. 1. Tumor and tumor microenvironment features driving tumor immunoediting and 
contributing to ICI clinical outcomes.
A number of tumor intrinsic and tumor extrinsic features, such as the genomic landscape 

of the cancer cells and composition of the immune cell infiltrate, orchestrate the antitumor 

immune response in the context of immune checkpoint blockade. Tumor foreignness is 

determined by tumor mutation burden (TMB) and mutation-associated neoantigen (MANA) 

density. The phenotype and functional state of T cells (shown in 1), together with the 

antigen presentation potential (shown in 2 and 3) determine in part a tumor’s visibility 

by the immune system. The composition and phenotype of the T and B cell infiltrates 

and their interaction in tertiary lymphoid structures (TLSs; shown in 4) in the tumor 

microenvironment are key components differentiating immunologically “hot” tumors that 

eventually regress with ICI. These nuanced genomic and tumor microenvironment features 

can be captured by different analytical approaches such as bulk and single-cell multi-omic 

approaches, functional assays, and liquid biopsies, ultimately converging in multimodal 

biomarkers of therapeutic response.
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Fig. 2. Paradigm shift toward a precision immuno-oncology approach.
Current treatment strategies for cancer immunotherapy remain unselected for biomarkers, 

with the exception of PD-L1 expression and TMB-selected ICI. The current standard of care 

for assessment of therapeutic response is determined on the basis of radiographic imaging, 

which does not always capture the nature and timing of response. There are several other 

biomarkers such as liquid biopsy, tissue markers, and the microbiome that could be used 

to better monitor and predict patient outcome that are not used. This one-treatment-fits-all 

approach results in variable clinical efficacy. Patient selection and stratification based on the 

genomic and molecular make up of tumors and their microenvironment may enhance the 

clinical efficacy of immunotherapy approaches and improve clinical outcomes. To this end, 

biomarker-driven clinical trials have the potential to further improve the therapeutic efficacy 

and long-term outcomes with cancer immunotherapy.
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Fig. 3. Integration of liquid biopsies approaches with cancer immunotherapy.
During carcinogenesis and cancer evolution, tumor cells release their DNA into the 

bloodstream, providing the opportunity to sample tumor DNA through noninvasive analyses 

of blood. Liquid biopsies enable the detection and analysis of mutations in circulating 

tumor DNA (ctDNA) using ultrasensitive next-generation sequencing (NGS) technologies. 

For minimal residual disease, liquid biopsies can detect the recrudescence of tumor cells 

after surgery or definitive therapy in ways that may be difficult to capture through 

imaging or other available cancer biomarkers. Minimally invasive ctDNA detection methods 

can detect real-time changes in circulating tumor burden during therapy that would be 

otherwise missed with imaging alone. Longitudinal liquid biopsies can be informative for 

detecting minimal residual disease for patients with early-stage cancer receiving cancer 

immunotherapy in the neoadjuvant setting, monitoring response for patients with metastatic 

disease, and patient stratification for ICI clinical trials. Given the challenges of conventional 

imaging for capturing responses to immunotherapies, liquid biopsies provide an alternative 

strategy to detect early signs of disease progression and therapeutic resistance as well as 

disease clearance that would otherwise not be identified on the basis of imaging alone. 

To this end, collection of serial blood draws over time introduces opportunities for disease 

monitoring that can guide clinical decisions. The recent emergence of interventional trials 

that assess ctDNA dynamics and use ctDNA molecular response to guide clinical decision-
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making can further extend the premise of precision immunotherapy to differentiate patients 

most likely to attain long-term clinical outcomes (in green) from the ones that experience 

disease progression (in blue).

Anagnostou et al. Page 26

Sci Transl Med. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Anagnostou et al. Page 27

Table 1.
Established and emerging biomarkers for cancer immunotherapy.

Biomarker Context References

Clinically integrated 

  PD-L1 expression by IHC Pan-cancer, NSCLC, urothelial carcinoma, 
triple-negative breast cancer

(18, 21-23)

  MSI Pan-cancer, colorectal cancer (39, 42, 43)

  TMB Pan-cancer, melanoma, NSCLC (14, 26-30)

Emerging and context-specific 

  Clonal TMB Pan-cancer (36, 44, 45)

  MANA quality Pan-cancer (53, 54, 59, 61, 62)

  HLA diversity Pan-cancer (37, 64, 65)

  Oncogenic drivers of immune suppression (PTEN, 
Wnt, JAK1/2, STK11, MYC, and EGFR)

Pan-cancer (37, 73-76)

  Neoantigen loss NSCLC (85)

  Gene expression profiles Pan-cancer (87)

  Tertiary lymphoid structures Melanoma, renal cell carcinoma, sarcoma (88-90)

  T cell repertoire Pan-cancer (96, 97)

  ctDNA Pan-cancer (99, 102-104, 108, 109, 113, 114)
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