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Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy 
and is unresponsive to conventional therapeutic modalities due to its high het-
erogeneity, expounding the necessity, and priority of searching for effective bio-
markers and drugs. Autophagy, as an evolutionarily conserved biological process, 
is upregulated in PDAC and its regulation is linked to a poor prognosis. Increased 
autophagy sequestered MHC-I on PDAC cells and weaken the antigen presenta-
tion and antitumor immune response, indicating the potential therapeutic strate-
gies of autophagy inhibitors.
Methods: By performing 10 state-of-the-art multi-omics clustering algorithms, 
we constructed a robust PDAC classification model to reveal the autophagy-
related genes among different subgroups.
Outcomes: After building a more comprehensive regulating network for po-
tential autophagy regulators exploration, we concluded the top 20 autophagy-
related hub genes (GAPDH, MAPK3, RHEB, SQSTM1, EIF2S1, RAB5A, CTSD, 
MAP1LC3B, RAB7A, RAB11A, FADD, CFKN2A, HSP90AB1, VEGFA, RELA, 
DDIT3, HSPA5, BCL2L1, BAG3, and ERBB2), six miRNAs, five transcription fac-
tors, and five immune infiltrated cells as biomarkers. The drug sensitivity da-
tabase was screened based on the biomarkers to predict possible drug-targeting 
signal pathways, hoping to yield novel insights, and promote the progress of the 
anticancer therapeutic strategy.
Conclusion: We succefully constructed an autophagy-related mRNA/miRNA/
TF/Immune cells network based on a 10 state-of art algorithm multi-omics analy-
sis, and screened the drug sensitivity dataset for detecting potential signal path-
way which might be possible autophagy modulators' targets.
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1   |   INTRODUCTION

Pancreatic cancer, which ranks the 7th leading cause of 
cancer-related deaths all over the world, would probably 
surpass breast cancers by 2025 due to its poor prognosis.1–3 
Tumorigenesis risk factors of the major type of pancre-
atic cancer, pancreatic ductal adenocarcinoma (PDAC), 
include intrinsic gene mutations (KRAS, TP53, SMAD4, 
and CDKN2A most commonly presented) and chronic in-
flammation caused by alcohol consumption, diabetes, and 
obesity.3,4 Despite forced expression of mutation genes 
having been proven, there remain few therapeutically 
actionable-targeted modalities due to its insidious ad-
vancement and crosslink between critical genetic drivers 
leading to escape. Thus, it is of great value to investigate 
novel biomarkers and further means by which PDAC can 
be therapeutically targeted.

Autophagy is a conserved degradation process through 
a lysosome-dependent mechanism triggered by stress and 
may cause resistance to immune-targeted therapies.5 It 
was proved to be highly upregulated in the later stages 
of PDAC and required for continued malignant progress 
compared with normal pancreatic duct cells,6 mediated by 
controlling the nuclear retention of microphthalmia tran-
scription factor family members through ERK/MAPK2 
pathway.7,8 Increased autophagy sequestered MHC-I on 
PDAC cells and weaken the antigen presentation and 
antitumor immune response, indicating the potential 
therapeutic strategies of autophagy inhibitors.9 However, 
there remain some controversies about autophagy reg-
ulating therapies in other tumors, along with the scarce 
data about autophagy-related prognostic biomarkers and 
pharmacological modulation models, leaving the putative 
target exploration space in preclinical models.10 Although 
specific autophagy regulators recognized by the world 
scientific community are numbered (Chloroquine and 
hydroxychloroquine for inhibition; rapamycin [mTOR 
inhibitor] and temsirolimus for enhancement) and have 
indeterminate results in some trials combined with cyto-
toxic chemotherapy or immunotherapy, other targets re-
lated to autophagy and combination strategies have gotten 
the attention by pharmacists and doctors.10,11

As a heterogeneous disease, traditional approaches 
fail to see the wood for the trees and lack robustness in 
identifying the classification and regulators modules. The 
advent of high-throughput gene technologies, which pro-
vided multi-omics data about genomics, transcriptomics, 
epigenomics, metabonomics, radiomics, and so on, en-
ables clustering multi-omics data in an integrated way to 
get different subgroups related to survival information, 
revealing the potential relationship between different 
omics and get further systems-level insights.12,13 Kwon, 
et al.14 included miRNA and mRNA data to conduct a 

comprehensive analysis by using support machine model-
ing (SVM) with leave-one-out cross-validation (LOOCV), 
which identified hundreds of multi-markers between 
PDAC and normal tissue. Deepa, et al.15 tried to gener-
ate a system-level network of PDAC based on the omics 
data obtained from the rank-based meta-analysis (mRNA, 
miRNA, DNA methylation) in a multistep way, and 
have found eight potential hub genes related to survival: 
RASA1, IRS1, E2F3, HMGA2, ACTN1, NUAK1, SKI, and 
DLL1. Nguyue, et al.16 introduced the random forests (RF) 
model to validate the diagnostic value of multiplex bio-
markers candidates in pancreatic cancer and improved 
the interpretability of multi-omics mining. Nitish, et al.17 
utilized a traditional statistic method of logistic regression 
to identify the genes related to PDAC patients' survival 
information. After that, researchers tried some different 
clustering methods and group numbers to divide PDAC 
into different subgroups. Autoencoder, iCluster, and 
IntNMF have been implemented respectively to enhance 
the robustness of the multi-omics model,18–20 trying to de-
cipher some subtle molecular characteristic models. Apart 
from these, Teresa, et al. successfully constructed a multi-
omics model by applying DIABLO integrating methods 
and compared transcriptional and mutational profiles 
between well-differentiated neuroendocrine tumors and 
ductal adenocarcinomas.21 All of these just open the door 
to draft a new blueprint and showed the feasibility of this 
method to construct a robust and sensitive enough multi-
omics model, not only in differentiating the subtypes of 
PDAC, but also in some other pancreatic diseases such as 
early cystic lesion.22 However, all of them just utilized sin-
gle statistic method or part of existing dataset, and no one 
have tried combined several thresholds of different omics 
biomarkers with the aiming of revealing the autophagy 
classification and drug sensitivity related to it.

So as discussed above, we constructed a PDAC multi-
omics classification model to reveal the autophagy clas-
sification by performing 10 state-of-the-art multi-omics 
clustering algorithms (ConsensusClustering, COCA, 
NEMO, PINSPlus, iClusterBayes, moCluster, SNF, LRA, 
CIMLR, and IntNMF), and then calculated the potential 
autophagy regulators hoping to spur the progress in this 
from-zero-to-hero area.

2   |   MATERIAL AND METHODS

2.1  |  Multiple omics transcriptome 
datasets obtaining

TCGA-PAAD (https://portal.gdc.cancer.gov/proje​cts/
TCGA-PAAD, n = 185) was obtained as the training co-
hort for further analysis. The mRNA, lncRNA, miRNA, 

https://portal.gdc.cancer.gov/projects/TCGA-PAAD
https://portal.gdc.cancer.gov/projects/TCGA-PAAD
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DNA methylation, somatic mutations, and clinical infor-
mation of adenomas and adenocarcinomas subtype were 
enrolled. mRNA and lncRNA high-throughput sequenc-
ing row count were downloaded by “TCGAbiolinks” R 
packages.23 Annotated to GENCODE27 file, former's gene 
symbols were transformed by matching the Ensembl IDs. 
And the latter were identified by Vega (http://vega.archi​
ve.ensem​bl.org/) and classified as noncoding, 3prime 
overlapping ncRNA, antisense RNA, lincRNA, sense 
intronic, sense overlapping, macro lncRNA, and bidi-
rectional promoter lncRNA subtypes. For greater com-
parability between samples, we got the transcripts per 
kilobase million (TPM) by transforming the numbers of 
fragments per kilobase million (FPKM). When it comes 
to miRNA, downloading was performed through UCSC 
Xena (https://xenab​rowser.net/) and translation was 
done via the R package “miRNAmeConverter” in miR-
base version 21.0. And Xena database was screened for 
DNA methylation profile. Clinical information including 
progression-free survival (PFS), overall survival (OS), and 
somatic mutations was obtained from cBioPortal database 
(https://www.cbiop​ortal.org/).

2.2  |  External PADC transcriptome 
datasets obtaining

Totally five external transcriptome expression pro-
files (PACA-AU; PACA-CA; PAEN-AU; GSE57495; 
GSE78229) were prepared for validation sets. Donors' 
information, specimen information, and expression se-
quence of PACA-AU (n = 461), PACA-CA (n = 317), and 
PAEN-AU (n = 67) were downloaded from International 
Cancer Genome Consortium (ICGC, https://dcc.icgc.
org/) and then cleaned for further analysis. GSE5749524 
(sequenced by Rosetta/Merck Human RSTA Custom 
Affymetrix 2.0 microarray, n  =  63) and GSE7822925 
(sequenced by Affymetrix Human Gene 1.0 ST Array, 
n = 50) were downloaded from Gene expression omnibus 
(https://www.ncbi.nlm.nih.gov/geo/). Each gene symbol 
was transferred to multiple probe IDs in accordance with 
specific platforms' annotation file, and the cross-dataset 
batch effect was cleaned by “sva” package.26

2.3  |  Calculating optimal number for 
clustering and integration of multi-omics 
for subtypes visualization

The log2 transformation of transcriptome expression TPM 
were first finished. Probes at CpG islands of promotor re-
gion were gotten for methylation analysis, with the defini-
tion of median β value of those ≥1 mapping probes. When 

it comes to mutation matrix, mutant status was divided 
into two types: 1-mutated (deletion/insertion, frameshift 
deletion/insertion, splice site or translation start site 
mutation, missense/nonsense/nonstop mutation) and 
0-wildtype. Univariate Cox proportional hazards regres-
sion worked as an efficient method to reduce data dimen-
sion for clustering analysis, and only those factors highly 
related to RFS were retained. To get an optimum number 
of clusters k at a low noise level but at the same retaining 
important information, two statistic parameters (cluster-
ing prediction index, CPI27 and Gaps-statistics28) were cal-
culated simultaneously. The sum of CPI and Gap-statistics 
will be calculated and sorted for a rank. Higher rank of 
means bigger difference among molecular landscapes. 
Then, the K-M analysis will be performed to decide the 
final clustering number. A 10 state-of-the-art integrative 
calculation was performed based on the strategy of an un-
supervised algorithm.29 To improve the clustering robust-
ness, we did consensus ensembles for later integration of 
the clustering results derived from different algorithms 
and got pairwise similarities.

2.4  |  Comparing clustering outcomes and 
Genome-wide signaling pathways

The overall nominal p value was calculated by log-rank test. 
Pairwise comparison and derives adjusted p values were 
calculated if more than two subtypes are identified. And the 
Kaplan–Meier (KM) curves were created to illustrate the 
survival outcomes. Considering tumor-specific genomic le-
sions and alterations that may affect immunotherapy, we 
calculated the total mutation burden (TMB) and fraction 
genome altered (FGA) among different subtypes. We chose 
edgeR and DESeq2 for RNA-Seq count data and limma for 
microarray profile or normalized expression data to iden-
tify differentially expressed genes (DEGs). The most dif-
ferentially expressed genes sorted by log2FoldChange were 
chosen as the biomarkers for each subtype. The R package 
“GSVA” was applied to calculate the single-sample gene set 
enrichment analysis (ssGSEA) enrichment score and iden-
tify the subtype-based functional pathways. Gene Ontology 
(GO, c5.bp.v7.1.symbols.gmt) from The Molecular 
Signatures Database (MSigDB, https://www.gsea-msigdb.
org/gsea/msigd​b/index.jsp) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG, https://www.genome.jp/
kegg/) were carried out for reference.

2.5  |  External cohort validation

In this study, we performed two cross-platform and cross-
species model-free approaches for subtype similarity and 

http://vega.archive.ensembl.org/
http://vega.archive.ensembl.org/
https://xenabrowser.net/
https://www.cbioportal.org/
https://dcc.icgc.org/
https://dcc.icgc.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
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reproducibility prediction in validation cohort: nearest 
template prediction (NTP),30 partition around medoids 
(PAM)+in-group proportion (IGP) statistic.31,32 What is more, 
we also created the KM curve to evaluate how consistent the 
different prediction results are based on clinical information.

2.6  |  Differentially expressed autophagy-
related genes (DEARGs) identification and 
Protein–Protein Interaction Networks 
(PPI) construction

All the 232 genes directly or indirectly related to autophagy 
as described in literature were collected from Human 
Autophagy Database (HADb, http://www.autop​hagy.lu/
index.html) and intersected with all the DEGs upregulated 
in poor prognosis group called as DEARGs. The compu-
tational prediction of physical and functional interactions 
among proteins was conducted by The Search Tool for the 
Retrieval of Interacting Genes (STRING database, V11.0).33 
Topological characteristic visualization and hub genes reve-
lation were finished by CytohHubba plugin of Cytoscape.34

2.7  |  Microenvironment infiltrated 
cells and correlation analysis

Immune cell-related gene signature was analyzed by the 
Cell Type Identification by Estimating Relative Subsets of 
RNA Transcripts (CIBERSORT)35 for calculating the frac-
tion of 22 immune cell subpopulations. To identify the 
immune infiltration difference among groups, a Wilcoxon 
rank-sum test was performed. For further information 
about the relationship between DEARGs and infiltrated 
immune cells, the Pearson correlation was applied.

2.8  |  Prediction of transcription factors 
(TFs) and miRNA that regulate DEARGs

Enrichr, as an updated curated gene resource and search 
engine, enables us to predict the TFs, mRNA, and miRNA 
regulating network. TRANSFAC, JASPAR, and miR-
TarBase dataset were included for further biological 
discoveries.

2.9  |  Drug sensitivity and 
immune therapies response analyses

Paul, et al. first developed a coupling method comparing the 
in vitro and in vivo gene expression to predict the response 
to specific drug of cancer patients.36 Borrowing this idea, 

GDSC (https://www.cance​rrxge​ne.org/) provided drug 
sensitivity and phenotype data information of 727 human 
cancer cell lines which were collected for our drug sensi-
tivity analysis. All the predictions were finished by R pack-
age “pRRophetic”. Ridge regression was the efficient way to 
evaluate the half maximal inhibitory concentration (IC50) 
of potential autophagy-related chemotherapeutic agent (ac-
curacy prediction from the 10-fold cross-validation).

2.10  |  Statistics

All analyses were conducted by R4.1.0. Kaplan–Meier 
curves were depicted based on a log-rank test. Hazard ratios 
(HR) and 95% confidence interval (CI) were estimated by 
Cox proportional hazards regression model. We analyzed 
continuous data by two-sample Mann–Whitney test and 
categorical data by Fisher's exact test. We successfully con-
structed an R package “MOVICS” and embedded all above 
analytic processes in it.27 Statistically significance was de-
fined as the two-tailed p < 0.05. For evaluating the similar-
ity and reproducibility of the acquired subtypes between 
discovery and validation cohorts, NTP and PAM+IGP sta-
tistic were carried out to calculate the Kappa index.

3   |   RESULTS

3.1  |  Multi-omics integrative analysis 
and subgroups characteristics

After getting the elites data from mRNA, miRNA, lncRNA, 
methylation, and mutation profiles by univariate Cox pro-
portional hazards regression or freq-method for binary data, 
160 patients' data with reduced dimension for clustering 
analysis remained. Information of mRNA, miRNA, lncRNA, 
and methylation features got for clustering could be found 
in Tables S1–S4. Just as what has been shown in Figure 1A, 
the optimal subgroup cluster number indicated by CPI and 
Gaps-statistics is 2. To be more cautious, we have also tested 
other numbers of clusters which have been reported more 
than 2 or when the two methods scores were more approxi-
mate. But when the cluster number came larger than 2, 
some subgroup might contain such a small part of patients 
that unable to continue the analysis, or some subgroups' sur-
vival outcomes were too similar to be differentiated, reduc-
ing the need for a larger clustering number (Figures S1 and 
S2). So, integrated 10 multi-omics analyses using iCluster-
Bayes, moCluster, CIMLR, IntNMF, ConsensusClustering, 
COCA, NEMO, PINSPlus, SNF, and LRA were performed to 
divided the PADC patients into two subgroups (CS1, n = 83 
and CS2, n = 77) for robustly distinctive molecular patterns 
(Figure 1B). As Figure 1C, clinical outcomes showed notable 

http://www.autophagy.lu/index.html
http://www.autophagy.lu/index.html
https://www.cancerrxgene.org/


      |  737CHEN et al.

difference in KM curve: CS2 had a longer recurrence-free 
survival time versus CS1 (p < 0.001).

After identification of subtypes, other characteris-
tics of each subtype from multiple aspects should be ex-
plored for downstream analyses. In the larger scheme, 
TMB (Figure  1D) and fraction genome altered (FGA, 
Figure 1E) in CS1 genome are much higher than them in 
CS2 (p < 0.001), and CS1 presented a landscape of lower 
mRNA, lncRNA, and miRNA expression along with higher 
methylation, chromosomal instability, and mutation rates 
(Figure 1G). All of these indicated the relationship between 
higher aberration and poor prognosis, in accord with our 
cognition. To be more specific, MIR3142HG, AC022182.1, 
and AL358472.2 were the three lncRNAs mostly related 
to survival outcomes between two groups (p < 0.001), 
and hsa-miR-98-5p, hsa-miR-218-5p, hsa-miR-140-5p, 
hsa-miR-146a-5p, hsa-miR-29c-5p, hsa-miR-653-5p, 
hsa-miR-3613-5p, hsa-miR-145-3p, hsa-miR-374a-3p, 

hsa-miR-590-3p were found to be the first 10 miRNAs 
presenting high discriminative ability (p < 0.001). What is 
more, cg00803804, cg00888162, cg01971137, cg06000963, 
cg11174851, cg13361843, cg18701590, cg24950336, 
cg25087487, and cg26546557 were the sites appeared 
most often in methylation (p < 0.001). And single primary 
signature of C>T transitions at CpG sites was the domi-
nant one. Besides these, CS1 harbored significantly more 
mutations of KRAS (p adj <0.001), TP53 (p adj <0.001), 
SMAD4 (p adj <0.001), TTN (p adj <0.001), and CDKN2A 
(p adj <0.001) (Figure 1F; Table 1).

3.2  |  Biomarker identification and 
external datasets validation

Potential predictive biomarkers pass the significance 
threshold (p adj value <0.05) were detected as differentially 

F I G U R E  1   Integrated analysis and subgroup characteristics based on multi-omics data. (A) CPI and gap-statistic calculation revealed 
the optimal cluster number might between 2 and 4. The sum of CPI and Gap-statistics will be calculated and sorted for a rank. Higher rank 
of means bigger difference among molecular landscapes. (B) Visualization of the 10 multi-omics integrative clustering algorithms results 
with cluster number of 2. After get all results from specified algorithms, MOVICS calculates a consensus matrix CM = ∑(tmax, t = 1)M(t), 
and cmij∈[0,10]. Such matrix was represented by clustered purple and gold colors in a stylish way to show a robust pairwise similarities 
for samples because it considers different multi-omics integrative clustering algorithms. (C) KM curve reveals the statistical significance 
between two subgroups' clinical outcomes. Significant better prognosis of group 2 indicates the legitimacy of setting cluster number as 2 
(p < 0.001). (D) Total mutation burden (TMB) is higher in CS1, and the major one of transition is C>T. (E) FGA and specific gain (FGG) or 
loss (FGL) per sample are more common in CS1. (F) KRAS, TP53, and SMAD4 are the first three mutation detected. (G) Comprehensive 
heatmap based on consensus across 10 algorithms about mRNA, lncRNA, miRNA, methylation, and mutation condition
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expressed genes (DEGs) by limma method. These bio-
markers not overlap with any biomarkers identified for 
other subtypes have been shown in Figure S3 as upregu-
lated one and Figure S4 as downregulated one. Then, these 
biomarkers were used to run nearest template prediction 
in external cohorts for validity and accuracy testing. To 
deal with the multi-classification problem cross differ-
ent omics data, we applied two model-free subtype pre-
diction approaches (NTP and PAM) along with survival 
outcomes validation. For PACA-AU, the Kappa value was 
0.636 (p < 0.001), indicating the high consistency between 
NTP and consensus analysis outcome (deep blue color 
blocks in Figure 2A). For PAEN-AU, red blocked could be 
observed to enrich in quadrants I and III the heatmap of 
cross-platform NTP (p < 0.001), showing the similar pre-
diction structure between known biomarkers and exter-
nal validation (Figure 2B). Survival outcomes similarities 
could also be verified in external datasets: for PACA-CA 
(Figure  2C, p < 0.001), GSE57495 (Figure  2D, p < 0.001), 
and GSE78229 (Figure  2E, p  =  0.095), the separate KM 
curves had become notably visible, revealing similar clini-
cal outcomes among different datasets that CS1 patients 
have poor prognosis. Especially, GSE78229 might not be 
so much statistically significant compared to other data-
sets (p = 0.095) possibly due to a smaller sample size, but 
the obvious separation of two groups' curves could be seen 
over time, which left our reasons to draw a conclusion that 
the prognosis of CS2 was better than CS1 in GSE78229.

3.3  |  Construction of PPI and 
TF/mRNA/miRNA regulatory network

We collected 232 genes directly or indirectly related to 
autophagy from HADb and intersected with the DEGs as 
DEARGs. DEARGs upregulated in CS1 subgroup were 
extracted for further analysis, and the top 20 highest de-
gree hub nodes were selected to construct the PPI network 
(Figure 3A). GAPDH, MAPK3, RHEB, SQSTM1, EIF2S1, 
RAB5A, CTSD, MAP1LC3B, RAB7A, RAB11A, FADD, 
CFKN2A, HSP90AB1, VEGFA, RELA, DDIT3, HSPA5, 
BCL2L1, BAG3, and ERBB2 were the 20 hub genes related 
to autophagy and PDAC.

To deeper the exploration of mRNA/TF/miRNA reg-
ulation mechanism, some other databases were applied: 
miRTarBase provided the possible miRNA regulator such 
as hsa-miR-320a, hsa-miR-34a-5p, and has-miR-133a-3p; 
TargetScan provided some other potential regulator such 
as has-miR-3618, mmu-miR-1843-3p, and mmu-miR-
378b; TRANSFAC and JASPAR PWMs suggested some 
possible TF might be interacted with mRNA, such as 
ATF4, BRCA1, TP53, HDAC9, and XBP1.

3.4  |  Microenvironment infiltrated 
cells and correlation analysis between 
autophagy-related genes and immune cells

Subtype-specific functional pathways based on DEA were 
calculated by GSEA in Figure 4A based on GO biological 
processes from MSigDB. It is obviously that the CS2 sub-
group, which has a better prognosis, showing increased 
immune activation related to adaptive immune reaction, 
humoral immune response, B-cell regulation, and com-
plement activation. In contrast, CS1 subgroup with grave 
prognosis presented to be enriched in epidermis keratini-
zation, development, differentiation, and transformation. 
The enrichment condition seemed to imply the immune 
activities difference between two subgroups, so infiltrated 
immunocytes were analyzed for revealing the possible dif-
ferent tumor microenvironments (Figure 4B). Compared 
to CS1, there exist more immunologic effector cells such 
as naive B cells (p < 0.05), memory B cells (p < 0.05), CD8+ 
T cells (p < 0.01), memory resting CD4+ T cells (p < 0.01) 
but less M0 macrophages (p < 0.001) in CS2, which may 
indicate the stronger immune toxicity against PDAC in 
CS2. Considering the unclear condition between PDAC 
autophagy-related genes expression and infiltrated im-
mune cells, we conducted a Pearson correlation analysis 
to underlying the possible interaction of them (Table S5). 
The upregulated autophagy-related genes showed ex-
tensive positive interaction with each other, such as 
SQSTM1 and RELA, FADD and RELA, ERBB2 and 
FADD, MAP1LC3B and RAB51, MAP1LC3B and RAB7A, 
MAP1LC3B and DDIT3. What is more, the upregulation 
of autophagy genes seemed to be related to the activation 

Gene (mutated) TMB CS1 CS2 p value p adj

KRAS 109 (68) 80 (96.4) 29 (37.7) 6.45e-17 3.23e-16

TP53 101 (63) 74 (89.2) 27 (35.1) 8.47e-13 2.12e-12

SMAD4 36 (22) 21 (25.3) 15 (19.5) 4.50e-01 4.50e-01

TTN 27 (17) 17 (20.5) 10 (13.0) 2.91e-01 3.64e-01

CDKN2A 34 (21) 31 (37.3) 3 (3.9) 1.31e-07 2.18e-07

Note. Values in parentheses are percentages.

T A B L E  1   Independent test between 
subtype and mutation
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of immune effector cells, such as MAPK3 and CD8+ T 
cells (Figure 4C, p = 0.01, r = −0.28), RAB5A and CD8+ T 
cells (Figure 4D, p < 0.001, r = −0.34), CTSD and memory 
CD4+ T cells (Figure  4E, p < 0.001, r  =  −0.31). Besides 
these, negative correlation could also be observed be-
tween different immune cells, such as M0 macrophages 
and CD8+ T cells, M0 macrophages and resting CD4+ T 
cells, naive B cells, and CD8+ T cells.

3.5  |  Therapeutic response analyses

We screened the database with the R package “pRRo-
phetic” for prediction of potential clinical chemothera-
peutic responses related to our classification outcomes 
and autophagy genes expression condition (Figure  5; 
Table  S6). Some drugs whose mechanism are related to 

autophagy-induced tumorigenesis and drug resistance 
were included for analysis.

First, we compared some drugs' sensitivities whose tar-
gets had been proven to be related to autophagy, and the 
Autophagy—animal—Reference pathway could be found 
on KEGG (https://www.genome.jp/pathw​ay/map04140). 
Rapamycin, working as a mTOR inhibitor to induce au-
tophagy by targeting mTORC1, has a lower IC50 in CS1 
(p = 0.0089). The mTOR is an effector and could be upreg-
ulated by PI3K/AKT/PKD and MAPK/Erk1/2 signaling 
pathways. TGX-221 is more sensitive in CS1 against differ-
ent PI3K isoforms (p < 0.001). And KIN001–102 (AKT in-
hibitor, p < 0.001), BX-912 (PKD1 inhibitor, p < 0.001), and 
OSU-03012 (AKD and PKD inhibitor, p = 0.0039) are more 
sensitive in CS2, while A-443654 is more sensitive in CS1 
(AKD inhibitor, p = 0.0049). For Ras/Raf/Mek1/2/Erk1/2, 
the other upstream positive signaling pathway of mTOR, 

F I G U R E  2   External validation. (A) Kappa value of PACA-AU (Kappa = 0.636, p < 0.001) showed high similarity between NTP and 
CMOIC (CS1 vs. CS1 and CS2 vs. CS2). (B) PAM heatmap of PAEN-AU revealed the similar structure allocation between training outcomes 
and external validation. For both CS1 or CS2 in template features and class predictions, higher PAM (red dots) could be observed to cluster. 
(C) KM curve reveals the statistical significance between two subgroups' clinical outcomes in PACA-CA. Significant better prognosis of 
group 2 indicates the legitimacy of setting cluster number as 2 (p < 0.001). (D) KM curve reveals the statistical significance between two 
subgroups' clinical outcomes in GSE57495. Significant better prognosis of group 2 indicates the legitimacy of setting cluster number as 
2 (p < 0.001). (E) KM curve reveals the statistical significance between two subgroups' clinical outcomes in GSE78229. Significant better 
prognosis of group 2 indicates the legitimacy of setting cluster number as 2 (p = 0.095)

https://www.genome.jp/pathway/map04140
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some drugs were included for comparison: Ras and Raf 
inhibitor AUY922 has lower IC50 in CS2 (p < 0.001); Raf 
inhibitor HG-6-64-1 (p < 0.001), Sorafenib (p < 0.001), and 
AZ628 (p = 0.011) are sensitive to CS2.

Next, potential new signal pathway targets were in-
cluded for prediction based on our multi-omics regulation 
network. P53 activator NSC-207895 which inhibits mTOR, 
has a lower IC50 in CS2 (p = 0.0025). Bryostatin 1, a mac-
rocyclic lactone inhibits the cell-signaling enzyme protein 
kinase C (PKC), has a lower IC50 in CS2 (p < 0.001). The 
sensitivity of two subgroups to some autophagy regula-
tors were also compared in our analysis profile. The au-
tophagy inhibitor Thapsigargin is more sensitive in CS1 
(p = 0.017), and autophagy activators Etoposide (p = 0.05) 
and doxorubicin (p = 0.037) are more sensitive in CS2.

Anything else, some other drugs showed different 
sensitivity between two subgroups have been detected, 
although the relationship between drug mechanism 
and autophagy is unclear, such as Jak inhibitors, Syk 

inhibitors, IKK inhibitors, ITK inhibitors, Rock inhibitors, 
c-Met inhibitors, p53/MAPK inhibitors, and so on (detail 
information in Figure 5).

4   |   DISCUSSION

Considering the refractory to most treatments and me-
tastasis, PDAC leaves us a research priority to uncover 
the mechanism of tumor heterogeneity and search for 
effective therapies. For defining and refining the sub-
types of PDAC based on different expression patterns to 
improve personalized treatments, several studies have 
implemented some single integrative methods to ana-
lyze the current omics data. In this study, we leveraged 
10-state-of-the-art multi-omics clustering algorithms 
(ConsensusClustering, COCA, NEMO, PINSPlus, iClus-
terBayes, moCluster, SNF, LRA, CIMLR, and IntNMF) 
for constructing a PDAC multi-omics classification 

F I G U R E  3   PPI network and mRNA/miRNA/TF interaction construction. (A) Top 20 significant hub genes related to autophagy 
and PDAC. Hub genes were obtained through CytoHubba plugin (MCC algorithems), and deeper red means higher Hubba nodes score. 
(B) Possible miRNA regulators predicted by miRTarBase. Shallower red means smaller p adj value and longer length represents higher 
combined Z score. (C) Possible miRNA regulators predicted by TargetScan. Shallower red means smaller p adj value and longer length 
represents higher combined Z score. (D) Possible TF regulators predicted by TRANSFAC and JASPAR PWMs. Shallower red means smaller 
p adj value and longer length represents higher combined Z score
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model, including mRNA, lncRNA, miRNA, methylation, 
and mutation datasets. We not only stratified the sub-
types and identified the biomarkers in a more accurate 
and roust way, but also revealed the autophagy-related 
genes and proteins landscape from the multi-omics 
consensus outcome for the first time. What is more, we 
screened the GDSC database and created a comprehen-
sive drug sensitivity analysis spectrum based on predic-
tion network we built to reveal the potential autophagy 
regulators.

Taking clustering numbers in previous studies and the 
survival analysis outcomes in our studies based on two sta-
tistical functions, the optimal number was finally defined 
as 2 to reduce noise and intergroup similarity, in accor-
dance with the pathology classification of PDAC (basal-
like/squamous and classical/pancreatic progenitor). To 
make sure the multi-omics integrated analysis containing 
different statistical methods and expression profiles have a 
stronger robustness, external validation was performed in 
five datasets, showing the potential of our comprehensive 

F I G U R E  4   Functional pathway enrichment and immune-related analysis. (A) GO biological processes gene sets enrichment analysis 
revealed higher immune activity in CS2 and higher epidermic keratinization activity in CS1. In the first column, green blocks refer 
to molecular function in GO analysis, and red blocks refer to biological process in Go analysis. In the second and third columns, red 
blocks refer to upregulation and blue blocks refer to downregulation. (B) Infiltrated immune cells landscape of CIBERSORT indicates 
the significant different infiltration density of B cell naive, B cell memory, T cells CD8, and Macrophage M0 between CS1 and CS2. (C) 
Pearson correlation plot between MAPK3 and CD8+ cells (p = 0.01, r = −0.28). (D) Pearson correlation plot between RAb5a and CD8+ cells 
(p < 0.001, r = −0.34). (E) Pearson correlation plot between CTSD and CD4+ memory cells (p < 0.001, r = −0.31)
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F I G U R E  5   Boxviolins for estimated IC50 of different drugs between two PDAC subtypes. All drugs whose IC50 are significantly different 
between two groups are presented on Figure 5: imatinib, HG-6-64-1, GW843682X, GW2580, GSK1070916, GSK429286A, GSK269962A, GNF-
2, Cpd10, EpothiloneB, embelin, doxorubicin, dasatinib, crizonib, CP724714, CP466722, GEMCITABINE, cmk, cal-101, bx912, Bryostatin1, 
bortezomib, BMS-509744, BMS345541, FTI277, bicalutamide, BI2536, bexarotene, BAY61-3606, IPA3, as601245, AUY922, Etoposide, AZ628, 
AP24534, A770041, A443654, JQ1, JNK-9 L, mesylate, thapsigargin, rapamycin, QS11, QL-XII-47, pyrimethamine, PHA665752, pazopanib, 
parthenolide, sorafenib, NSC207895, nsc87877, NG25, MS275, mitomycin c, listinib, saracatinib, lapatinib, KIN001135, KIN001102, JW7241, 
JQ1, Zibotentan, ZLLNLECHO, Salubrinal, XMD885, XL184, WZ3105, UNC0638, Tubastatin A, TL2015, Tl185, Ruxolitinib, TGX221, 
TAK715, S-trityl-l-cysteine, STF-62247, XMD14-99, LFM-A13, OSU-03012. Detail information for their IC50 and p value referred to Table S6
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analysis to elucidate the subtle underlying mechanism 
from different subgroups.

The most notable findings of MOVICS in PDAC were 
similar to some previous outcomes: patients in CS1 suf-
fered from unfavorable prognosis tended to have genomic 
instability (higher mutation burden and copy number 
altered genome) and higher epidermal development and 
translation. Recurrent mutations of KRAS, TP53, SMAD4, 
TTN, and CDKN2A which have been proven to be related 
to prognosis and drug sensitivity in many whole exome, 
whole genome and multi-omics studies were unsurpris-
ingly detected in our outcome in a more robust way.

Considering the difficulty in finding drugs directly tar-
gets those mutations or potential biomarkers, we changed 
our mind and focused on autophagy regulation therapy, 
trying to yield novel insights into the potential effective 
target of this disease. Highly activated autophagy or some 
autophagy-related genes were detected to be related to 
poorer prognosis11 compared with normal tissue. We fo-
cused on the autophagy-related genes expression and 
modification between different PDAC subgroups based on 
multi-omics data. And we found that more DEARGs were 
upregulated in CS1, along with the poor prognosis. The 
top 20 hub autophagy-related genes (GAPDH, MAPK3, 
RHEB, SQSTM1, EIF2S1, RAB5A, CTSD, MAP1LC3B, 
RAB7A, RAB11A, FADD, CFKN2A, HSP90AB1, VEGFA, 
RELA, DDIT3, HSPA5, BCL2L1, BAG3, and ERBB2) up-
regulated in CS1 might be the potential biomarkers or 
targets. MAP1LC3B, as a subfamily of MAP1LC3 (ATG8 
protein), could be converted to a widely used autophagic 
flux indication marker during the extension phage of 
autophagy.37 It can be upregulated along with the poor 
prognosis by USP22 (ubiquitin-specific peptidase 22) ex-
pression through MAPK1 pathway.38 Combination ther-
apies targeted MAP1LC3 that affect autophagy in PDAC 
have been noticed in some researches: Combining gemcit-
abine and ionizing radiation would upregulate autophagy 
by increasing MAP1LC3 and BECN1 to suppress PDAC 
growth,39 while combing seaweed polyphenols and frac-
tionated irradiation could increase the radiosensitivity of 
PDAC by inhibiting MAP1LC and autophagy the other 
way around.40 RAB5A, RAB7A, and RAB11A are small 
GTPase members from RAS oncogene family, having 
key roles in autophagosome formation and maturation.41 
The mutations of KRAS could be observed in over 90% of 
PDAC, and Yihua Wang, et al. have demonstrated that in-
hibiting autophagy in RAS-mutated cells could increase 
epithelial-mesenchymal transition (EMT) and invasion 
by targeting the NF-κB pathway via accumulation of 
SQSTM1/p62, indicating the potential therapeutic effect 
of NF-κB inhibitors+autophagy inhibitors.42 Weifeng Liu, 
et al. also reported that parthenolide could induce apop-
tosis through autophagy by upregulating p62/SQSTM1, 

LC3II, and Beclin 1 in Panc-1 cells.43 RHEB, a GTP-bound 
protein, could activate mTORC1 to integrate mTOR and 
GTPase in autophagy process.44,45 The crosstalk between 
phosphorylation of translational control (EIF2S1), inhibi-
tion of pro-inflammatory signaling (STAT3), and upregu-
lated autophagy was proved by Niso-Santano M, et al.46

To establish a more comprehensive regulating net-
work for potential autophagy regulators exploration, 
TRANSFAC, JASPAR, and miRTarBase dataset were in-
cluded for miRNA and TF prediction. We provided fur-
ther potential miRNAs (hsa-miR-320a, hsa-miR-34a-5p, 
has-miR-133a-3p, has-miR-3618, mmu-miR-1843-3p, and 
mmu-miR-378b) might regulate those DEARGs. The rela-
tionship and mechanism of all these miRNAs and PDAC 
autophagy are waiting to be explored by lab work, indicat-
ing some new possible directions of PDAC research.

The top five TFs were predicted as ATF4, BRCA1, 
TP53, HDAC9, and XBP1. TP53 showed higher mutation 
rates in CS1 related to higher autophagy and poorer prog-
nosis. And the regulation of TP53 on autophagy is dou-
ble directions.47 Histone deacetylase (HDAC) 9 was found 
to suppress the autophagy in hypoxia condition such as 
ischemia/reperfusion.48,49 And the performance of HDAC 
inhibitors have statistical significance between two sub-
groups in our analysis.

To get the immune landscape of PDAC, infiltrated im-
mune cells and the relationship between DEARGs and 
immune cells were analyzed. Pharmacologically or genet-
ically upregulate autophagy will increase the degrading 
of MHC-I on cell surface, impeding the antigen presenta-
tion, and promoting immune escape.9 CS2 group tended 
to have a lower expression level of autophagy-related 
genes and a higher immune-activated level in our anal-
ysis, in accordance with previous conclusion. Pearson 
correlation analysis also showed a negative relationship 
between DEARGs and immune cells and a positive rela-
tionship among different DEARGs. The multilevel and 
complex regulation crosslink among different genes and 
cells should be validated in lab work.

Although inhibiting autophagy to sustain the MHC-I 
expression on cell surface or stimulating autophagy to in-
duce cell death both seem a logical step, there still remains 
few autophagy regulators going to the clinical trials. 
Chloroquine and hydroxychloroquine inhibiting autoph-
agy and lysosomal functions will not work on its own and 
neither will things like combination with gemcitabine.50–53 
Meanwhile, rapalogue (derivative of rapamycin) showed 
potential to be an effective autophagy modulator by syner-
gistic cytotoxic effect with mTOR inhibitors in some pre-
clinical studies. But this PI3K-AKT inhibitor finally failed 
to shown significant in PDAC possibly due to feedback 
loop escape.54–57 Searching for isoform-specific targeting 
drugs to modulate autophagy has caught researchers' 
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attention for some years, such as PI3K inhibitors, ATG7 
inhibitors, ATG1 (ULK) inhibitors, VSP34 inhibitors, and 
so on. But most of them failed to progress to further clin-
ical assessment subjected to the controversy effects in 
tumor modulation, leaving us a research priority for novel 
possible drugs.

Based on the known autophagy-related regulating net-
work from KEGG or other previous studies, DEARGs and 
TFs, all the inhibitors and stimulators have crosstalk with 
autophagy in dataset were included for drug sensitivity cal-
culation. Known PDAC autophagy-related signal targets 
were included and some compounds showed different sen-
sitivity between two subgroups: mTOR (rapamycin), PI3K/
AKT/PKD (TGX-221, KIN001-102, BX-912, OSU-03012, 
and A-443654) and Ras/Raf/Mek1/2/Erk1/2 (AUY922, 
HG-6-64-1, Sorafenib, and AZ628). We also proposed and 
tested some novel possible targets, hoping to find effective 
autophagy regulation compounds, such as P38/MAPK 
(TAK-715 and KIN001-135), MEK5/Erk5 (XMD8-85), 
JAK/STAT (AS601245 and Ruxolitinib), EG5 (S-Trityl-l-
cysteine), HDAC (MS-275, Tubastatin A and Parthenolide), 
C-MET (PHA-665752), VEGFR (pazopanib), BTK (LFM-
A13), ERBB2 (CP724714, Lapatinib), ROCK (GSK269962A 
and GSK429286A), IKK (bms345541), ITK (BMS509744), 
eIF2 (Salubrinal), and so on.

There remain some limitations have to be admitted: 
First, all the calculation and prediction were based on 
the current data, and there may remain some other un-
known mechanism have effects on autophagy to make 
uncertainties or controversies. It is a hard and costly 
task for our group to validate all the possible drugs, their 
effects on autophagy-related pathways maps and thera-
peutic benefits in such a short time, especially during 
the period of zero-COVID policy in China now. So, the 
exact effect and mechanism how these biomarkers and 
drugs regulate autophagy should be tested and explored 
in lab and clinical work. We believe our map will show 
directions to researchers interested in autophagy in 
PDAC and welcome researchers all over the world to 
go further based on our findings. Second, the outcome 
of Genome-wide association studies (GWAS) is another 
kind of multi-dimensional data hard to be included in 
our clustering analysis. By detecting low penetrance 
variants by GWAS, some genetic susceptibility of PDAC 
could be explained. However, although some large PDAC 
consortiums such as PanScan, PanC4, and PANDoRA 
have been finished to detect possible loci, only small 
number of loci reaching the genome-wide significance. 
Ye Lu, et al.58,59 have tried to explore more potential loci 
and miRNA-related loci by secondary analysis under a 
recessive model, but many of the meta-analysis results 
did not reach the genome-wide statistical significance. 
The false negative outcomes may come from the high 

significance threshold in meta-analysis, indicating the 
necessity of the development of new integrating method 
rather than simply pooled analysis. Exclusion of GWAS 
outcomes in multi-omics analyses may be a lost part of 
the whole regulation network, but how to integrate loci 
estimation in genome-wide level and with other omics 
data are still a huge challenge. We are interested in co-
operating with other multi-omics analyses experts and 
developing new approaches.

In conclusion, we constructed an autophagy-related 
mRNA/miRNA/TF/Immune cells network based on a 10 
state-of art algorithm multi-omics analysis, and screened 
the drug sensitivity dataset for detecting potential signal 
pathway which might be possible autophagy modulators' 
targets.
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