Skip to main content
. 2022 Jun 25;12(1):379–386. doi: 10.1002/cam4.4934

TABLE 3.

Performance metrics of all five machine learning algorithm models

Only PRS scores Features I only PRS + Features I Minimal Features only PRS + Minimal Features
AUROC 0.669 (0.634, 0.708) 0.750 (0.714, 0.781) 0.788 (0.758, 0.819) 0.751 (0.714, 0.784) 0.788 (0.757, 0.820)
Sensitivity 0.920 (0.877, 0.963) 0.807 (0.743, 0.870) 0.800 (0.736, 0.864) 0.807 (0.743, 0.870) 0.800 (0.736, 0.864)
Specificity 0.295 (0.289, 0.302) 0.552 (0.545, 0.560) 0.629 (0.622, 0.636) 0.563 (0.556, 0.570) 0.646 (0.639, 0.653)
DOR 4.819 (4.229, 5.410) 5.151 (4.744, 5.557) 6.783 (6.382, 7.184) 5.377 (4.971, 5.784) 7.299 (6.897, 7.700)
LR+ 1.306 (1.244, 1.370) 1.802 (1.664, 1.953) 2.157 (1.986, 2.341) 1.846 (1.704, 2.000) 2.260 (2.081, 2.454)
LR‐ 0.271 (0.157, 0.466) 0.350 (0.252, 0.485) 0.318 (0.231, 0.438) 0.343 (0.248, 0.476) 0.310 (0.225, 0.426)
FPR 0.705 (0.698, 0.711) 0.448 (0.440, 0.455) 0.371 (0.364, 0.378) 0.437 (0.430, 0.444) 0.354 (0.347, 0.361)

Abbreviations: AUROC, area under the receiver operating characteristic; DOR, diagnostic odds ratio; FPR, false positive rate; LR+, likelihood ratio positive; LR−, likelihood ratio negative; PRS, polygenic risk score.