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Abstract
Background: CD300s are a group of proteins playing vital roles in immune re-
sponses. However, much is yet to be elucidated regarding the expression patterns 
and clinical significances of CD300s in cancers.
Methods: In this study, we comprehensively investigated CD300s in a pan-cancer 
manner using multi-omic data from The Cancer Genome Atlas. We also studied 
the relationship between CD300s and the immune landscape of AML.
Results: We found that CD300A-CD300LF were generally overexpressed in tu-
mors (especially AML), whereas CD300LG was more often downregulated. In 
AML, transactivation of CD300A was not mediated by genetic alterations but by 
histone modification. Survival analyses revealed that high CD300A-CD300LF ex-
pression predicted poor outcome in AML patients; the prognostic value of CD300A 
was validated in seven independent datasets and a meta dataset including 1115 
AML patients. Furthermore, we demonstrated that CD300A expression could add 
prognostic value in refining existing risk models in AML. Importantly, CD300A-
CD300LF expression was closely associated with T-cell dysfunction score and 
could predict response to AML immunotherapy. Also, CD300A was found to be 
positively associated with HLA genes and critical immune checkpoints in AML, 
such as VISTA, CD86, CD200R1, Tim-3, and the LILRB family genes.
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1   |   INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous dis-
ease with underlying cytogenetic or molecular genetic 
aberrations. Despite progress in our understanding of the 
biology of this disease, chemotherapy remains as the main 
intervention and most patients will inevitably relapse and 
ultimately die. Therefore, there is an urgent need to un-
cover more effective therapeutic targets.

Targeting immune checkpoints has proved to be ben-
eficial in treating various cancers and inhibitors blocking 
PD-1/PD-L1 have already been approved by FDA.1–3 AML 
was by itself poorly immunogenic and extremely immune-
suppressive.4 This could be caused by a number of tumor 
immune evasion mechanisms, including upregulation of 
co-inhibitory ligands such as CTLA-4, PD-L1, PD-1, Tim-3 
on AML cells,5 reduced expression of neoantigens/MHC,6 
enrichment of immunosuppressive cell subsets such as 
regulatory T cells (Tregs),7 myeloid-derived suppressor 
cells (MDSCs)8,9, and tumor-associated macrophages 
(TAMs),10,11and induction of T-cell exhaustion.5,12 Several 
clinical and preclinical studies have demonstrated the 
promise of blocking co-inhibitory receptors in AML, yet 
the efficacy and response rate remain to be completely de-
termined.5 Indeed, these studies have paved the way for 
rigorous study of co-inhibitory molecules in AML.

The human CD300 receptor family composed of 
seven members (CD300A, CD300LB, CD300C, CD300LD, 
CD300E, CD300LF, and CD300LG) located on chromo-
some 17.13,14 Specifically, the cytoplasmic domains of 
two receptors, CD300A and CD300LF, contain the im-
munoreceptor tyrosine-based inhibitory motifs (ITIMs), 
which endows them with inhibitory-dominant potential 
in immune processes.15 The CD300 molecules, especially 
CD300A and CD300LF, are mainly expressed on myeloid 
cells, such as monocytes, macrophages, and dendritic cells 
(DCs).13,15,16 In particular, CD300A is also expressed on 
the tumor-suppressive NK and CD8+ T cells, in which it 
mediates inhibitory signal and leads to an exhaustion sta-
tus of these cell.17–20

It has been reported that CD300 family members is 
involved in multiple autoimmune disorders, such as 
asthma,21 colitis,22,23 acute kidney injury,24 and brain 

damage.25 However, far too little attention has been paid 
to the relation between CD300s and cancers, which are 
also immune-mediated or inflammatory diseases. There 
are only few evidences that CD300A was found to be sig-
nificantly overexpressed in hematological malignancies, 
such as acute lymphoblastic leukemia (ALL),26,27 AML,28 
and diffuse large B-cell lymphoma (DLBCL).29 Therefore, 
in this study, we performed a systematic analysis concern-
ing the expression patterns, transcriptional regulations, 
clinical impacts, and roles in the tumor microenviron-
ment (TME) of CD300 members in a broad spectrum of 
cancer types, focusing on its role in AML.

2   |   MATERIALS AND METHODS

2.1  |  Analysis of gene expression data

The transcript levels of CD300 family in normal tis-
sues were determined by using the Genotype-Tissue 
Expression (GTEx) dataset. Averaged expression data of 
CD300s for over 1000 cancer cell lines from various organ 
sites were analyzed through cBioPortal (https://www.
cbiop​ortal.org/).We then systematically analyzed the ex-
pression patterns of CD300s between 9197 tumor and 8290 
normal samples by combining RNA sequencing data from 
the TCGA and the GTEx projects. The two datasets were 
downloaded from the UCSC Xena project and were nor-
malized between arrays using the limma package.30 The 
UALCAN (http://UALCAN.path.uab.edu/) web tool was 
used to evaluate protein expressions of CD300s in certain 
cancers and adjacent normal tissues. Further, we retrieved 
a dataset containing both healthy and AML samples from 
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/geo/) (accession number GSE63270) to validate 
the differential expression of CD300s between AML and 
normal controls. We also used the Hemap AML dataset 
to analyze whether CD300s expressions were associated 
with certain molecular subtypes.31 The Human Proteome 
Map (https://www.human​prote​omemap.org/) database 
was used to assess protein expression levels of CD300s in 
normal tissues and cell types, including 17 adult tissues, 
six primary hematopoietic cells, and seven fetal tissues.

Conclusions: Our study demonstrated CD300s as potential prognostic biomarker 
and an ideal immunotherapy target in AML, which warrants future functional 
and clinical studies.

K E Y W O R D S

CD300s, immune evasion, leukemia, pan-cancer, prognosis
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2.2  |  Analysis of AML single-cell  
RNA-sequencing (scRNA-seq) data

To quantify the expression of CD300s across immune cells 
at the single-cell level, we utilized two published scRNA-
seq data: one consists of 30,712 bone marrow (BM) cells 
from 16 AML samples at diagnosis (Van Galen AML 
scRNA, GSE116256),32 and the other consists of 30,579 
AML BM cells for eight patients (FIMM AML scRNA). 
Both datasets were obtained through the Synapse Web 
Portal (https://www.synap​se.org and doi: 10.7303/
syn21991014), and were processed and visualized using 
custom scripts provided by Dufva et al.31

2.3  |  Analysis of genetic and epigenetic 
alteration data

Genetic alteration (including somatic mutations, amplifi-
cation, and deep deletion) frequencies of CD300s across 
TCGA pan-cancers (including 10,967 patients) were ana-
lyzed and visualized through the cbioportal genomic da-
tabase (http://www.cbiop​ortal.org). Mutation data of 24 
most frequently mutated genes identified in the TCGA 
AML project were used to determine the association be-
tween CD300s expression and common gene mutations. 
The relationships between mutation status and the di-
chotomized expression of CD300s were analyzed by two-
sided Fisher exact tests.

CD300s promoter methylation data in various tumor 
and normal samples were analyzed through DiseaseMeth 
database (http://bio-bigda​ta.hrbmu.edu.cn/disea​semet​h/​​​
analy​ze.html). Correlation between CD300s expression 
and methylation across pan-cancers were assessed through 
the GSCALite platform (http://bioin​fo.life.hust.edu.cn/
web/GSCAL​ite/).33

Previously published H3K4me3 ChIP-seq data of three 
leukemia cells were downloaded from GEO (K562 cells 
from GSE74359; MLL-AF9 blast cells from GSE89336; and 
KG-1 cells from GSE109619) and visualized via UCSC ge-
nome browser.

2.4  |  Survival analysis

Univariate Cox regression was performed to exam-
ine influence of CD300s expression on overall survival 
(OS) across 33 cancers. We then used the Kaplan–Meier 
method to estimate survival in AML patients with high 
and low CD300s levels. The optimal cut point of CD300s 
expression was determined by the X-tile method.34 The 
prognostic value of CD300A in AML was further validated 
in seven independent cohorts of AML patients (GSE6891, 

n = 293; GSE10358, n = 304; GSE37642 [U133A], n = 422; 
GSE37642 [U133plus2], n  =  140; GSE12417 [U133A], 
n  =  163; GSE12417 [U133plus2], n  =  79; GSE71014, 
n  =  104). We also combined these microarray datasets 
using the combat function from the sva R package to create 
a dataset with maximum number of samples. To examine 
the predictive power of CD300A expression in the context 
of existing models, we recalculated two gene expression-
based prognostic models (LSC17 and LI24) as previously 
described.11 The survivalROC R package was used to esti-
mate the time-dependent receiver operating characteristic 
(ROC) curve from survival data and compute the value of 
the area under the curve (AUC). A multivariable model 
was used to develop a nomogram in the TCGA cohort, and 
the scores of each variable were calculated and visualized 
using the nomogramEx R package.

2.5  |  Immune response analysis

Immune cell type abundances were estimated with 
CIBERSORT as described earlier.11 We also used other al-
gorithms35 available from TIMER 2.0 web portal (http://
timer.comp-genom​ics.org/) to quantify the proportions 
of monocytes, macrophages, and CD8 T cells. Finally, the 
TIDE (Tumor Immune Dysfunction and Exclusion) data-
base (http://tide.dfci.harva​rd.edu) was used to calculate 
T-cell dysfunction, T-cell exclusion, and specific immune 
signature scores, and to predict the potential response to 
immunotherapy in AML.

2.6  |  Differential gene expression  
analysis and functional enrichment  
analysis

Briefly, differentially expressed genes between high and 
low CD300A expressers were defined using DESeq2 
R package at false discovery rate (FDR) <0.05. Gene 
Ontology (GO) analysis, Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and Reactome pathway analysis 
of the differentially expressed genes (DEGs) were per-
formed using the STRING database (http://www.strin​
g-db.org/). GO, KEGG, and Reactome terms with false 
discovery rate (FDR)-corrected p-values less than 0.05 
were considered as significantly enriched. The web-tool 
STRING (http://string.embl.de/) was used to construct a 
protein–protein interaction (PPI) network of the DEGs. 
A confidence score >0.9 was used as the judgment crite-
rion. Results were displayed with Cytoscape v3.8.2. We 
also used GeneMANIA (http://genem​ania.org/) to search 
for gene interactions between CD300 members and co-
expressed genes. Gene set enrichment analysis (GSEA) 
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was performed via GSEA v4.1.0 software (http://www.
broad.mit.edu/gsea) using the Hallmark gene sets within 
the Molecular Signatures Database (MSigDB).

2.7  |  Statistical analysis and visualization

Wilcoxon rank sum tests were used to compare differences 
between two groups. Specifically, differential expression 
of CD300s between each molecular subtype and the re-
maining samples in the Hemap dataset were analyzed as 
previously described.31 Spearman correlation analysis was 
used to test the association of CD300s with HLA genes36 
and immune checkpoints37 in AML. All statistical analy-
ses and visualizations were performed using R statistical 
software, version 4.1.1. The box, violin, bar, and bubble 
plots were generated with the R package “ggplot2”, “gg-
pubr”, and “ggsci”, the volcano plot was created using the 
“EnhancedVolcano” package, and survival curves were 
plotted using the “survival” package. All statistical tests 
were two-sided with p-values less than 0.05 considered 
significant.

3   |   RESULTS

3.1  |  Expression patterns of CD300s in 
normal tissues and cancer cell lines

Among seven CD300 molecules (CD300A, CD300LB, 
CD300C, CD300LD, and CD300E, CD300LF, and 
CD300LG). We selected only five members (CD300A, 
CD300LB, CD300C, CD300LF, and CD300LG) for our 
analyses. Since the probes of CD300LD and CD300E 
were not found in the GEO microarray data sets. First, 
we explored the expression patterns of CD300s in differ-
ent human tissues based on RPKM values using GTEx 
(http://www.GTExp​ortal.org/home/). We observed that 
CD300A-CD300LF were highly expressed in blood, lung, 
and spleen; while CD300A was expressed broadly on most 
tissues, CD300B, CD300C, and CD300LF were only weakly 
expressed in other tissues (Figure  1A). Interestingly, 
CD300LG showed a unique expression pattern: it was ex-
pressed at high levels in the adipose tissue, breast, heart, 
and testis, but it was not expressed by blood. Next, we ana-
lyzed the expression profiles of CD300s in cancer cell lines 
from Cancer Cell Line Encyclopedia (CCLE). As shown 
in Figure  1B, CD300s showed relatively high expression 
in cell lines of malignant hematological cell lines (AML, 
chronic myelogenous leukemia, T-lymphoblastic leu-
kemia/lymphoma, and B-lymphoblastic leukemia/lym-
phoma), and the highest expression was seen in AML.

3.2  |  Analysis of CD300 family gene 
expression levels in tumor and non-tumor  
tissues

To date, a comprehensive pan-cancer analyses deter-
mining the dysregulations of CD300s between tumor 
and normal tissues is still lacking. Here, we combined 
data from TCGA and GTEx to systematically compare 
CD300s expression between tumor and adjacent nor-
mal tissue across 29 cancer types (9197 tumor and 8290 
normal samples). Surprisingly, we identified significant 
differential expression of CD300s in almost all cancer 
types tested (Figure  1C). Overall, CD300A-CD300LF 
were more often upregulated in cancers; whereas down-
regulation of CD300LG in tumors was more commonly 
seen (Figure  1D). For CD300A-CD300LF, the most re-
markable difference was observed between AML and 
normal its normal counterparts (Figure  1C). This dif-
ference was also validated in an independent microar-
ray dataset (GSE63270; AML, n = 62, Normal, n = 42) 
(Figure 1E).

In addition, we found that CD300A-CD300LF were 
highly expressed in glioblastoma multiforme (GBM), 
brain lower grade glioma (LGG), kidney renal clear 
cell carcinoma (KIRC), kidney renal papillary cell 
carcinoma (KIRP), ovarian cancer (OV), pancreatic 
adenocarcinoma (PAAD), skin cutaneous melanoma 
(SKCM), stomach adenocarcinoma (STAD), and tes-
ticular germ cell tumor (TGCT), whereas they were 
markedly decreased in lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), and thy-
moma (THYM), as compared with normal controls 
(Figure  1C). Further, we used the UALCAN (http://
UALCAN.path.uab.edu/) database to assess the protein 
expression of CD300A in a number of solid cancers, 
such as breast cancer (BRCA), GBM, LUAD, KIRC, 
and ovarian cancer (OV) (except for CD300LF in GBM, 
other CD300 members were not identified in these pro-
teomic datasets). Importantly, we were able to confirm 
the upregulation of CD300A in BRCA, GBM, head and 
neck squamous cell carcinoma (HNSC), KIRC, PAAD, 
uterine corpus endometrial carcinoma (UCEC), and 
the downregulation of CD300A in liver hepatocel-
lular carcinoma (LIHC) (except for LUAD and OV, 
which showed an opposite pattern of protein expres-
sion) (Figure  1C and Figure  S1). Moreover, CD300LF 
showed increased expression pattern in the proteomic 
dataset of GBM similar to what has been observed in 
the RNA-seq dataset (Figure S1). Overall, these results 
demonstrated that the protein expression patterns of 
CD300A in most cancers agreed very well with the ob-
served levels of mRNA.

http://www.broad.mit.edu/gsea
http://www.broad.mit.edu/gsea
http://www.gtexportal.org/home/
http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
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3.3  |  The genetic and epigenetic 
features of CD300s in pan-cancers

We then explored genetic alterations (including mu-
tations, amplifications, and deletions) frequencies of 

CD300s in TCGA pan-cancer datasets. The average al-
teration frequencies of five genes are summarized in 
Figure  2A. Mutations of CD300s were mainly distrib-
uted in SKCM, UCEC, and LUAD (Figure 2A). For copy 
number alterations (CNAs), CD300s were much more 

F I G U R E  1   Expression patterns of CD300s in normal tissues, cancer cell lines, and primary tumor samples. (A) Heatmap showing 
mRNA expression levels of CD300s in normal tissues from the Genotype-Tissue Expression (GTEx) database. (B) Bar plot showing 
transcriptional alteration frequencies of CD300s in various tumor cell lines from the Cancer Cell Line Encyclopedia (CCLE) database. (C) 
Heatmap of differential expression profiles of CD300s between tumor and normal samples, combining data from TCGA and GTEx databases. 
The color depicts the log2-transformed fold change (Log2FC) between tumor and normal tissues. *p < 0.05; **p < 0.01; ***p < 0.001. (D) Bar 
plot showing genes significantly upregulated and downregulated (P < 0.05) across different cancer types. Red, upregulated expression; blue, 
downregulated expression. (E) Box plots showing expression levels of CD300s in normal controls and AML in the GSE63270 dataset
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frequently amplificated than deleted. In mesothelioma 
(MESO) and THYM, amplifications were the only ge-
netic events, while in uveal melanoma (UVM), CD300s 
were often deleted (Figure 2A). It is worth noting that 
in AML, where CD300s were transcriptionally active, 
no genetic alterations were observed, suggesting other 
mechanisms might contribute to the abnormal CD300s 
expression in AML.

We next asked whether DNA methylation regulates 
the expression of CD300s in cancers. To this end, we 
obtained curated DNA methylation microarray data 
of CD300s across 30 cancer types with matched con-
trols through the human disease methylation database 
Diseasemeth version 2.0 (http://bio-bigda​ta.hrbmu.edu.
cn/disea​semet​h/). We found that CD300LB, CD300C, 
and CD300LF were significantly hypomethylated in al-
most all cancer types as compared to normal samples 
(Figure  2B). Interestingly, CD300A, which is upregu-
lated in most cancers, demonstrated an overall hyper-
methylation pattern.

Further analysis using the GSCA database revealed 
weak negative correlation between methylation and ex-
pression levels of CD300s in a number of cancer types 
(Figure 2C). In AML, however, no methylation differences 
were observed for two most well-characterized CD300 
members-CD300A and CD300LF (Figure 2B).

It has been reported that CD300A could be regulated 
by transcription activation-associated histone marks, 
such as histone H3 lysine 4 mono- and tri-methylation 
(H3K4me1 and me3, respectively).38 Consistently, we 
found a significant enrichment of H3K4me3 marks in 
the promoter regions of CD300A gene in three types 
of leukemia cells from published ChIP-seq datasets 
(K562 cells from GSE74359; MLL-AF9 blast cells from 
GSE89336; KG-1 cells from GSE109619) (Figure  2D). 
Overall, these results suggest that, at least in leukemia 
cells, CD300A expression might be regulated by histone 
modification.

3.4  |  Prognostic significances of CD300s 
in different cancers

Given that the expression of CD300s was significantly 
dysregulated in cancers, we asked whether these genes 

have prognostic relevance in TCGA pan-cancer datasets. 
Cox regression analyses revealed that in most cancers, 
high expressions of CD300A-CD300LF were related to 
poor overall survival (OS), such as in LAML, LGG, and 
UVM (Figure  3A). While in SKCM, a significant ben-
eficial effect on OS was observed for CD300A, CD300C, 
and CD300LF (Figure 3A). However, CD300LG was only 
prognostically relevant in a few cancers (Figure  3A). 
Considering that CD300A-CD300LF were specifically 
and highly expressed in AML, we decided to focus 
our survival analysis on these genes in AML. To this 
end, we collected seven independent AML datasets 
from GEO; X-tile was then performed to determine 
the optimal thresholds in TCGA and GEO datasets. 
First, we were able to validate the prognostic value of 
CD300A-CD300LF expression within the TCGA cohorts 
(Figure 3B) and cytogenetically normal (CN) subsets of 
AML (Figure  3C). Importantly, the adverse prognostic 
impact of CD300A was validated in seven independent 
cohorts of AML patients (GSE6891, n = 293; GSE10358, 
n  =  304; GSE37642 [U133A], n  =  422; GSE37642 
[U133plus2], n  =  140; GSE12417 [U133A], n  =  163; 
GSE12417 [U133plus2], n  =  79; GSE71014, n  =  104) 
(Figure 4A,C,E-I) and CN-AML patients from GSE6891 
and GSE10358 cohorts (Figure 4B,D). In order to incor-
porate the maximum number of samples, we combined 
these datasets from GEO yielding a meta dataset of 1115 
AML patients (including 242 CN-AML patients). In the 
meta dataset, CD300A status remained excellent predic-
tive power for OS (whole cohort, p = 5.8*e−9; CN-AML, 
p = 5.7*e−5) (Figure 4J,K).

3.5  |  Additional value of CD300A 
expression in refining risk stratification 
in AML

The strong prognostic significance of CD300A status 
led us to hypothesize that it may add prognostic value 
to established risk models. Two gene expression-based 
prognostic models-LSC17 and LI24-have shown their 
superior prognostic performance in risk stratification 
for AML patients.39,40 We therefore test the predictive 
power of CD300A expression in the context of these two 
models. We established both models in the TCGA and 

F I G U R E  2   The genetic and epigenetic features of CD300s in pan-cancers. (A) Genetic alteration ((including mutations, amplifications, 
and deletions) frequencies of CD300s across different tumors from TCGA. (B) Heatmap of differential methylation profiles of CD300s 
between tumor and normal samples, using data from the Diseasemeth database. The color depicts methylation differences between tumor 
(T) and normal (N) tissues. *p < 0.05; **p < 0.01; ***p < 0.001. (C) Correlation between methylation and mRNA expression of CD300s 
analyzed via the GSCALite platform (http://bioin​fo.life.hust.edu.cn/web/GSCAL​ite/). Blue dots indicate negative correlation and red 
indicate positive correlation. The size of the point represents the statistical significance. (D) ChIP-seq tracks for H3K4me3 at CD300A gene 
loci in K562 cells, MLL-AF9 blast cells, and KG-1 cells. ChIP-seq data were obtained from GSE74359, GSE89336, and GSE109619

http://bio-bigdata.hrbmu.edu.cn/diseasemeth/
http://bio-bigdata.hrbmu.edu.cn/diseasemeth/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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GSE10358 cohorts and patients were stratified into high- 
and low-risk groups, respectively (dichotomized accord-
ing to the median score value). When applied to each 
risk group stratified by LSC17 and LI24 in the TCGA 
cohort, CD300A status was still able to discriminate be-
tween shorter and longer OS both within the high- and 
low-risk groups (Figure  5A,B). This was also true for 
both models in the GSE10358 cohort (Figure  S2A and 
B). We then compared the prediction performance of 
CD300A expression with that of LSC17 and LI24 using 
by calculating the AUC. The AUC of CD300A was 0.567, 
0.640, and 0.710 in the TCGA cohort at 1, 3, and 5 years; 
CD300A yielded the highest AUC in predicting the 5-
year survival rate, even surpassing LSC17 and LI24 

(Figure  5C). In the GSE10358 cohort, CD300A expres-
sion also had a good performance in predictive accu-
racy (AUC: 0.623, 0.681, and 0.696 at 1, 3, and 5 years, 
Figure  S2C), comparable to that of LSC17 but lower 
than LI24. In summary, these results suggest CD300A 
as a good candidate for refining existing classification 
schemes.

3.6  |  Prognostic model of CD300A 
in AML

To assess whether CD300A expression impacted OS in-
dependent of known prognostic factors for AML, we 

F I G U R E  3   The prognostic significances of CD300s in cancers. (A) Association between CD300s expression and patient prognosis across 
33 cancer types as determined by the Cox regression model. (B and C) Kaplan–Meier curves representing OS of AML patients from the 
whole TCGA cohort (B) and the CN-AML subsets (C) based on the expression of indicated CD300 members (CD300A-CD300LF)
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performed multivariate analysis in the TCGA cohort. 
In multivariate models, including all parameters with 
p-value less than 0.2 under univariate analysis (Figure 5D 
and Table  S1), high expression of CD300A remained an 
independent prognosticator for OS (p  =  0.031) together 
with age (p < 0.0001), white blood count (WBC count, 
p = 0.039), TP53 mutation status (p = 0.001), FLT3-ITD 
mutation status (p  =  0.013), and cytogenetic risk group 
(p = 0.032) (Figure 5E).

To better predict AML patients' prognosis, we con-
structed a nomogram based on multivariable Cox propor-
tional hazards model in the TCGA cohort (Figure 5F). Six 
independent prognostic factors, age, WBC, mutations of 
TP53 and FLT3-ITD, cytogenetic risk, and CD300A expres-
sion, were included in the model. In the nomogram, each 
variable is assigned a separate score, and the sum of these 
scores was rescaled to a range of 0–100 to estimate the 
probability of an event. The probability of AML patient 

survival at 1-, 3-, and 5-year could be determined by draw-
ing a line from the total point axis straight down to the 
outcome axis. As can be seen in the figure, the nomogram 
quantitatively predicted the probability of 1-year, 2-year, 
and 3-year OS (Figures 5F).

3.7  |  Molecular subtypes and 
clinical characteristics associated with 
CD300s expression

We then examined the associations of CD300s expres-
sion with the clinical and genetic characteristics in the 
TCGA AML cohort. Significant differences were found 
between FAB subtypes and CD300A-CD300LF expres-
sion status: high expression of CD300A-CD300LF were 
significantly more frequent in AML with myelomono-
cytic (M4) and monocytic (M5) morphology, whereas 

F I G U R E  4   Independent validation of the prognostic value of CD300A. (A-K) Kaplan–Meier curves representing OS of seven AML 
cohorts from GEO (GSE6891, n = 293; GSE10358, n = 304; GSE37642 [U133A], n = 422; GSE37642 [U133plus2], n = 140; GSE12417 
[U133A], n = 163; GSE12417 [U133plus2], n = 79; GSE71014, n = 104) (A, C, and E-I), CN-AML patients from GSE6891 and GSE10358 
cohorts (B and D), a merged dataset of 1115 AML patients (J), and 242 CN-AML patients (K) according to CD300A expression status
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the M3 subtype was exclusively observed in patients 
with low CD300A-CD300LF expression (Figure  6A). 
Consistently, when examining the expression differ-
ences of CD300s across published molecular subtypes 
in the Hemap AML dataset, we found that CD300A-
CD300LF were more highly expressed in monocyte-like 
AML, with low-expressions levels in the PML-RARA 
subtype (Figure  6B). Moreover, patients with high 
CD300A-CD300LF expression were more likely to be 
>60-year-old and less likely to present with favorable 
cytogenetics (Figure 6A).

To determine whether CD300s correlated with muta-
tional status of AML-associated genes, we examined sig-
nificantly mutated genes occurred in patients with high 
and low CD300s expression (dichotomized at the median 
expression value of each gene), using mutational data ad-
opted from TCGA. As shown in Figure 6C, patients with 
high CD300A expression had higher frequency of muta-
tions in IDH2, while IDH1 was more frequently mutated 
in those with low CD300LB and CD300C expression. 
Patients with NPM1 mutations had a significantly higher 
expression of CD300LB and CD300LF than those with 

F I G U R E  5   Additional value of CD300A expression in refining risk stratification in AML. (A and B) OS of patients from TCGA as 
stratified by the LSC17 (A) and the LI24 (B) signature. Patients with a low- and high-risk score were further dichotomized according to 
CD300A expression status. (C) Time dependent ROC curves of CD300A expression, LSC17, and LI24 in the TCGA cohort at 1, 3, and 5 years. 
(D and E) Univariate (D) and multivariate (E) analysis of CD300A expression for OS in the TCGA cohort. For univariate analysis, only 
variables with p ≤ 0.20 are shown. Please see Supplementary Tables S1 for the full list of variables. (F) Nomogram for predicting 1-, 3-, and 
5-year OS for AML patients in TCGA cohort
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NPM1-wild type. Moreover, high CD300LG expression 
was positively correlated with TP53 mutations and nega-
tively correlated with DNMT3A mutations.

3.8  |  Association between CD300s 
expression and immune responses 
in cancer

The CD300 molecules are known to play important roles in 
the fine tuning of immune responses, we thus further ex-
plored the relationship between CD300s and tumor immune 
infiltrates. First, analysis of normal cell populations from the 
Hemap dataset revealed that CD300s were generally expressed 
at higher levels in myeloid lineage immune cells (monocytes, 
macrophages, neutrophils, and myeloid progenitors), with 
relatively low expression in lymphoid lineages (lymph node, 
T/NK cells, CD4+ T cells, plasma cell, B cell, and germinal 
center cell) (Figure 7A). Interestingly, the opposite trend was 
observed for CD300LG. This myeloid preference was also 
confirmed in two recently published scRNA-seq datasets 

of AML (Van Galen AML scRNA and FIMM AML scRNA, 
Figures S3A and B). Moreover, we have observed a strong 
protein expression of CD300A and CD300LF in monocytes 
using Human Proteome Map (https://www.human​prote​
omemap.org/), a database for mass-spectrometry proteomic 
analysis (Figure S4). It is noteworthy that CD300A showed a 
strong signal on NK cells in both the scRNA-seq and mass-
spectrometry datasets (Figure  S3 and S4), consistent with 
previous findings that CD300A is expressed on the surface of 
all human NK cells.17,18

We then assessed the correlation of CD300s expression 
with infiltrations of 22 immune cell types inferred by the 
CIBERSORT algorithm. We found that CD300A-CD300LF 
expression was positively associated with monocyte infiltra-
tions but negatively associated with infiltrations of resting 
mast cells. CD300LB, CD300C, and CD300LF expression 
also showed significantly negative associations with infiltra-
tion of T/NK cells (CD8 T cells, resting T cells CD4 mem-
ory cell, activated, and resting NK cells) and B cells (plasma 
cells, memory B cells, and naïve B cells), while these three 
genes showed a significantly positive association with the 

F I G U R E  6   Molecular subtypes and 
clinical characteristics associated with 
CD300s expression. (A) Heatmap showing 
association between CD300s expression 
and clinical characteristics in the TCGA 
AML cohort. (B) Expression differences 
of CD300s among molecular subtypes in 
the Hemap AML dataset. The expression 
fold change between each subtype and 
the remaining samples were compared 
using the Wilcoxon rank sum test. The 
color of the dots indicates fold changes 
(log2) and size indicates the FDR values. 
The FDR values were categorized into six 
groups based on significance cutoffs for 
visualization (0.05, 0.01, 0.001, 1e-5, 1e-
16). (C) Bubble plot showing associations 
between the expression of CD300s and 
common mutational events in the TCGA 
dataset. Bubble size indicates −log10 
(Fisher test p-value). Color signifies log10 
(odds ratio [OR]), positive association is 
indicated with red circles, negative with 
blue circles, and non-association with 
gray circles
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immunosuppressive M2 macrophages (Figure 7B). By con-
trast, no correlation was found of CD300A and CD300LG ex-
pression with the majority of cell types (Figure 7B). Similar 
results were found by analyzing the CIBERSORT estimates 
in the GSE10358 and GSE6891 dataset (Figure S5A and B). 
Importantly, when other methods were used for calculating 
the relative fractions of immune cells, positive associations 
between CD300A-CD300LF and monocytes were consis-
tently seen, while M2 macrophages were positively correlated 
and CD8 T cells negatively correlated with CD300A-CD300LF 

for most-if not all-instances in all three datasets (Figure 7C-E 
and Figure S6A-F). Collectively, these findings indicate im-
munosuppressive roles of CD300s in the TME.

3.9  |  Correlation of CD300s with HLA 
genes and immune checkpoints in AML

Given that human leukocyte antigen (HLA) and im-
mune checkpoints plays important roles in the TME, it 

F I G U R E  7   The relation between CD300s expression with immune cell infiltration, HLA genes, and immune checkpoints. (A) Heatmap 
showing CD300s expression in normal cell populations from the Hemap dataset. (B) Correlation matrix plot showing correlations between 
CD300s and tumor immune infiltrating cells in AML. The overall immune cell compositions were estimated by CIBERSORT in the TCGA 
dataset. (C-E) Correlation matrix plots showing correlations between CD300s with monocytes (C), macrophages (D), and CD8 T cells (E). 
The overall immune cell compositions were estimated by indicated methods in the TCGA dataset. (F and G) Heatmap showing correlation 
between the expression of CD300s with HLA genes (F) and immune checkpoint genes (G) in the TCGA dataset
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is therefore of great interest to evaluate the relationship 
between CD300s and these immune signatures. We found 
that CD300A-CD300LF positively correlated with most 
of the HLA genes (Figure 7F). Since cancers with higher 
HLA gene expression were often more immunologically 
active, showing significantly higher immune cell infil-
tration,41 it is reasonably to speculate that high CD300s 
expressers might share the same trait. In addition, we 
observed strong positive correlations between CD300A-
CD300LF expression and immune checkpoint molecules 
such as: C10orf54, CD86, CD200R1, HAVCR2, TNFRSF8, 
and TNFRSF9; whereas CD300C, CD300LB, and CD300LF 
expression were negatively correlated with CD160, 
CD200, ICOSLG, and TMIGD2 (Figure 7G). Distinct cor-
relation patterns were observed between CD300LG and 
these signatures, a trend consistent with the previous re-
sults (Figure 7F,G).

3.10  |  CD300s expression predicted 
response to immunotherapies

Recently, a gene expression-based score called tumor im-
mune dysfunction and exclusion (TIDE) were showed to 
have excellent performance in predicting immunotherapy 
clinical response.42 We therefore checked the relation-
ship of CD300s with the expression signatures of T-cell 

dysfunction and T-cell exclusion. Surprisingly, we found 
a negative correlation of CD300A-CD330LF with T cell 
exclusion signatures, including myeloid-derived suppres-
sor cells (MDSCs), M2 subtype of tumor-associated mac-
rophages (TAMs), exclusion and TIDE score but a positive 
correlation with the T-cell dysfunction score, IFNG, and 
merck18 signatures (Figure 8A). This indicates that CD300 
molecules might contribute to immune evasion through 
the induction of T-cell dysfunction. Based on these re-
sults, we asked whether CD300 molecules would have a 
guiding value in predicting immunotherapy in AML. In 
the TCGA AML cohort, we found that the predicted re-
sponders showed significantly higher expression levels 
of CD300A-CD300LF but lower levels of CD300LG than 
non-responders (Figure 8B), suggesting CD300 expression 
could be a good predictor for immunotherapy in AML.

3.11  |  The biological significance of 
CD300s expression in AML

Next, we investigated the potential biological features 
associated with CD300s in AML. We choose CD300A to 
represent this family, since the expression of five CD300 
members (except for CD300LG) were highly correlated in 
AML (Figure S7). A comparison of gene expression pro-
files of patients with high and low CD300A expression 

F I G U R E  8   CD300s expression predicted response to immunotherapies. (A) Correlation matrix showing the association between 
CD300s expression with T-cell dysfunction and T-cell exclusion signatures in TCGA AML cohort, as determined using the tumor immune 
dysfunction and evasion (TIDE) method. (B) Violin plots comparing the expression of CD300s between patients who benefitted or did not 
benefit from immunotherapy in AML, as predicted by the TIDE algorithm. Significances were calculated by Wilcoxon rank sum tests
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(based on the median expression value) was then per-
formed. Overall, 442 genes (147 up- and 295 downregu-
lated; adjusted p < 0.05; |log2FC| > 1.5) were differentially 
expressed in CD300Ahigh versus CD300Alow patients 
(Figure 9A and Data S1). Among the genes positively cor-
related with CD300A were monocytes marker gene CD14, 
further supporting the monocytic prevalence of CD300s. 
Also highly correlated were well-characterized im-
mune checkpoint genes in AML, such as IDO1, LILRB1, 
LILRB2, and LILRB3 (Figure 9A). Using the STRING tool, 
we constructed a protein–protein interaction (PPI) net-
work of the differentially expressed genes (DEGs), with 
a confidence score >0.90. Genes interacted with CD300A 
and their sub-networks were shown through Cytoscape 

software (Figure 9B). We observed that 13 genes were di-
rectly interacting with CD300A: LILRB1, LILRB2, LILRB3, 
LILRA1, LILRA4, CLEC4A, CCR5, SIGLEC7, CX3CR1, 
CD1C, CST7, CD300E, and FGR. The majority of these 
genes were involved in immune responses. Among them 
were immune-inhibitory leukocyte immunoglobulin-like 
receptors: LILRB1, LILRB2, LILRB3, LILRA1, LILRA4;43 
CX3CR1, and CD1C, commonly expressed in myeloid den-
dritic cells (mDCs), which modulate T-cell functions with 
either stimulatory or suppressive effects;44,45 SIGLEC7, 
an inhibitory receptor expressed on NK cells that could 
indicate NK cell dysfunction in AML.46,47 Genes involved 
in the pathogenesis of AML such as CCR5,48 CST7,49 and 
FGR50 were also detected. Collectively, these gene–gene 

F I G U R E  9   The biological significance of CD300A expression in AML. (A) Volcano plot showing differentially expressed genes (DEGs) 
between high and low CD300A expressers. (B) Cytoscape analysis of CD300A-related network using PPI information obtained from STRING 
database (http://strin​gdb.org/). Red nodes represent upregulated genes and blue represent downregulated genes. (C) Reactome Pathway 
analysis of DEGs. (D) Gene set enrichment analysis (GSEA) of patients with high and low CD300A expression, using Hallmark gene sets 
obtained from the Molecular Signatures Database (MSigDB)
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interactions might contribute to the immunomodulatory 
effects of CD300A in AML.

GeneMANIA analysis confirmed that LILRB3 was 
closely connected with CD300 molecules, and that the co-
expressed genes were mainly involved in negative regula-
tion of a series of cellular processes such as: mononuclear 
cell proliferation, leukocyte proliferation, leukocyte acti-
vation, cell activation, immune system process, and lym-
phocyte activation, highlighting the immunosuppressive 
functions of CD300 members (Figure S8A).

To further identify the potential function of these DEGs, 
we performed GO analysis using these DEGs and the top 10 
significant terms of BP, MF, and CC enrichment analysis are 
shown (Figure S8B). Most GO terms were related to recep-
tor activity, component of plasma membrane, and plasma 
membrane. KEGG analysis revealed that metabolism-related 
pathways were significantly enriched (Figure  S8C); while 
Reactome Pathway analysis demonstrated the enrichment 
of immunoregulatory interactions between a lymphoid and 
a non-lymphoid cell (Figure  9C). Further, using GSEA, we 
found that multiple immune-related cancer hallmarks were 
enriched in the CD300Ahigh group, such as HALLMARK_
ALLOGRAFT_REJECTION, HALLMARK_COMPLEMENT, 
H A L L M A R K _ I L 6 _ J A K _ S TAT 3 _ S I G N A L I N G , 
H A L L M A R K _ I N F L A M M AT O RY _ R E S P O N S E , 
HALLMARK_INTERFERON_ALPHA_RESPONSE, 
HALLMARK_INTERFERON_GAMMA_RESPONSE, 
HALLMARK_NOTCH_SIGNALING, HALLMARK_TNFA_
SIGNALING_VIA_NFKB (Figure 9D).

4   |   DISCUSSION

The CD300 receptor family members are a group of genes 
involved mainly in fine-tuning the immune responses. 
Specifically, CD300A and CD300LF have long cytoplasmic 
tail containing ITIMs that are capable of eliciting nega-
tive signals.15 While CD300LF could act both as activat-
ing and inhibitory receptor, CD300A preferentially exerts 
immune-inhibitory activity. Since our analyses were 
largely based on microarray datasets, where the probes 
of CD300LD and CD300E does not exist, we therefore fo-
cused on investigating the other five members (CD300A, 
CD300LB, CD300C, CD300LF, and CD300LG). First, using 
GTEx database, we showed that CD300A-CD300LF were 
predominantly expressed in the blood, lung, and spleen 
tissue, consistent with previous reports.51 One exception 
is CD300LG, which was highly expressed in the adipose 
tissue, breast, heart, and testis, but it was not expressed 
by blood. This is in line with the finding that CD300LG 
was not expressed by leukocytes but was expressed at high 
levels in the heart.52 Indeed, in all our following analy-
ses, CD300LG showed a distinct transcriptional/clinical 

pattern compared with the other four genes. This could be 
due to the structural difference observed in CD300LG: it 
lacks structural motifs of stimulatory or inhibitory poten-
tial and contains a mucin-like domain.13,51

Several studies have reported the pathological roles 
of CD300s in autoimmune diseases,21–25 but there is still 
insufficient data for their involvement in human can-
cer development. To date, transcriptional dysregula-
tions of CD300s, especially CD300A and CD300LF, have 
been reported mostly in patients with hematological 
malignancies, such as ALL, AML, and DLBCL.26–29,53,54 
Accordingly, our analyses showed that CD300A-CD300LF 
were remarkably overexpressed in AML both in RNA-seq 
(TCGA) and microarray (GSE63270) datasets. In addi-
tion, we found that CD300A-CD300LF were more often 
upregulated in tumors, whereas the opposite was seen for 
CD300LG, further supporting the distinct expression pat-
tern of CD300LG.

Transcriptional control of the CD300 molecules is 
essential for the immediate regulation of immune re-
sponses. Various triggering stimuli, including cyto-
kines,21,55 Toll-like receptors (TLRs),56 hypoxia, and 
granulocyte–macrophage-colony-stimulating factor 
(GM-CSF),57 are known to regulate CD300s expressions. 
However, evidences regarding their transcriptional reg-
ulation at the genomic and epigenetic level is insuf-
ficient. We thus assessed the genomic and epigenetic 
landscape of CD300s across TCGA pan-cancer studies. 
Interestingly, we could not identify any mutation or copy 
number changes of CD300s in AML. Further analyses 
revealed that CD300A and CD300LF were also unlikely 
to be regulated by DNA methylation in AML. Recent ev-
idence indicates that CD300A could be robustly induced 
by PPARβ/δ-mediated histone modification in macro-
phages.38 Similarly, we observed a significant enrichment 
of H3K4me3 marks in the promoter regions of CD300A 
gene in leukemia cell lines. These findings indicate that 
CD300A might be transactivated by H3K4me3 via direct 
binding.

Among CD300 family members, CD300A was found to 
be negatively associated with prognosis in ALL,27 AML,28 
and DLBCL.29 In the present study, we comprehensively 
assessed the prognostic implications of CD300s in 33 can-
cer types and we were able to confirm the adverse prog-
nostic impact of CD300A in AML. In the previous study, 
survival analysis of CD300A was restricted to the TCGA 
dataset, our further used seven independent AML data-
sets and a meta dataset including 1115 AML patients to 
confirm the prognostic value of CD300A. Moreover, we 
demonstrated additional value of CD300A expression in 
refining existing classification schemes in AML. These re-
sults suggest CD300A as a promising biomarker of cancer 
risk in AML patients.
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As immune-modulatory molecules, it is of par-
ticular interest to investigate CD300s' correlations 
with immune cell infiltrations in the TME. CD300A-
CD300LF were reported to be preferentially expressed 
in cells belonging to the myeloid lineage.13,15,16 In ac-
cordance, we showed that CD300A-CD300LF were 
highly expressed in myeloid lineage immune cells (es-
pecially monocytes) both in bulk or at the single cell 
level. Besides, CD300A-CD300LF were significantly 
enriched in monocyte-like AML subsets. It was note-
worthy that CD300A was also highly expressed in NK 
cells infiltrating AML cells, a finding similar to what 
has been reported previously.17,18 It has been known 
that patients with AML often have dysfunctional T 
cells and NK cells at diagnosis.58,59 Indeed, CD300A 
could inhibit NK cell-mediated cytotoxicity and make 
NK cells display a similar status with exhausted T 
cells.17,18 This facilitates AML blasts escape from im-
mune elimination and cooperate to promote disease 
progression, which might explain the poor outcome 
observed in high CD300A expressers. We can safely 
speculate that blocking CD300A could restore NK cells 
activity and lead to AML suppression. Accordingly, we 
found CD300A expression was positively correlated 
with T-cell dysfunction score and high CD300A ex-
pressers were predicted to have a better response to 
immunotherapy in AML. Also, CD300A was found 
to be positively associated with inhibitory immune 
checkpoints, such as C10orf54 (also known as VISTA), 
CD86, CD200R1, HAVCR2 (also known as Tim-3), and 
the LILRB family genes (please refer to our unpub-
lished work, DOI: 10.21203/rs.3.rs-810,313/v1), all of 
which were reported to be overexpressed in AML cells 
and some of them may become promising therapeu-
tic targets.60–65 Interestingly, two genes co-expressed 
and interacted with CD300A-CX3CR1 and CD1C-were 
both found to be expressed on mDCs in the AML TME. 
While CX3CR1+ DC (like CD206+ DC) expresses high 
levels of CD274 (PD-L1) and PDCD1LG2 (PD-L2) and 
mediates T-cell suppression, the CD1C+ DC popu-
lation expresses mainly functional molecules, and 
displays a T-cell stimulatory capacity.44 This further il-
lustrates the fine-tuning of immune responses in AML 
by CD300A-related gene networks.

Our study has several limitations. First, because 
the expression data of CD300LD and CD300E were 
not obtainable from microarray data sets, their clinical 
and immunological implications were leaved undeter-
mined. Second, CD300A has already been reported to 
be upregulated and prognostically significant in AML.28 
Nonetheless, our results are important in providing a 
comprehensive view of the prognostic value of CD300 
members across a broad type of cancers. Moreover, we 

have extended the previous finding by validating the 
prognostic impacts of CD300A in seven independent 
AML cohorts and comparing its predictive performance 
with established models. Third, most of our findings 
were based on RNA-seq and microarray datasets, future 
validation using techniques like qPCR and immunohis-
tochemistry (IHC) is needed. Finally, although our bio-
informatics analyses gave some immunological insights 
of CD300s in AML and demonstrated their potential as 
predictive biomarkers for immunotherapy, experiment-
based information, and prospective clinical assessment 
are clearly required.

In summary, we found that CD300A-CD300LF were sig-
nificantly upregulated and high expression of these genes 
predicted worse survival in AML. Specifically, CD300A 
may aid risk stratification in AML and its expression was 
likely to be regulated by H3K4me3 histone modification. 
Importantly, we demonstrated CD300A as an essential co-
inhibitory signal that might cause NK cell exhaustion and 
promotes immune escape of AML cells. CD300A may be a 
potential candidate for AML therapy via monoclonal an-
tibodies or other specific inhibitory strategies. Prospective 
clinical study is clearly needed to validate the findings in 
our study.
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