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Abstract

Purpose

To predict pathological complete response (pCR) after neoadjuvant chemotherapy using

extreme gradient boosting (XGBoost) with MRI and non-imaging data at multiple treatment

timepoints.

Material and methods

This retrospective study included breast cancer patients (n = 117) who underwent neoadju-

vant chemotherapy. Data types used included tumor ADC values, diffusion-weighted and

dynamic-contrast-enhanced MRI at three treatment timepoints, and patient demographics

and tumor data. GLCM textural analysis was performed on MRI data. An extreme gradient

boosting machine learning algorithm was used to predict pCR. Prediction performance was

evaluated using the area under the curve (AUC) of the receiver operating curve along with

precision and recall.

Results

Prediction using texture features of DWI and DCE images at multiple treatment time points

(AUC = 0.871; 95% CI: (0.768, 0.974; p<0.001) and (AUC = 0.903 95% CI: 0.854, 0.952;

p<0.001) respectively), outperformed that using mean tumor ADC (AUC = 0.850 (95% CI:

0.764, 0.936; p<0.001)). The AUC using all MRI data was 0.933 (95% CI: 0.836, 1.03;

p<0.001). The AUC using non-MRI data was 0.919 (95% CI: 0.848, 0.99; p<0.001). The

highest AUC of 0.951 (95% CI: 0.909, 0.993; p<0.001) was achieved with all MRI and all

non-MRI data at all time points as inputs.
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Conclusion

Using XGBoost on extracted GLCM features and non-imaging data accurately predicts

pCR. This early prediction of response can minimize exposure to toxic chemotherapy, allow-

ing regimen modification mid-treatment and ultimately achieving better outcomes.

Introduction

Neoadjuvant chemotherapy (NAC) [1] in the setting of locally advanced breast cancer can

reduce tumor size, making breast conservation surgery feasible and obviating the need for

mastectomy. Pathological complete response (pCR) is a desirable endpoint of NAC entailing

no residual invasive tumor is present at surgery post NAC [2, 3]. Patients with pCR are more

likely to be candidates for breast-conserving surgery and to have longer progression-free and

overall survival [2, 3]. Therefore, pCR can be used as a surrogate for favorable outcome. The

ability to predict pCR prior to treatment would help in determining which patients will benefit

from NAC and which will not. Furthermore, predicting pCR can allow for changes in treat-

ment regimens, maximizing the chances of pCR. Thus, the accurate prediction of pCR could

help in identifying patients who are likely to respond to specific NAC drugs while enabling

oncologists to alter treatments mid-course if needed in order to maximize successful outcomes

while minimizing the adverse effects of unnecessary chemotherapy.

Currently, the efficacy of a chemotherapy regimen is tested invasively through core needle

biopsy. Clinical biomarkers, such as Ki67, give a limited assessment of the entire tumor as they

are obtained by core needle biopsy and therefore may not be representative of the entire

tumor. Noninvasive imaging can overcome this problem of tumor heterogeneity, as the entire

tumor is depicted on images [4]. In fact, the capacity of pre and post NAC MRI to depict

response to treatment and predict pCR has already been demonstrated [5–7].

Machine learning (ML) has been used to predict eventual pCR. Radiomic features (such as

volume, sphericity, DCE MRI signal of wash in and wash out) [8–12] and deep learning analy-

sis of whole MR images [13], DCE dynamics [14] that include demographics and molecular

receptor subtypes [15, 16] have been used to predict pCR. ML analysis has also been applied to

include diffusion MRI [17–20]. However, the role of diffusion MRI to predict pCR is under-

studied and the results remain controversial [21].

The goal of this study was to apply the extreme gradient boosting (XGBoost) algorithm to

predict pCR using multiparametric MRI data along with non-imaging data at multiple treat-

ment timepoints as inputs. Extreme gradient boosting (XGBoost) was chosen due to the rela-

tively small sample size of the dataset, as XGBoost has been shown to be effective even with

limited data. Furthermore, XGBoost has been proven to be effective at classifying with tabular

data. This approach has the potential to non-invasively identify patients who are likely to

respond to neoadjuvant chemotherapy at diagnosis or early treatment. This approach may

prove useful for treatment planning, treatment execution, and mid-treatment adjustment to

achieve better outcomes.

Materials and methods

Data sources

In this retrospective study, data from the Breast Multiparametric MRI for prediction of NAC

Response-2 (BMMR2) competition training dataset, which was curated from the ACRIN-6698
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sub trial of the I-SPY 2 TRIAL (NCT Number: NCT01564368), was used to create machine

learning models to predict pCR. Patients from the ACRIN-6698 multicenter trial were previ-

ously reported in a paper by Partridge et. Al titled “Diffusion-weighted MRI Findings Predict

Pathologic Response in Neoadjuvant Treatment of Breast Cancer: The ACRIN 6698 Multicen-

ter Trial”, published in Radiology. Data collected in that trial was published as an open dataset.

Our paper utilizes that data (n = 117 patients, of which 36 had pCR). While the previous paper

attempted to predict pCR solely using DWI MRI with logistic regression as the model tech-

nique, we use extreme gradient boosting with multiple types of MRI data as well as patient

demographic data to predict pCR. As the data containing the training and testing sets came

from a public dataset, no IRB was required.

All 117 female patients in the dataset were diagnosed with invasive breast cancer and

underwent 12 weeks of paclitaxel followed by 4 weeks of anthracycline treatment. Each patient

sample contained collections of MRI images taken at 3 distinct timepoints, namely, tp0: pre-

treatment, tp1: 3 weeks post paclitaxel (± experimental agent), and tp2: 12 weeks post paclitaxel

(± experimental agent).

Non-imaging data included patient age, race, lesion type (one of multiple masses, single

mass or non-mass enhancement), hormone receptor status (hormone receptor (HR) positive/

negative, human epidermal growth factor receptor 2 (HER2) positive/negative), and Scarff-

Bloom-Richardson (SBR) grade. Of the 117 patients, 12 patients had missing data (11 had an

unknown race, and 1 had an unknown SBR grade). These values were filled using backward

fill, which populates the missing data with the data from the next patient. There were no other

missing data (Fig 1).

MRI data, including DWI and DCE MRI, were performed bilaterally in the axial orientation

using a 1.5- or 3.0-T field strength magnet and a dedicated breast radiofrequency coil as

described in [22]. Acquisition parameters are provided in the data source in our data availabil-

ity statement. DCE images were aligned with their corresponding rectangular tumor masks

with position metadata, which highlighted the tumor and the surrounding area. Textural fea-

tures were extracted using the 3rd dynamic DCE data for all 3 time points in the rectangular

region of interest mask. DWI images were aligned with manually defined binary segmentation

data provided in the dataset. Features were calculated in the smallest rectangle that encom-

passed the segmented tumor using b = 800 s/mm2 DWI imaging data. ADC tumor segmenta-

tions were carefully aligned with their corresponding ADC map with position metadata.

Tumor ADC values, and changes in these values, were extracted for ML analysis. All images

were interpolated to 0.7825 mm x 0.7825 mm voxel spacing with a 2.5 mm slice thickness,

which was the median spacing and thickness for all patients. When applying machine learning

techniques on multicenter data, data harmonization [23] may be necessary. However, we did

not perform additional data harmonization as all MRI acquisitions were taken with ISPY2

acquisition requirements as described in [22]. Furthermore, we ensured that data from differ-

ent field strengths and different molecular subtypes, etc., were not over-represented in either

training and testing data sets by using 5-fold cross validation so that all data has the chance to

be in both the test and training sets.

Ground truth

pCR determination was done using histopathologic analysis at study sites by institutional

pathologists (blinded to functional tumor volume (FTV) and ADC MRI measures) according

to the I-SPY 2 trial protocol using the residual cancer burden system. Following U.S. FDA

rationale and guidelines, pCR was the reference standard for determining response to neoadju-

vant chemotherapy in our study, defined and reported as no residual invasive disease in either
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breast or axillary lymph nodes after neoadjuvant therapy. Patients were categorized as having

pCR or non-pCR based on postsurgical histopathologic examination findings.

Features used

Texture analysis was performed using a small bounding box enclosing the tumor as deter-

mined by functional tumor volume provided by ISPY-2 data. Calculations were performed

using the Scikit-Image library in Python. Images were cast to 8-bits, and the number of bins

was set to the maximum value of 256 to maximize the number of grey levels counted. GLCM

features (Energy, Homogeneity, Contrast, Dissimilarity, ASM, and Correlation) were calcu-

lated at distances of 1, 3, and 5 pixels at angles of 0, p
2
, p

4
, and 7p

4
radians, representing all cardinal

and ordinal directions. These features were calculated for all 3 treatment time points for both

DCE and DWI MRI images, except for the 5-pixel direction for DWI images, as sometimes the

segmentation was too small. Table 1 summarizes the significance of each feature and the for-

mula used to calculate it. This resulted in a total of 360 GLCM features. Combined with 6 non-

imaging patient data features, and 6 features extracted from ADC parametric map, the total

number of features used was 372. Feature selection to reduce the number of features was

unnecessary, as XGBoost inherently selects for the most important features when splitting

leaves of decision trees, automatically ignoring irrelevant features.

Fig 1. Study population characteristics.

https://doi.org/10.1371/journal.pone.0280320.g001
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Extreme gradient boosting models

A total of 13 XGBoost models were created using different combinations of data and time

points. These XGBoost models were created in Python using the Scikit-Learn API. Minority

oversampling was used to balance the frequency of each class in the data set by randomly over-

sampling the minority (pCR) class. The oversampled balanced dataset consisted of 162 patients

with 50% pCR and 50% non-PCR outcomes.

Bayesian optimization along with a sequential domain reduction transformer was used to find

optimal values of these hyperparameters. The mean AUC after 5-fold cross-verification was

selected as the variable to maximize. 15 rounds of random exploration and 80 rounds of optimi-

zation were used. If the optimal value was an extreme of the bound, the bounds were adjusted,

and optimization was run again. Fig 2 shows this process for a sample hyperparameter.

Statistical analysis

Distributions of patient characteristics, such as the distribution of lesion types and race, were

compared using the χ2 test for homogeneity. Patient age and maximum tumor diameter

Table 1. GLCM textural features used.

GLCM Feature Name Formula Purpose

Contrast PN� 1

i¼0

PN� 1

j¼0

ði � jÞ2Pði; jÞ A measure of the intensity difference between a pixel and its

neighbor, 0 for a constant image.

Energy PN� 1

i¼0

PN� 1

j¼0

p ði; jÞ2 A measure of the sum of squared elements in the GLCM, 1 for a

constant image.

Correlation PN� 1

i¼0

PN� 1

j¼0

ði� miÞðj� mjÞPði;jÞ
sisj

A measure of how correlated a pixel is to its neighbors over the

whole image.

Homogeneity PN� 1

i¼0

PN� 1

j¼0

pði;jÞ
1þji� jj

A measure of the closeness of the distribution of elements in the

GLCM compared to the diagonal.

Dissimilarity PK

x¼1

PK

y¼1

jx � yjpxy
A measure of distance between pairs of objects (pixels) in the

region of interest.

Angular Second Moment

(ASM)

PN

i¼0

PN

j¼0

pði; jÞ2 A measure of the uniformity of distribution of grey level in the

image

https://doi.org/10.1371/journal.pone.0280320.t001

Fig 2. Sequential domain reduction transformer on the “max depth” hyperparameter.

https://doi.org/10.1371/journal.pone.0280320.g002
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distributions between classes were compared using a t-test. Investigation of the receptor status

characteristics were done using 2 sample z-test of proportions. F-scores were used to calculate

the importance of each individual feature in predicting pCR.

K-fold cross-validation is considered the gold standard for determining model performance

after training. 5 folds of verification were used to designate 20% of the dataset as testing and

80% as training for each fold. All performance metrics were calculated as the mean value of

each testing metric of the 5 folds after 1000 rounds of training. Standard error of the mean was

calculated as the variability of this mean AUC.

Models were analyzed primarily through the area under the receiver operator curve (AUC).

AUC has been shown to be the optimal method for comparing AI models. Precision and recall

were secondary metrics for model performance. P-values < 0.05 were considered significant

and were calculated as the probability that the null hypothesis is true.

Results

Patient characteristics and the sample sizes (n = 117) are described in Table 2. There were 36

patients with pCR and 81 without pCR. There was no significant difference in the mean age

for patients with pCR (49.08 +/- 10.31 years) and patients without pCR (49.0 +/- 11.73 years)

(p = 0.971). There was also no significant difference in the longest diameter of the tumor

between classes (p = 0.252). The distributions of patient races (p = 0.205), lesion types

(p = 0.409), and SBR grades (p = 0.488) showed no significant difference. There was a signifi-

cant difference in distributions of receptor statuses (p<0.001), with the patient without pCR

Table 2. Patient demographics and sample sizes.

Patients with pCR (n = 36) Patients without pCR (n = 81) P-Value

Age 49.08 ± 10.31 years 49.0 ± 11.73 years 0.971

Race White (n = 26) White (n = 61) 0.205

Asian (n = 3) Asian (n = 7)

Black (n = 1) Black (n = 8)

Unknown (n = 6) Unknown (n = 5)

Lesion Type Multiple masses (n = 16) Multiple masses (n = 49) 0.409

Multiple NME (n = 2) Multiple NME (n = 3)

Single mass (n = 16) Single mass (n = 27)

Single NME (n = 2) Single NME (n = 2)

Receptor Status HR + / HER2 + (n = 8) HR + / HER2 + (n = 12) <0.001

HR + / HER2 - (n = 8) HR + / HER2 - (n = 43)

HR—/ HER2 - (n = 12) HR—/ HER2 - (n = 24)

HR—/ HER2 + (n = 8) HR—/ HER2 + (n = 2)

SBR Grade III [High] (n = 22) III [High] (n = 55) 0.488

II [Intermediate] (n = 13) II [Intermediate] (n = 23)

I [Low] (n = 0) I [Low] (n = 3)

Unknown (n = 0) Unknown (n = 1)

Longest Diameter 3.67 +/- 2.21 cm 4.18 +/- 2.19 cm 0.252

Distributions of patient characteristics, such as the distribution of lesion types and race, were compared using the χ2 test for homogeneity. Patient age and maximum

tumor diameter distributions between classes were compared using a t-test. Investigation of the receptor status characteristics were done using 2 sample z-test of

proportions. NME: non-mass enhancing; HR: hormone receptor; HER2: human epidermal growth factor receptor 2; pCR: complete pathological response; SBR: Scarff-

Bloom-Richardson.

https://doi.org/10.1371/journal.pone.0280320.t002
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class having a greater proportion of patients that have HR+/HER2- status type (p<0.001) and

a lesser proportion of patients with the HR-/HER2+ status type (p<0.001).

Fig 3A shows post-contrast DCE MRIs for a pCR patient and Fig 3B shows these MRIs for

a non pCR patient at the pre-treatment, early treatment, and mid-treatment time points. The

tumors were hyperintense relative to background tissue. Tumor of the non-pCR patient

shrunk moderately whereas the tumor of the pCR patient shrunk markedly with time.

Fig 4A shows post-contrast DWI MRIs for a pCR patient and Fig 4B shows these MRIs for

a non pCR patient. DWI signals of the tumors were hyperintense relative to background tissue.

Tumor of the non-pCR patient shrunk moderately whereas the tumor of the pCR patient

shrunk markedly with time.

Fig 5 describes the 10 most important texture features out of 372 features. All top 10 fea-

tures were GLCM textural features derived from MRI data. In comparison, patient data scored

far lower in terms of F-score. Patient age, race, and lesion type had F-scores of 1, 0, and 3

respectively. Receptor status, SBR grade, and longest diameter of the tumor had F-scores of 6,

3, and 3 respectively.

For pCR patients, regional tumor ADCs were 0.59±0.05, 0.81±0.04, and 1.11±0.06 x10-3

mm2/s at pre-treatment, early treatment, and mid-treatment, respectively (Fig 6). For non-

pCR patients, the corresponding tumor ADC values were 0.59±0.03, 0.74±0.03, and 0.91±0.05

x10-3 mm2/s. ADC values for both PCR and non-PCR patients increased with treatment, with

pCR patients showing a larger increase progressively.

Fig 3. Post-contrast MRIs from DCE for (A) a pCR patient and (B) a non-PCR patient at the pre-treatment, early treatment, and mid-treatment time points.

For (A), the 54 year old Caucasian patient had invasive ductal carcinoma with HR- and HER2-. For (B), the 51 year old Caucasian patient had invasive ductal

carcinoma with HR+ and HER2-. The yellow arrow indicates the approximate location of the tumor. MRI images were taken approx. 2.5 minutes after contrast

injection with a phase duration of 80sec< phase duration< 100sec. pCR: complete pathological response, DCE: dynamic contrast enhanced.

https://doi.org/10.1371/journal.pone.0280320.g003
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Fig 4. DWIs for (A) a pCR patient and (B) a non-PCR patient at the pre-treatment, early treatment, and mid-treatment time points. For (A), the 54 year old

Caucasian patient had invasive ductal carcinoma with HR- and HER2-. For (B), the 51 year old Caucasian patient had invasive ductal carcinoma with HR+ and

negative HER2-. The yellow arrow indicates the approximate location of the tumor. DWI acquisitions were done using a b-value of 800 s/mm2. DWI: diffusion-

weighted imaging).

https://doi.org/10.1371/journal.pone.0280320.g004

Fig 5. Top 10 most important texture features out of 372 features by F-score. GLCM features are shown with pixel

distance value (1, 3 or 5 pixels), direction (North/South, East/West, North East/South West, or North West/South

East), and MRI imaging type (DCE: dynamic contrast enhanced or DWI: diffusion-weighted imaging). GLCM: gray-

level co-occurrence matrix.

https://doi.org/10.1371/journal.pone.0280320.g005
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Prediction of pCR

Table 3 shows the AUC, precision, and recall performance of XGBoost for different data

inputs after five-fold cross-validation. These AUC values were obtained using all treatment

time points as input. With the mean tumor ADC, the AUC was 0.850 (95% CI: 0.764, 0.936;

p<0.001). With texture features of DWI, the AUC was 0.871 (95% CI: 0.768, 0.974; p<0.001).

With texture features of DCE images, the AUC was 0.903 (95% CI: 0.854, 0.952; p<0.001).

Combining texture features of both DCE and DWI, the AUC was 0.916 (95% CI: 0.851, 0.981;

p<0.001). All MRI data yielded an AUC of 0.933 (95% CI: 0.836, 1.03; p<0.001). By compari-

son, using non-imaging data yielded an AUC of 0.910 (95% CI: 0.848, 0.99; p<0.001). Predic-

tion using all available imaging and non-imaging data yielded an AUC of 0.951 (95% CI:

0.909, 0.993; p<0.001).

We also evaluated the effects of using different combinations of treatment time points on

prediction performance. For prediction models using all available MRI and non-MRI data,

AUC using tp0, tp1, tp2, and tp0+tp1 were respectively, 0.918 (95% CI: 0.856, 0.98; p<0.001),

Fig 6. Mean ADC values for all non-pCR and pCR patients at the pre-treatment, early treatment, and mid-

treatment time points. Error bars are standard deviations. pCR: complete pathological response.

https://doi.org/10.1371/journal.pone.0280320.g006

Table 3. Model performances for models trained on ADC, DCE(GLCM), DWI(GLCM), their combinations, all

non-imaging data, and the combination of all MRI and all non-MRI data with 5-fold cross-validation.

Features AUC Precision Recall

ADC 0.850 (0.764, 0.936; p<0.001) 0.752 (0.666, 0.838; p<0.002) 0.827 (0.753, 0.901; p<0.001))

DWI GLCM 0.871 (0.768, 0.974; p<0.001) 0.779 (0.713, 0.845; p<0.001) 0.926 (0.861, 0.991; p<0.001)

DCE GLCM 0.903 (0.854, 0.952; p<0.001) 0.856 (0.808, 0.904; p<0.001) 0.939 (0.891, 0.987; p<0.001)

DCE+DWI GLCM 0.916 (0.851, 0.981; p<0.001) 0.779 (0.678, 0.880; p<0.003) 0.915 (0.861, 0.969; p<0.001)

All MRI Data 0.933 (0.836, 1.030; p<0.001) 0.824 (0.780, 0.868; p<0.001) 0.889 (0.848, 0.930; p<0.001)

All Non-MRI Data 0.919 (0.848, 0.990; p<0.001) 0.762 (0.665, 0.859; p<0.003) 0.914 (0.888, 0.940; p<0.001)

All MRI + Non-MRI

Data

0.951 (0.909, 0.993; p<0.001) 0.815 (0.690, 0.940; p<0.004) 0.926 (0.844, 1.008; p<0.001)

Values in parentheses are 95% confidence intervals. P-values are probability of AUC being 0.5. DWI: diffusion-

weighted imaging; ADC: apparent diffusion coefficient; AUC: area under the curve; GLCM: gray-level co-occurrence

matrix.

https://doi.org/10.1371/journal.pone.0280320.t003
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0.844 (95% CI: 0.705, 0.983; p = 0.004), 0.920 (95% CI: 0.858, 0.982; p<0.001), and 0.938 (95%

CI: 0.89, 0.986; p<0.001). The AUC of using all time points were 0.951 (95% CI: 0.91, 0.992;

p<0.001) (as shown in Table 4).

Discussion

This study aimed to predict pCR non-invasively using XGBoost models with multiparametric

MRI data at multiple treatment timepoints along with non-imaging data. This paper is the first

to apply an extreme gradient boosting algorithm to the ISPY-2 data set to predict pathological

complete response, and the second ever to use such an algorithm for predicting NAC response.

This paper is also the first ever to use GLCM features to do so.

In the original I-SPY2 study, Partridge et al. [22] used logistic regression to evaluate if

change in tumor ADC values (not texture analysis) is predictive of PCR in breast cancer

patients. They found that changes in tumor ADC values was moderately predictive of pCR at

mid-treatment (AUC = 0.60; 95% CI: 0.52, 0.68). In a test subset, a model combining tumor

subtype and mid-treatment changes in ADC significantly improved predictive performance

(AUC = 0.72; 95% CI: 0.61, 0.83).

There have only been a few studies that have applied deep learning on MR images them-

selves as inputs to predict pCR. Braman et al. [7] applied deep learning to predict NAC in

HER2 patients from pre-treatment 2D DCE MRI in a retrospective study. They explored both

pre-contrast and late post-contrast phases of DCE MRI and found an AUC of 0.74 (± 0.03).

Qu et al. [24] built a CNN model using pre and post-NAC. Tumor regions were manually seg-

mented by two expert radiologists on enhanced T1-weighted images. They found an AUC of

0.553 (95% CI: 0.416, 0.683) for pre-NAC data.

There have also only been a few studies that have applied non-deep learning on MR images

themselves as inputs to predict pCR. Suo et al. [17] evaluated mono-exponential (ADC), bi-

exponential and stretched-exponential from diffusion MRI data to predict pCR. They also

included tumor size and relative enhancement ratio from DCE MRI data at 3 time points:

before treatment, at mid-treatment, and after treatment with NAC. They found that flow-

insensitive ADC change at mid-treatment was the most predictive feature, with an AUC of

0.831 (95% CI: 0.747, 0.915; P< 0.001). Combining this with receptor statuses, the AUC

increased to 0.905 (95% CI: 0.843, 0.966; P< 0.001). Bian et al. [25] analyzed radiomic signa-

tures based on T2W imaging, diffusion-weighted imaging, dynamic contrast-enhanced imag-

ing and their combination to predict pCR. Logistic regression was then used to assess the

association between features and clinical risk factors. The combined radiomic signature and

nomogram model achieved an AUC of 0.91 (95% CI: 0.86, 1.00). Chen et al. [26] similarly ana-

lyzed the ability of radiomic signatures extracted from MRI data to predict pCR. They achieved

an AUC of 0.848 by combining DCE-MRI and ADC maps. Eun et al. [19] performed non-

GLCM texture analysis of pre and mid-treatment T2-weighted MRI, DCE, DWI, and ADC

Table 4. Model performances for models trained on all features restricted to tp0, tp1, tp2, tp0 + tp1 and all timepoints using 5-fold cross-validation.

Timepoints AUC Precision Recall

Tp0 0.918 (0.856, 0.980; p<0.001) 0.778 (0.716, 0.840; p<0.001) 0.913 (0.885, 0.941; p<0.001)

Tp1 0.844 (0.705, 0.983; p = 0.004) 0.793 (0.653, 0.933; p = 0.007) 0.841 (0.709, 0.973; p = 0.003)

Tp2 0.920 (0.858, 0.982; p<0.001) 0.832 (0.77, 0.894; p<0.001) 0.951 (0.929, 0.973; p<0.001)

Tp0 + Tp1 0.938 (0.89, 0.986; p<0.001) 0.805 (0.757, 0.853; p<0.001) 0.963 (0.918, 1.008; p<0.001)

Tp0 + Tp1 + Tp2 0.951 (0.910, 0.992; p<0.001) 0.815 (0.690, 0.940; p = 0.004) 0.926 (0.844, 1.008; p<0.001)

Values in parentheses are 95% confidence intervals. P-values are probability of AUC being 0.5. AUC: area under the curve; Tp: time point.

https://doi.org/10.1371/journal.pone.0280320.t004
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mapping. The random forest classifier to predict PCR showed the highest diagnostic perfor-

mance with mid-treatment DCE MRI (AUC = 0.82; 95% CI: 0.74, 0.88). Huang et al. [27] used

a multilayer perceptron trained on radiomics features generated from MRI images (ADC

maps, DCE, and fat-suppressed T2-weighted imaging), and reported an AUC of 0.900 AUC

(95% CI: 0.849, 0.935) on the validation dataset. Tahmassebi et al. [20] was the only other

paper to employ XGBoost to predict pCR. Using quantitative pharmacokinetic DCE features

and ADC values in different classifier algorithms (support vector machine, linear discriminant

analysis, logistic regression, random forests, stochastic gradient descent, decision tree, adaptive

boosting and extreme gradient boosting), they achieved a final AUC of 0.86 with an extreme

gradient boosting.

Limitations

This study was performed on a relatively small multi-center dataset. As more data releases, our

findings need to be replicated on a larger dataset to improve the generalizability of the model

as well as account for the racial bias towards white women in this dataset. We have only evalu-

ated XGBoost, other machine learning methods such as LightGBM should also be explored.

Finally, we have only extracted GLCM features from MRI imaging data. Using additional fea-

tures such as radiomic textural features may improve the model and give it more perspectives

on the images. We employed images as provided and performed only visual image quality

checks. We did not perform distortion correction, eddy current correction, check for multisite

scanner consistency, among others, as raw data were not available. It has been shown that

accurate estimates and reproducibility of diffusion indices in clinical studies require careful

data quality assurance [28]. Moreover, large multicenter studies have shown a non-negligible

variability in quantitative diffusion indices measured using different scanner systems [29, 30].

Therefore, MRI scanner system should be adequately characterized in diffusion-MRI of the

breast [31]. Deep learning methods could also be applied to predict PCR [24, 32–37] (see

review [38]) but were not analyzed.

Conclusions

XGBoost models using multiparametric MRI data along with demographic and molecular sub-

type data, accurately predict pCR to NAC. With further development and testing on larger

multi-institutional sample sizes, this approach has the potential to non-invasively identify

patients who are likely to respond to neoadjuvant chemotherapy at diagnosis or early treat-

ment. This approach may prove useful for treatment planning, treatment execution, and mid-

treatment adjustment to achieve better outcomes.
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