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Correlates of immunity to Group A Streptococcus: a pathway
to vaccine development
Hannah Frost 1, Jean-Louis Excler 2, Shiranee Sriskandan 3,4,7✉ and Alma Fulurija5,6,7✉

Understanding immunity in humans to Group A Streptococcus (Strep A) is critical for the development of successful vaccines to
prevent the morbidity and mortality attributed to Strep A infections. Despite decades of effort, no licensed vaccine against Strep A
exists and immune correlates of protection are lacking; a major impediment to vaccine development. In the absence of a vaccine,
we can take cues from the development of natural immunity to Strep A in humans to identify immune correlates of protection. The
age stratification of incidence of acute Strep A infections, peaking in young children and waning in early adulthood, coincides with
the development of specific immune responses. Therefore, understanding the immune mechanisms involved in natural protection
from acute Strep A infection is critical to identifying immune correlates to inform vaccine development. This perspective
summarises the findings from natural infection studies, existing assays of immunity to Strep A, and highlights the gaps in
knowledge to guide the development of Strep A vaccines and associated correlates of protection.
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INTRODUCTION
Group A Streptococcus (Strep A, S. pyogenes) is among the top 10
leading causes of global infection-related morbidity and mortality
across a diverse clinical spectrum including acute infections such as
pharyngitis and impetigo, invasive infections and immune-mediated
sequelae including acute rheumatic fever, rheumatic heart disease
(RHD) and acute glomerular nephritis1,2. Despite successful treat-
ment with penicillin, Strep A disease control remains challenging,
leaving a vaccine as the most effective option for disease
prevention3. To date, no licensed vaccine against Strep A exists
and there is a lack of understanding of the mechanisms of protective
immunity. This is a significant impediment to vaccine development
both in terms of identifying optimal antigenic targets of vaccination,
and developing assays that act as correlates of protection (CoP), the
latter being a major focus of current Strep A research4.
Importantly, once identified, CoP assays could replace the need for

clinical endpoints in vaccine efficacy trials, reducing the requirement
for lengthy and costly studies with the disease as an endpoint5,6. For
Strep A, this could obviate the burden of quantifying Strep A
pharyngitis in hard-to-reach populations and reduce the need to
judge vaccine efficacy based on the incidence of RHD, an
autoimmune sequela that may arise years after repeated Strep A
infections. CoP assays that are readily transferable between
laboratories and countries and use standardized reagents that do
not require specialist culture conditions or know-how are more likely
to be accepted by licensing authorities. Furthermore, such assays may
also allow for ongoing surveillance of immunity in target populations.
At present, there are several knowledge gaps hindering the
development of such assays for Strep A7, but the gaps are closing.

NATURAL IMMUNITY AGAINST STREP A
The strongest evidence of protective immune responses against
Strep A is the observed decreased susceptibility to infection

with increasing age7. The frequency of acute Strep A infections
peaks in childhood, with a much lower incidence of these
diseases in adulthood. By contrast, invasive infections are seen
in both the very young and very old populations8. This evidence
provides a rationale to believe that an effective vaccine against
Strep A is achievable.
The incidence of symptomatic throat infections, including

scarlet fever, increases significantly around 4 years of age9. This
could be due to the expansion of tonsil tissue allowing greater
access for Strep A, increased exposure to other children at the
start of school, or simply an artefact of school-aged children being
able to articulate throat pain. Towards the end of childhood, the
frequency of strep sore throats diminishes markedly. A similar
peak and fall in incidence occur with Strep A skin infections, at a
slightly earlier age than throat infections7. Invasive infections, seen
in both the very young and very old populations10, may be
associated with immune system naivety and immunosenescence
respectively, along with the increased risk of skin injury and
exposed portals of entry.

IMMUNITY TO PRIMARY INFECTION
Non-invasive infections would be the ideal target of vaccination.
The mechanisms that confer resistance to colonisation and
primary infection of the oropharynx or skin are unknown, but
likely include a combination of prevention of bacterial adhesion,
innate defence mechanisms, opsonophagocytic killing of bacteria
supported by antibody and complement, inhibition of directly
acting virulence factors, inhibition of bacterial immune evasion
strategies, and cellular immunity.
During streptococcal infections, there appears to be a temporal

sequence of adherence and colonisation by the bacteria. The
initial “pioneer” cells perform long-range adherence and form
molecular bridges with host proteins11. The following “settler”
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cells have shorter-range adherence with higher affinity and
specificity. As the bacterial “society” forms in biofilms, there is
environmental sensing, extracellular polymeric substance forma-
tion and quorum sensing. Finally, a “community” is established
with cell-to-cell signalling, coaggregation, metabolic synergy and
genetic exchange11. It is unknown against which stage or stages
of colonisation an effective immune response must act to inhibit
the development of infection, or whether targeting one or more
stages by vaccination will be required to prevent non-invasive
colonisation or infection.
Animal models of nasopharyngeal infection have shown that

whole bacteria, single and combinations of antigens, and
passive immunisation can induce immunity12,13. The route of
immunisation may also be important to induce an effective
immune response against Strep A14. Intranasal vaccines can
generate both secretory immunoglobulin A (IgA) at the mucosa
and serum IgG, as well as cell-mediated forms of immunity that
are less well characterised15. Mice are not naturally exposed to
Strep A, so provide a naive experimental system. There are
however several drawbacks to the use of mouse models in
Strep A vaccine research, including the large inoculum required
to establish infection, lack of tonsils, use of lethal intranasal
models that can result in pneumonia, and use of adjuvants
unsuitable for humans16.
There are many unknowns relating to human nasopharyngeal

infection. When studying outbreaks of pharyngitis and scarlet
fever in children, it was shown that over 25% of children acquire
the outbreak strain17. Of these children the majority carry the
bacteria asymptomatically, and some become heavy shedders of
the strain, yet only a small number of children develop scarlet
fever or pharyngitis17. Others never acquire the outbreak strain
despite the same level of exposure. This may indicate a spectrum
of different levels of immunity to different virulence factors in the
human nasopharynx (Fig. 1), even in children.

IMMUNITY TO INVASIVE INFECTION
Resistance to Strep A invasive infection is better understood, due
to the uncommon ability of Strep A bacteria to grow in non-
immune human blood. This forms the basis of the classic

“Lancefield” assay18, which measures the opsonophagocytic
capacity of donor plasma antibodies as a marker of resistance to
invasive infection. Subcutaneous19–21, intramuscular22,23 and
intranasal24,25 vaccination with adjuvanted protein vaccines
appear effective at preventing even lethal invasive infections in
mouse models of infection. Furthermore, passive transfer of
immunity using antisera and pooled human intravenous immu-
noglobulin (IVIg) have all successfully induced immunity in animal
models, particularly when highly concentrated13. IVIg contains
high levels of anti-Strep A antibodies and is proposed as a clinical
treatment for severe invasive Strep A disease26,27.

ANTI-STREP A ANTIBODIES
Although cell-mediated immunity no doubt contributes to long-
term protection against Strep A, circulating IgG antibodies are
recognised to be protective and are the most characterised
adaptive immune mechanism. Furthermore, vaccines typically
elicit antibody production and all CoP assays to date have relied
upon antibody detection in vaccinated individuals; a better
understanding of antibody responses is therefore central to
vaccine development.
Reports of serum-based immune reactions to Strep A during

Scarlet fever predate the consensus discovery of Strep A as the
cause of Scarlet fever28. Convalescent human sera was shown to
detoxify Strep A cultures and changed Dick skin test results from
positive (susceptible) to negative (protected) following passive
transfer29. Data from animal studies30, human serology31 and
vaccine trials32 has linked antibody responses to specific Strep A
antigens with various functions, including neutralisation of
virulence factors, adhesins, and bacterial opsonophagocytosis.
The natural immunity to Strep A observed in adulthood is

thought to be primarily driven by an accumulation of anti-Strep
A antibodies33,34. Serosurveys of antibodies against the clinical
serology antigens, Streptolysin O (SLO) and DNAse B, in different
age groups and in different countries and socioeconomic
settings support an age-related increase in these antibodies
which are believed to represent biomarkers of Strep A
exposure35,36. There are different theories for how Strep A
antibodies confer protection: (1) natural human immunity to

Fig. 1 Proposed spectrum of antibody-derived immunity in oropharynx to explain the range of phenotypes observed in children17. In
humans resistant to Strep A pharyngeal acquisition (first column), antibodies may inhibit adhesion and encourage opsonophagocytosis of
bacteria before colonisation is established. In this situation antibodies targeting bacterial virulence factors and toxins may or may not be
present. Colonised humans likely do not block adhesion with antibodies but, at least for some time, can limit the proliferation of bacteria.
Shedders often have heavy colonisation but may inhibit symptomatic infection by controlling bacterial virulence factors. In most cases,
pharyngitis is superficial and self-limiting, but can also develop into systemic illness including Scarlet fever (final column), which has been
linked to toxins including superantigens94. The antibody symbols (blue) indicate where antibodies inhibit bacterial function, the crosses (red)
where antibodies are lacking and no symbol where there is no requirement for antibodies. Created with Biorender.com.
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Strep A infection is type-specific and directed against the
M-protein37, so that repeated exposures to different M types
(or emm-clusters38) builds a repertoire of type-specific responses
responsible for protection39; and (2) responses accumulate with
repeated exposures to conserved (non-M-protein) Strep A
antigens, raising the threshold of protection against subsequent
infection40,41. Measurements of antigen-specific antibodies
following Strep A infections indicate antibodies against both
type-specific and conserved antigens occur concurrently and
both likely contribute to immunity42,43.
Strep A has evolved several strategies to inhibit antibody

function including the IgG-specific proteases, Ides and EndoS,
that cleave antibodies at the hinge44 or Fc region45. The
streptococcal cysteine protease, SpeB, regulates virulence by
cleaving both host and bacterial proteins. Although SpeB is
another example of a Strep A IgG cleaving protease46, it also
inactivates bacterial-derived EndoS47. M and M-like proteins are
an important family of Strep A virulence factors48. Their immune
evasion functions include non-immune binding of IgG by the Fc
region rendering them non-functional, and likely involvement in
immune masking49.
Longitudinal studies suggest naturally acquired M protein

antibodies may convey protection against infection, but not
colonisation, and this may be strain-specific. Because colonisation
without clinical symptoms (“asymptomatic carriage”) can be both
immunogenic and immunologically silent, occur in the throat and
skin, and can be of variable duration before resolution or resultant
infection, here we describe pharyngeal acquisition events. Wanna-
maker et al. in 1953 followed 131 adult men with known baseline
type-specific antibody responses and found the presence of type-
specific antibody reduced subsequent symptomatic infection but
not asymptomatic pharyngeal acquisition with the same M type50.
Guirguis et al. also showed that the presence of type-specific
bactericidal antibodies did not protect individuals from secondary
pharyngeal acquisition, except against M1 strains51. Another
longitudinal study found that 11 of the 75 pharyngeal acquisitions
occurred in children who had pre-existing type-specific antibodies
and only 12.5% of children developed type-specific antibodies
following infection43. Thus, type-specific M protein-based immu-
nity following infection is not guaranteed. In a longitudinal cohort
of Fijian children, there was no association between the time to
next Strep A skin infection and total serum IgG antibody titres to
the M protein semi-conserved C-repeat region J8 peptide
following primary skin infection52. It is important to note that
vaccine-induced and natural immunity may differ significantly23.

EXISTING ASSAYS OF IMMUNITY TO STREP A
Although protective immunity to Strep A is not well understood,
the main mechanisms are likely to include the promotion of
opsonophagocytosis, toxin or virulence factor neutralisation, and
blocking of bacterial adhesion by B cell-derived antibodies and
phagocytes, supported by T cells, cytokines, chemokines, and
components of innate immunity. Several assays that mimic
effector function in human immunity to Strep A are established
as outlined below, although none would fulfil the specifications
needed for a standardized, readily tranferrable assay of protection.

OPSONOPHAGOCYTOSIS ASSAYS
The Lancefield bactericidal assay, first described in 1927 by Todd,
capitalised on the uncommon ability of Strep A bacteria to grow
in blood18. The addition of test sera, heat-treated to remove
endogenous complement proteins, to non-immune donor whole
blood that is co-incubated with actively growing Strep A,
measures the ability of test serum to inhibit the growth of the
bacteria through promoting opsonophagocytic killing. The assay
assumes that any reduction in Strep A growth is due to

antibodies in the sera, which allows for a measure of functional
immunity in sera53. However, the requirement to start with pre-
screened, non-immune freshly drawn whole blood and freshly
inoculated bacterial cultures, coupled with the overnight culture
steps and colony counting make the assay laborious, complex
and often poorly reproducible. Furthermore, the assay measures
the net change over time in Strep A quantity, which is the
consequence of both bacterial growth and opsonophagocytic
killing. As such, it is not a pure measure of bacterial killing, and
results are strain-specific.
There have been several attempts to provide a more

reproducible opsonophagocytosis assay. A recent update to
the assay protocol incorporates the Strep A virulence factor IdeS
to digest endogenous antibodies in whole blood, removing the
requirement of pre-screening for non-immune donors54. Other
variations have utilised purified single donor human neutrophils
co-incubated with different heat-treated donor sera, with flow
cytometric analysis of bacterial uptake. Although such assays
often do not quantify bacterial killing, the ability to measure the
deposition of complement on the bacterial surface directly
demonstrates the mechanism of opsonisation55 but is again
limited by a need for freshly cultured bacteria, fresh donor blood,
and neutrophil purification. A key recent refinement of these
assays resulted in an HL-60 opsonophagocytic killing assay56,57,
based on the established S. pneumoniae assay, using a cell line as
the source of neutrophils, frozen bacterial stocks, and an
endpoint that measures bacterial killing58. Although successfully
applied to a few strain types, there remain several unknowns
relating to the mechanism of uptake and subsequent killing in
these assays, including the subtype of antibody required to
promote bacterial killing, the failure of some Strep A strains to
perform in such assays, and the variable importance of M protein
and other Strep A antigens.
Opsonophagocytic assays may be a sound and plausible

predictor of systemic protection in blood; however, such assays
have not been definitively linked to protection against non-
invasive infection in humans. In Wannamaker’s 1953 longitudinal
study of the pharyngeal acquisition of Strep A, baseline
bactericidal assays were able to predict the probability of
developing a symptomatic infection, but they did not correlate
with susceptibility to colonisation50. In studies where antibody
functionality and titre data are available, any correlations appear
to be individual, strain and/or disease specific. For example, in the
recent phase 1 trial of a 30-valent Strep A vaccine, there was a
good correlation between antibody titre against the M5 peptide
and opsonophagocytic killing of this strain. By contrast, there was
little to no correlation between antibody titre and the killing of
three other strains studied (Fig. 2)32.

VIRULENCE FACTOR NEUTRALISATION
The “Dick Test”, named after its inventors Dr. George and Dr.
Gladys Dick, was a skin test for susceptibility to scarlet fever
popular in the 1920s to 1950s29. The test involved intracutaneous
injection of a small volume of filtered Strep A culture, which
produced inflammatory reactions in susceptible individuals, and
no reaction in those considered protected. The test represented a
CoP assay of neutralising anti-superantigen activity which was also
responsible for an alternative test using the “Shultz–Charlton
phenomenon” whereby immune sera caused blanching of the
scarlet fever-associated rash59. Unfortunately, the toxin-based
vaccines assessed using these assays caused considerable
inflammatory reactions and appeared to have reduced efficacy
against other Strep A clinical syndromes60–62.
In recent decades, neutralising immunity to the super-

antigens associated with scarlet fever and toxic shock syn-
drome has been re-explored, partly to determine if the use of
therapeutic IVIg might be of benefit. Building on the easily
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measured T-cell mitogenic effects of this group of toxins
in vitro, titres of neutralising anti-toxin antibodies present in
donor serum can be measured ex vivo. This demonstrated
seroconversion and development of anti-SMEZ (Streptococcal
mitogenic exotoxin) antibodies over a 7-day period in a patient
who recovered from Streptococcal Toxic Shock Syndrome
(STSS)63, and has also demonstrated the presence of anti-
toxin antibodies in pooled IVIg64,65.
Established assays of immune responses to Strep A, often used

to confirm a recent infection, include the measurement of
functional neutralising anti-SLO and anti-DNAse B antibodies.
Anti-SLO titres are calculated by the lysis of erythrocytes, as
neutralising antibodies against SLO inhibit this function of the
lysin. Likewise, anti-DNaseB titres are assessed based on inhibition
of the degradation of DNA66. Most adults have some level of
neutralising activity against these proteins indicative of previous
Strep A exposure, but these antibodies are not known to be
specifically protective. A rise in titres can indicate recent infection,
although, in the case of SLO, it is now recognised that several
strain types do not produce SLO owing to a variation in the
promoter region67.
Several other virulence factors are known to influence Strep A

pathogenesis and assays of immunity to these have been
developed. One example is SpyCEP, a Strep A protease that can
cleave CXC chemokines, particularly CXCL8 (IL-8)68. SpyCEP is a
vaccine candidate and protection is believed to result from
vaccine-induced antibodies that neutralise protease activity69; as
such vaccine efficacy could not be evaluated using an
opsonophagocytosis assay. Although the protein is very small
(8 kDa) it is possible to demonstrate CXCL8 cleavage in vitro by
purified SpyCEP, by gel electrophoresis or ELISA68, and to
therefore inhibit this process using an immune serum. Such an
assay could readily be adapted to detect vaccine-induced
immunity to SpyCEP.

BLOCKING ADHESION
A sterilising immune response against Strep A must block the
early stages of adhesion which lead to colonisation. Host-cell

adhesion assays use monolayers of human cell lines, typically
Detroit 562 to model pharyngeal colonisation and HaCat cells to
model adhesion to the skin, and measure adherent live Strep A.
Test serum containing antibodies against adhesins on the surface
of Strep A can inhibit adhesion to these cells70. Animal studies
have shown salivary IgA, but not serum IgG, against M protein
reduces bacterial adherence to pharyngeal cells71. Rabbit anti-
bodies against Strep A pili proteins inhibited bacterial adherence
to a skin cell line72. As with antibodies that promote opsonopha-
gocytosis and virulence factor neutralisation, there is little known
about the characteristics of antibodies that inhibit adhesion,
including isotype, glycosylation pattern, specific epitopes and
affinity. As such, assays of immunity to combat adhesion are in
their infancy yet may be of crucial functional importance.

MORE TRACTABLE CORRELATES OF IMMUNITY
Finding a simpler, more reproducible method of detecting
protective anti-Strep A antibodies would accelerate vaccine
development. There are a number of Strep A antigens targeted
by antibodies that either promote opsonophagocytosis26,73,74 or
inhibit virulence factors41,75–77. Some of these antigens are
included in candidate Strep A vaccines19,78–80. Detecting anti-
bodies against these antigens is essential for vaccine clinical trials
to demonstrate the magnitude and breadth of the antibody
response in vaccinees. Measuring antibodies against additional
non-vaccine antigens could differentiate vaccine-induced immu-
nity from natural immunity. Such antibodies may be a marker of
recent infection, and might have a further use diagnostically and
in surveillance. Recently, bead-based assays that simultaneously
measure antibody titres against three81, four82 and eight83 Strep A
antigens from low-volume serum samples have been established.
Such assays are agnostic to the function of the antibodies they
detect; the purpose is to enable large scale screening using a
readily transferrable assay that can be done in a few hours. The
advantage of bead assays is the requirement for just a few
microlitres of serum that can be tested against multiple antigens,
which is of particular importance given the target Strep A vaccine
population is children. Indeed, it is possible to adapt these assays
to use antibody eluted from finger prick samples83, and potentially
from mucosal fluids. Alternate technologies that deliver a similar
outcome include mesoscale discovery (MSD) assays such as those
employed during SARS-CoV-2 vaccine evaluation, which have
been accepted as satisfactory and tractable immunogenicity
assays by licensing authorities84.

FUTURE STUDIES TO DEVELOP COP ASSAYS
Having developed reproducible, cell-free assays as above, in
addition to the fundamental understanding provided by func-
tional assays, it is now important to establish the best use of these
assays and consider inclusion of standardised positive and
negative controls that will be readily available to all those using
the assays to facilitate comparison and correlation. At present, in
the absence of any commercial vaccine, the best positive control
is human pooled IVIg, while common negative controls include
IgG-depleted serum and naive animal sera. Naive human sera,
such as infant sera or cord blood, would be difficult to find and
may be confounded by maternal antibodies.
Secondly, we need to understand whether the antibodies

detected by such assays are functional or whether the antibodies
simply correlate with functional immune activity. If either is
found to correlate with clinical immunity this point may become
less important. While both mechanistic and non-mechanistic
CoPs are useful85, understanding mechanisms of immunity will
have greater utility to vaccine development more broadly.
Recent advances in systems serology have greatly improved
the ability to link antigen-specific antibodies to effector

Fig. 2 Correlation between titres of type-specific antibodies and
opsonophagocytic killing (OPK) for four different Strep A strains
following vaccination with the 30-valent vaccine candidate
StreptAnovaTM that included M1, M3, M5, M12. A clear correlation
is seen between OPK titre and antibody fold changes for M5 (green;
R2= 0.82), which is not apparent for the other strains. Data are from
Pastural et al.32.
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functions86 and identify vaccine CoPs87. At present there is no
gold standard for evaluation of immunity to Strep A, particularly
if we accept that the classical Lancefield assay is a measure of
immunity in blood but not the oropharynx. Unlike some viral
vaccines, bacterial vaccines may employ several immune
mechanisms, and it may be that no single functional assay can
replicate the protection seen in humans5.
Finally, we need to optimise the assays to detect antibodies

from different types of samples, including oral fluids, soft tissues
and finger prick blood. Despite the oropharynx being a major site
of Strep A infection, remarkably little is known about Strep A
specific immunity in this mucosal tissue.
To understand how natural immunity develops we can look

for signals in prospective cohort studies of children with active
surveillance for Strep A infections17,88. Assays that measure
antibody levels against Strep A antigens in oral fluid, specifically
IgA, will be required to understand mucosal immunity. Studying
adults as well as children, and conducting longitudinal studies,
will provide further insight into what happens when a human
encounters Strep A for the first time and how immunity evolves
through adulthood. The CHIVAS-M75 human challenge model,
where healthy adults were infected with an M75 Strep A,
provides important information for the acute stage of
colonisation and infection; most participants developed sore
throat, but some did not89. The experiment paves the way to
future studies that compare antibody profiles following
vaccination, and in those who were resistant to the challenge
and those who were susceptible. Similarly, the finding that
young children, exposed to the same dose of Strep A exhibit a
range of clinical phenotypes provides a natural opportunity to
identify immunological differences between these pheno-
types17. The roles of cellular immunity90, including T and B
lymphocytes and their effectors, and cells in the tonsils91

warrant further investigation, as do genetic determinants of
susceptibility and the differences between intranasal92 and
intramuscular93 vaccine-induced immunity.

CONCLUSIONS
Natural immunity to Strep A exists and it is likely that several
immune mechanisms contribute to the protection against Strep
A infection afforded to adults. With prospective surveillance of
Strep A infections and high-quality sample collections it will be
possible to identify immune correlates of natural protection.
However, it would be exceedingly difficult to define a CoP for a
vaccine without first demonstrating clinical protection in a
reproducible, verifiable manner from vaccine trials. Nonetheless,
with multiple vaccines planning to enter clinical trials and
vaccine-challenge trials in the next few years, the potential to
demonstrate protective efficacy seems closer. By combining
known features of natural immunity, currently available assays of
immunity and emerging findings from human trials, a CoP for
Strep A is highly plausible.
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