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Replacing discontinued 
Big Tech mobility reports: 
a penetration‑based analysis
Francesco Finazzi 

People mobility data sets played a role during the COVID-19 pandemic in assessing the impact 
of lockdown measures and correlating mobility with pandemic trends. Two global data sets were 
Apple’s Mobility Trends Reports and Google’s Community Mobility Reports. The former is no longer 
available online, while the latter is no longer updated since October 2022. Thus, new products are 
required. To establish a lower bound on data set penetration guaranteeing high adherence between 
new products and the Big Tech products, an independent mobility data set based on 3.8 million 
smartphone trajectories is analysed to compare its information content with that of the Google data 
set. This lower bound is determined to be around 10−4 (1 trajectory every 10,000 people) suggesting 
that relatively small data sets are suitable for replacing Big Tech reports.

People mobility data received considerable attention during the COVID-19 pandemic when they were used 
to assess the impact of lockdown measures1–7 and to understand the correlation between mobility patterns 
and pandemic trends8–14. In a smart society, the importance of mobility data is not limited to the pandemic. In 
general, mobility is affected by global long-term events such as economic crises15–17 and conflicts18, and by local 
short-term events like social unrest and extreme natural events19–22. Mobility data are also used to better assess 
exposure to health-threatening phenomena23.

Smartphone mobility data play a key role in estimating mobility patterns24–30. Apple’s Mobility Trends Reports 
and Google’s Community Mobility Reports were two global data sets made available to researchers during 
COVID-19 pandemic31–35. The first data set was discontinued on April 14, 202236, while the second is still avail-
able but no longer updated after October 15, 202237.

Here, a global mobility data set derived from the Earthquake Network (EQN) citizen science initiative38 is 
analysed to assess the feasibility of making available to the scientific community mobility products which, in 
their information content, are similar to Apple and Google products. Since 2012, EQN implements the first 
smartphone-based earthquake early warning system39,40 allowing citizens to receive real-time alerts directly on 
their smartphones when seismic waves are incoming. To join the initiative, people install the EQN smartphone 
app which turns the smartphone into a seismic detector. Once installed, the app regularly collects the smartphone 
location which is needed by the earthquake detection algorithm41 and to first alert people who are close to the 
epicentre at the time of the earthquake. As of today, more than 8 million people joined the initiative globally 
making EQN one of the most active citizen science projects.

The data set provided by EQN includes 6.1 billion location data points collected by its smartphone app from 
March 11, 2020, to September 22, 2022. From the data set, 3.8 million anonymized spatio-temporal smartphone 
trajectories are reconstructed and used to produce mobility metrics at the country level. Contrary to Big Tech 
data sets, which benefits from a high penetration among the population, the analysed data set is relatively small. 
Thus, the methodology adopted to analyse the data set plays a key role in estimating metrics characterized by 
the lowest possible bias and accompanied by a measure of uncertainty. Also, the methodology addresses peculiar 
aspects of smartphone-based location data, such as: the non-negligeable uncertainty on smartphone coordinates, 
missing data and the non-homogeneous geographical penetration of smartphone apps in the population.

Similarly to Gao et al3, two metrics are provided: daily average travel distance (M1) and the percentage of 
people who did not move during the 24 h of the day (M2). Analysis is restricted to a group of 17 countries for 
which uncertainty on the estimated mobility metrics is small enough to allow reasonable comparisons between 
countries and/or different periods: Argentina (ARG), Chile (CHL), Colombia (COL), Costa Rica (CRI), Ecua-
dor (ECU), Greece (GRC), Guatemala (GTM), Italy (ITA), Mexico (MEX), Nicaragua (NIC), Panama (PAN), 
Peru (PER), Philippines (PHL), Slovenia (SVN), Turkey (TUR), the United States (USA) and Venezuela (VEN).
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Metrics M1 and M2 are provided at daily temporal resolution and at different levels of temporal smoothing, 
uncertainty included. Mobility metrics time series are correlated with time series of Google’s product in order to 
compare their mutual information content and to assess a lower bound on the number of smartphone trajectories 
(with respect to the country population size) which guarantees a high adherence between products.

Mobility data analysed in this work are elaborated daily by EQN and regularly made available on Zenodo 
through the MobMeter42 data set. To the best of our knowledge, MobMeter is currently the only open source 
mobility data set covering multiple global countries and an extensive time period up to present. MobMeter is 
thus a unique instrument for researchers who may benefit from including mobility patterns as covariates in 
their statistical or stochastic models, with applications in multiple fields including epidemiology, climatology 
and economics.

Results
Global long‑term mobility trends.  Mobility metrics and their smoothed versions are computed for the 
aforementioned countries. Figure 1 shows polar plots of M1 and M2 time series based on a 14-day temporal 
smoothing. All countries show significant decrements in the M1 metric and significant increments in the M2 
metric during the few months after March 11, 2020 (initial phase of the COVID-19 pandemic). Differences 
between countries are observed in the temporal rapidity of the subsequent “recovery”. Some exhibit “lobed” 
polar plots. This is the case for GRC, ITA and TUR, which show fast recoveries during the summer of 2020 and a 
contraction of people mobility during the subsequent winter. All other countries exhibit “spiralling” polar plots, 
which is a sign of a slow recovery. This behaviour is clear for South American countries like ARG, COL, PER 
and VEN.

Short‑local events in mobility metrics.  M1 and M2 time series are also affected by short-term local 
events. Figure 2 shows how mobility metrics significantly changed during social unrest in ECU and PAN and 
when a hurricane made landfall in MEX. In ECU, social protests43 occurred between June 13 and June 30. M1 
dropped from approximately 20 km to 11.5 km, while M2 raised from approximately 32% to 40%. In PAN, social 
protests44 broke out on July 16 and lasted nearly two weeks. M1 dropped from around 30 km to 17 km, while M2 
raised from approximately 27% to 32%. Between May 30 and 31, 2022, Hurricane Agatha hit the Oaxaca state 
of MEX with flooding and mudslides that killed at least 10 people and left 20 missing45. M1 dropped from an 
average of around 28 km (on the previous days) to around 22 km. This drop is seen at the country level, so it was 
mitigated by the relatively small area (with respect to the area of MEX) impacted by the hurricane. M2 did not 
change significantly with respect to the previous day.

Comparison with Google’s Community Mobility Reports.  A comparison is made between metrics 
M1 and M2 and the mobility indices of the Google product. Google’s mobility indices are given as variations (in 
percentage) in the number of visits to categories of places with respect to a baseline. This means that Google’s 
indices do not carry exactly the same information of M1 and M2, nor the unit of measure is the same. Nonethe-
less, all indices are based on smartphone spatio-temporal trajectories, and their linear correlation is expected to 
be medium–high.

M1 is compared with Google’s “Transit stations”, “Parks” and “Retail and recreation” indices while M2 with 
Google’s “Residential” and “Workplaces” indices. It is expected that “Transit stations”, “Parks” and “Retail and 
recreation” indices positively correlate with the daily average distance travelled by people, and that the “Resi-
dential” and the “Workplaces” indices correlate (positively and negatively, respectively) with the percentage of 
people who did not move during the 24 h of the day.

Figure 3 shows, for each country and for different levels of smoothing of the time series, the linear correlation 
between the metrics and Google’s indices. For most countries, correlations are high and significantly increase 
when moving from no smoothing to a 7-day moving average smoothing. The lowest correlations are exhibited 
by NIC, SVL and PHL, which are among the countries with the lowest average number of daily smartphone 
trajectories (average sample size) in the data set (see Fig. 4). Robustness of above correlations is tested in the 
Methods section.

Data set penetration analysis.  The relationship between correlations and average sample size is better 
described by accounting for country population size. The average sample size is computed for each country for 
the period from March 11, 2020, to September 22, 2022, and divided by country population size. This gives the 
average data set penetration in each country.

Under the non-smoothing case, for each correlation between metrics and indices the 17 average penetration 
values are related with the 17 correlations using a beta regression (see Methods section). Figure 5 shows the data 
and modelling results. In general, the higher the average penetration, the higher the correlation between indi-
ces. Additionally, average penetrations between around 10−4 (i.e., 1 smartphone trajectory every 10,000 people) 
delimit the transition between medium (~ 0.5) to high (> 0.7) correlations.

Discussion
Mobility metrics and indices are proxies of societal health and stress. Their constant monitoring informs assess-
ment of the impact of both long- and short-term adverse events. Thus, location data collected by smartphone apps 
play an important role, as they carry information on people mobility. With Apple’s Mobility Trends Reports dis-
continued and Google’s Community Mobility Reports no longer updated, it is crucial to understand whether sim-
ilar products can be produced from alternative mobility data sets and made available to the scientific community.
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This study reconstructs smartphone trajectories from an independent mobility data set provided by the 
Earthquake Network citizen science initiative. These allow estimation of country-level mobility metrics with 
relatively high correlations to similar indices by Google. The average data set penetration among the country 

Figure 1.   (A) Estimated smoothed mobility metric M1 (daily average travelled distance) and (B) estimated 
smoothed mobility metric M2 (percentage of people who did not move during the 24 h of the day) based on a 
14-day moving average from March 24, 2020, to September 22, 2022. M1 is expressed in kilometres while M2 in 
percentage. Dashed lines are 95% confidence bands.
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population requires 1 smartphone trajectory for every 10,000 people. This prove that relatively small data sets 
are suitable for replacing country-level Big Tech products when their analysis is based on a sound methodology 
which also provides measures of uncertainty.

Since it happened with Google’s and Apple’s products, it is meaningful to discuss the possible end-of-life 
of the MobMeter data set. While there is no guarantee that the Earthquake Network initiative will last years 
or decades, it is likely that citizens’ interest in earthquakes and in the EQN smartphone app will not vanish in 
the foreseeable future. On the other hand, personal mobility data are inevitably connected to the privacy and 
the security of the individual46. The collection of personal data by smartphone apps is usually regulated by the 
app-store owner, with Google and Apple, again, as the main actors. This implies that new rules and limits on 
how personal data are collected may come into place at any time, making the publishing of MobMeter hard or 
impossible (long before Earth’s seismicity will fade away).

Methods
Trajectory description.  The mobility data set analysed in this work includes smartphones trajectories col-
lected from the 17 countries during the period from March 11, 2020, to September 22, 2022 (926 days). Each 
trajectory covers any possible subset of the 926 days (from only one day to the full period).

In general, the k th trajectory, 1 ≤ k ≤ K , is composed of Mk observations, with K the total number of tra-
jectories. The m th observation, 1 ≤ m ≤ Mk , of the k th trajectory is given by.

where IDk is the anonymized smartphone/trajectory identifier, latm and lonm are the latitude and longitude 
smartphone coordinates, um is the uncertainty on smartphone coordinates, and tm is the timestamp.

Uncertainty um is in metres and represents the standard deviation (sigma) of two independent normal 
distributions centred on each smartphone coordinate. Timestamp tm is based on the country local time and 
refers to the time latm and lonm are observed by the smartphone. Timestamps have the following constraint: 
min(tm+1 − tm) ≥ 20 min.

(1)(IDk , latm, lonm, um, tm),

Figure 2.   Variations in mobility metrics M1 and M2 during 2022 social unrest in ECU and PAN and when 
Hurricane Agatha struck Oaxaca, MEX. For ECU and PAN, mobility metrics are based on 7-day smoothing. For 
MEX, no smoothing is applied.
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Trajectory sanitation.  Trajectory observations which exhibit a latitude and longitude equal to zero are 
removed from the trajectory. Zero values are returned by a smartphone when geolocation is not possible. Also, 
um values equal to zero or negative are replaced with an uncertainty equal to 25 m. This is the typical uncertainty 
when a smartphone localizes itself using Wi-Fi networks and/or cell phone antennas. The percentage of trajec-
tory observations affected by the replacement is 0.08%.

Daily estimates of M1 and M2 metrics.  M1 and M2 mobility metrics are estimated with daily temporal 
resolution. For each day d = 1, . . . , 926 , only trajectories with at least 12 observations between 00:00:00 and 
23:59:59 local time and with a temporal span of at least 12 h between the first and the last observation contribute 
to the estimate of M1 and M2. At the d th day and the i th country, the number of daily trajectories that satisfy the 
constraints above is denoted by Nd,i . In general, Nd,i  = Nd′ ,i for d  = d′.

For any two consecutive trajectory observations, the geodetic distance lm,m+1 between (latm, lonm) and 
(latm+1, lonm+1) is computed. The following transformation is then applied:

The transformation implies that the estimated travelled distance l̂m,m+1 between time tm and tm+1 is greater 
than zero only if the 1-sigma uncertainty disks do not overlap. The daily travelled distance by the k th smartphone 
is given by:

where I
(
tm ∈

[
τd , τd+1

))
 is 1 if timestamp tm is within day d and 0 otherwise (with τd the timestamp related with 

midnight of day d ). Since l̂Mk ,Mk+1 is computed using the last trajectory observation of day d and the first of day 
d + 1 , Eq. (3) implies that any travel occurring across midnight contributes to the total travelled distance on day d.

(2)l̂m,m+1 =

{
lm,m+1 if lm,m+1 ≥ um + um+1

0 otherwise
.

(3)L̂d,i,k =

Mk∑

m=1

l̂m,m+1I
(
tm ∈

[
τd , τd+1

))
,

Figure 3.   Linear correlation between the M1 mobility metric and Google’s “Transit stations” index, between M1 
and Google’s “Parks” index, between M1 and Google’s “Retail and Recreation” index, between the M2 mobility 
metric and Google’s “Residential” index and between the M2 and Google’s “Workplaces” index. 1-day moving 
average means no smoothing. All correlations between M2 and Google’s “Workplaces” index are negative but 
they are reported without sign to assure readability of the plots. In brackets, the average data set penetration in 
each country.
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Moreover, let

be a binary variable equal to 1 if the smartphone does not move during the 24 h of the day and 0 otherwise. The 
threshold 0.2 km is set to accommodate for indoor smartphone movements during the day that may sum up to 
a small distance.

For each country, first-level administrative divisions (regions) are considered. Each region Ri,c is described in 
terms of multiple polygons defined in the geographical space. These polygons are freely available for download 
at diva-gis.org/gdata. The number of first-level administrative divisions by country is given in Table 1.

The daily average travelled distance for the c th region of the i th country is given by:

where I
((
latk , lonk

)
∈ Ri,c

)
 is equal to 1 if the daily average smartphone coordinates 

(
latk , lonk

)
 are in the Ri,c 

region, and 0 otherwise. Nd,i,c is the number of daily trajectories in the c th region.
Let pi,c be the population count of the c th region, 1 ≤ c ≤ Ci . The daily average distance for the i th country 

(mobility metric M1) is given by

where

(4)Ûd,i,k =

{
1 if L̂d,i,k < 0.2 km
0 otherwise

(5)L̂d,i,c =
1

Nd,i,c

Nd,i∑

k=1

L̂d,i,k · I
((
latk , lonk

)
∈ Ri,c

)
,

(6)L̂d,i =

Ci∑

c=1

L̂d,i,c · wi,c ,

(7)wi,c =
pi,c∑Ci
c=1pi,c

,

Figure 4.   Time series of the number of daily smartphone trajectories used to estimate M1 and M2 metrics by 
country.
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Figure 5.   Linear correlation between M1 and M2 and Google’s mobility indices vs average data set penetration 
for the 17 countries under the non-smoothing case. Solid lines are the fits by a beta regression model with logit 
link function, while dashed lines are 95% confidence intervals on fitted values. R2 are pseudo coefficients of 
determination, while the p-values refer to an F-test on the regression model, which tests whether the model 
fits significantly better than a model with only the constant term. Each label is a country. Overlapping labels 
are in different colours. All correlations between M2 and Google’s “Workplaces” index are negative but they are 
modelled without sign to keep consistency with Fig. 3 and to allow beta regression.

Table 1.   Number of first-level administrative divisions by country.

Country Number of first-level administrative divisions

Argentina 24

Chile 16

Colombia 32

Costa Rica 7

Ecuador 24

Greece 8

Guatemala 22

Italy 20

Mexico 32

Nicaragua 18

Panama 13

Peru 26

Philippines 81

Slovenia 14

Turkey 81

United States 52

Venezuela 25
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is a weight based on the region population. The adoption of this weighting approach is dictated by three reasons: 
(1) the spatial distribution of smartphone-app users does not necessarily mimic the population distribution; (2) 
events affecting people mobility may be limited to some regions, or their strength vary across regions47; (3) in 
general, a weighting approach based on a population stratification helps reduce the bias of estimates48.

By replacing L̂d,i,k with Ûd,i,k in Eq. (5) and following the same procedure described above, the mobility metric 
M2 (i.e., Ûd,i ) is computed for each day and country.

Uncertainty assessment.  Uncertainty on daily M1 and M2 figures (i.e., L̂d,i and Ûd,i , respectively) is 
assessed using a non-parametric bootstrap approach49. At the b th bootstrap iteration, 1 ≤ b ≤ B , values L̂d,i,h,b 
and Ûd,i,h,b , 1 ≤ h ≤ Nd,i,c , are sampled with replacements from the observed L̂d,i,k and Ûd,i,k values restricted to 
the c th region. Following Eqs.  (5)–(7), the resampled values are used to produce the bootstrap sample (
L̂d,i,1, . . . , L̂d,i,B

)
 and the bootstrap sample 

(
Ûd,i,1, . . . , Ûd,i,B

)
 . Fixing B = 1000 , bootstrap samples are used to 

compute their empirical distribution. This allows evaluation of (100− α)% bootstrap confidence intervals50 on 
the L̂d,i and Ûd,i estimates, with α equal to 5 in this work.

Temporal smoothing.  Temporal smoothing of 
{
L̂d,i

}
 and 

{
Ûd,i

}
 time series is based on a q-day moving 

average, with q equal to 7, 14, 21 and 28. The smoothed version of L̂d,i,c is

Similarly, Ûq
d,i,c is defined by replacing L̂s,i,k with Ûs,i,k in Eq. (8). Confidence intervals on L̂qd,i,c and Ûq

d,i,c are 
based on bootstrap samples which include q days of resampled data. This allows obtaining confidence intervals 
with the correct width.

Comparison with Google’s Community Mobility Reports.  Community Mobility Reports by Google 
gives percentages of variation in the number of visits to place categories with respect to a baseline. The categories 
are “Retail and recreation”, “Grocery and pharmacy”, “Parks”, “Transit stations”, “Workplaces” and “Residential”. 
For each category, time series of percentages of variation are available at both country and regional levels with 
daily temporal resolution.

M1 and M2 time series are compared with Google’s country-level time series by computing linear correla-
tions. M1 is correlated with “Transit stations”, “Parks” and “Retail and recreation” indices while M2 with “Work-
places” and “Residential” indices. Comparison is made using both non-smoothed and smoothed time series (i.e., 
q ∈ {7, 14, 21, 28} ). A highly positive or highly negative correlation means that M1 and/or M2 carry information 
on people mobility similar to that of Google’s community mobility reports.

Robustness analysis.  To test robustness of the comparison described in the previous section, a time-
shifted correlation analysis is also implemented. Whenever two time series are considered, one time series is 
shifted by a lag of � = −14, . . . , 0, . . . , 14 days and linear correlation is computed. Figure 6 shows results for 
the 17 countries.

For countries with a relatively high average data set penetration (see for instance ARG, CHL and PER), correla-
tions are maximum when � = 0 and, due to the weekly cycle, they also tend to be high when � = −14,−7, 7, 14 . 
When penetration is lower this behaviour is disrupted and the maxima are not necessarily at � = 0 (or not all 
of them are at � = 0 ). TUR is an exception since peaks of the time-shifted correlation graph are located where 
expected despite the low penetration.

Beta regression on correlations vs average penetration.  A beta regression is adopted to describe 
the relationship between the average data set penetration and the correlations without sign |ρ| between the non-
smoothed M1 and M2 metrics and Google’s indices. Beta regression is imposed by |ρ| ∈ [0, 1].

For the generic i th country, |ρi| ∼ B(µi ,φ) , where φ is the precision parameter of the beta distribution and 
g(µi) = xi

′β , with g  the logit link function, xi the vector of regressors and β the vector of unknown model 
parameters. Here, xi =

[
1, log10(πi)

]
′ , with πi the average data set penetration for the i th country. Model fitting 

capability is described by the pseudo coefficient of determination R2 = corr
(
|ρ|, |̂ρ|

)2
 , with |̂ρ| the model esti-

mate. An F-test on the regression model is used to tests whether the model fits significantly better than a model 
with only the constant term (i.e., xi = 1).

Sensitivity analysis.  Estimates of M1 and M2 are based on three arbitrary choices. First, only trajectories 
with at least n observations within a span of at least n hours are used ( n = 12 ). Second, l̂m,m+1 = lm,m+1 only if 
lm,m+1 ≥ rum + rum+1 ( r = 1 , see Eq. (2)). Third, Ûd,i,k = 1 if L̂d,i,k < z ( z = 0.2km , see Eq. (4)).

The choice of n affects both M1 and M2, while the choice of r and z only affects M2. Values used in this work 
are the result of a sensitivity analysis. Considering ITA and the period from March 11, 2020, to September 22, 
2022, the correlation without sign |ρ1| between M1 (non-smoothed) and the “Transit stations” index by Google 
and the correlation without sign |ρ2| between M2 (non-smoothed) and the “Residential” index by Google are 
estimated for each combination of n ∈ {3, 6, 9, 12, 15} , r ∈ {1, 2, 3} and z ∈ {0.1, 0.2, 0.3, 0.4}km.

(8)L̂
q
d,i,c =

1
∑d

s=d−q+1 Ns,i,c

d∑

s=d−q+1

Ns,i∑

k=1

L̂s,i,k · I
((
latk , lonk

)
∈ Rc

)
.
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Considering all combinations, |ρ1| ranges between 0.878 and 0.893, while |ρ2| ranges between 0.766 and 0.781. 
Correlations are not significantly affected by large variations in n , r and z . For both |ρ1| and |ρ2| , the maximum 
is reached when n = 12 , r = 1 and z = 0.2km.

Data availability
The MobMeter data set which includes the mobility metrics produced in this work is available on Zenodo at 
https://​zenodo.​org/​record/​69846​38. Google’s Community Mobility Reports are available at https://​www.​google.​
com/​covid​19/​mobil​ity/.
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