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Abstract

Background: To apply a novel method to adjust for HIV knowledge as an unmeasured 

confounder for the effect of unsafe injection on future HIV testing.

Methods: The data were collected from 601 HIV-negative persons who inject drugs (PWID) 

from a cohort in San Francisco. The panel-data generalized estimating equations (GEE) technique 
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was used to estimate the adjusted risk ratio (RR) for the effect of unsafe injection on not being 

tested (NBT) for HIV. Expert opinion quantified the bias parameters to adjust for insufficient 

knowledge about HIV transmission as an unmeasured confounder using Bayesian bias analysis.

Results: Expert opinion estimated that 2.5%–40.0% of PWID with unsafe injection had 

insufficient HIV knowledge; whereas 1.0%–20.0% who practiced safe injection had insufficient 

knowledge. Experts also estimated the RR for the association between insufficient knowledge 

and NBT for HIV as 1.1–5.0. The RR estimate for the association between unsafe injection and 

NBT for HIV, adjusted for measured confounders, was 0.96 (95% confidence interval: 0.89,1.03). 

However, the RR estimate decreased to 0.82 (95% credible interval: 0.64, 0.99) after adjusting for 

insufficient knowledge as an unmeasured confounder.

Conclusion: Our Bayesian approach that uses expert opinion to adjust for unmeasured 

confounders revealed that PWID who practice unsafe injection are more likely to be tested for 

HIV – an association that was not seen by conventional analysis.
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Introduction

Unsafe drug injection is a major risk factor for HIV and other blood-borne illnesses 

globally.1 In 2014, persons who inject drugs (PWID) accounted for 9% of new HIV 

diagnoses in the United States, corresponding to nearly 4000 individuals.2 Drug injection 

may promote HIV transmission through associated high-risk sexual behaviors3 and through 

unsafe injection, defined as re-using or sharing needles/syringes.4

The first step in the HIV continuum of care, which measures the proportion of persons 

living with HIV who are diagnosed, requires high coverage and frequent HIV testing 

in populations at risk.5 The “test and treat” prevention strategy aims to reduce HIV 

transmission through retention and engagement in HIV care of those diagnosed with 

sustained viral suppression through antiretroviral treatment.6 The World Health Organization 

recommends at least annual HIV testing for PWID.7

It has been previously shown that high-risk behavior among key populations may be 

associated with higher rates of HIV testing. However, these findings have been inconsistent 

in different high-risk populations, and the reason for this relationship is poorly understood.8 

The decision to seek HIV testing among PWID depends on knowledge of the risk for HIV 

through unsafe injection8 and testing coverage varies by age,9 gender, education, and marital 

status.10

We hypothesize that part of the controversy surrounding the relation between unsafe 

injection among PWID and not being tested (NBT) for HIV may be explained by 

confounding variables as represented by the causal diagram11–13 in Figure 1. Several studies 

have identified confounders for the effect of unsafe injection on NBT for HIV, including 

male gender, lower education, and lower knowledge about HIV transmission by increasing 

the chance of unsafe injection and decreasing the chance of voluntary HIV testing.14,15 
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History of incarceration may also confound the causal pathway by increasing the risk of 

engaging in high-risk behaviors, and additionally, improving access to the health services 

provided in prisons.16

Confounding bias17 is an important threat to observational studies which can be reduced 

using restriction or matching in the design stage,11,18 or alternatively, by using stratification 

or adjustment at the analysis stage, provided that the confounding variables have been 

carefully measured and controlled. Any factors not conceived at the design stage 

or measured during data collection (hereafter called “unmeasured confounders”) make 

adjustment impossible in conventional analysis. This limitation to conventional frequentist 

analytic methods is a common critique of observational studies.19 Indeed, virtually any 

observational study may be rightly or wrongly criticized for failure to adjust for unmeasured 

confounding.

Several analytical methods are available to adjust for unmeasured confounding variables, 

including Bayesian methods.20 However, many of them have been rarely used in the 

epidemiological literature. This infrequent use of methods to deal with unmeasured 

confounding, including Bayesian bias analysis,21 is due to at least two factors. First, user-

friendly statistical packages for such analyses are not yet available. Second, methods to 

measure priors and conduct Bayesian analysis have not been simplified for use by most 

applied public health researchers.

Unsafe injection is the major risk factor for HIV transmission among PWID. Interventions 

to mitigate unsafe injection and associated harms mainly focus on reducing the frequency 

of unsafe injection by needle exchange programs.3 Those who continuously have unsafe 

injection should be tested more frequently so that they are diagnosed in a timely manner 

to prevent further HIV transmission. Timely HIV testing, diagnosis and treatment, such as 

test and treat strategy,5 have been shown to reduce HIV transmission in PWID communities. 

Increasing knowledge about HIV transmission, testing and preventions may play such a role 

in increasing HIV testing.

In this paper, using empirical data from an ongoing prospective study of young adult PWID 

in San Francisco,22,23 we provide a simple case study to illustrate how to collect and 

summarize prior bias information. The causal question of interest is to estimate the 3-month 

likelihood of not receiving an HIV test, if all PWID were low-risk drug injectors, compared 

with the 3-month likelihood of not receiving an HIV test if all PWID were unsafe drug 

injectors. We used Bayesian methods to adjust for a hypothetical unmeasured confounder, 

in this case insufficient knowledge about HIV transmission. The analysis methodology 

developed for this case study can be used in other studies with few modifications.

Materials and Methods

Data Source: The U-Find-Out (UFO) Study

To assess the association between unsafe injection and NBT for HIV, we used data from 

the UFO Study, an ongoing longitudinal cohort of hepatitis C virus (HCV) uninfected 

young adult PWID who were under age 30 at recruitment in San Francisco, California, and 
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established in 2000.22,23 The study procedures, briefly described below, can be found in 

detail in prior publications.23

Participants

Young adult PWID recruited by community-based outreach were interviewed for 

demographic characteristics, drug injection history and sexual risk at enrollment at follow-

up visits (for the 3-month period preceding the visit), and tested for HCV infection at 

enrollment and among negatives at follow-up visits which were scheduled quarterly. HIV 

testing is offered at each visit, but it not required. Pre- and post-risk-based counseling 

accompanies both HCV and HIV testing. We analyzed data from 601 HCV/HIV-negative 

PWID with at least one follow-up visit.

Variable Definitions

At each visit, a trained interviewer asked about recent HIV testing and injection behavior 

in the previous three months. We categorized PWID into unsafe injectors and low-risk 

injectors. PWID who shared, reused, or borrowed previously used drug-preparation 

equipment in the three months before the interview were defined as unsafe injectors.

Measured confounders included sex (male, female, transgender), age, education, having 

been incarcerated and ever having tested for HIV at the time of baseline interview. In our 

external bias adjustment, we considered insufficient knowledge about HIV transmission 

routes as the potential unmeasured confounder. The insufficient HIV knowledge is clearly 

a confounder in our setting as it positively affects both unsafe injection and NBT. In other 

words, insufficient HIV knowledge is a common cause of the exposure and outcome and 

so, it is a causal or classical confounder.24,25 The causal diagram in Figure 1 represents the 

causal relationship between variables within the population in two successive visits.

We defined insufficient knowledge about HIV transmission as not knowing the following 

forms of prevention: consistent use of condom, having only one uninfected faithful partner 

and not sharing syringe/needle, and additionally, not rejecting two misconceptions: (i) 

knowing that healthy looking persons can be HIV positive; and (ii) knowing that HIV cannot 

be transmitted from sharing food or mosquito bites.26,27

Conventional Analysis

Since each PWID may have had more than one visit during the study period, we applied 

a generalized estimating equations (GEE) methodology to assess the association between 

unsafe injection and NBT for HIV, after adjusting for measured confounders. PWID were 

censored at the first visit in which they reported having been HIV tested and seroconverted 

or self-reported HIV-positive, and otherwise were followed up to the last visit that HIV 

testing data were available. We considered unsafe injection with one interval lag (three 

months) as the main exposure prior to the measurement of the outcome variable (reporting 

having had an HIV test). Therefore, for every visit, the effect of unsafe injection in the 

previous visit was assessed on NBT for HIV history measured at that visit. In other words, 

we assigned one visit lag interval between the exposure at visit t and the outcome at visit 

t+1. Since each participant had more than one measurement of the outcome, we used GEE 
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with Poisson distribution, logarithmic link function, and cluster robust standard errors to 

estimate the Risk Ratio (RR) and 95% confidence interval (CI). For this analysis, we used 

the Xtgee command in Stata software version 14.0 (StataCorp, College Station, TX, USA). 

For comparison, we also repeated the analysis using a random-effect Poisson regression 

analysis using Xtpoisson command in Stata.

Bias Analysis: Prior Values and Distributions

To account for insufficient knowledge about HIV transmission routes as the unmeasured 

confounder, we used a Bayesian bias analysis.19,20,28–31 We used expert opinion to derive 

prior probability distributions for three bias parameters that characterize the magnitude and 

direction of unmeasured confounding.21 That is, we approached two experts with expertise 

in the epidemiology of HIV and drug use/injection in San Francisco to give us 95% prior 

intervals for the following bias parameters; see the questionnaire in the Supplementary file 

1:

a. Proportion of young adult PWID with insufficient HIV knowledge among unsafe 

injectors (P1)

b. Proportion of young adult PWID with insufficient of HIV knowledge among 

low-risk injectors (P0)

c. RR for the association between insufficient HIV knowledge and NBT for HIV 

among PWID who practice unsafe injection (RRUY)

We then assigned prior probability distributions to each of the bias parameters based on the 

prior intervals suggested by the experts; beta distributions were used for the two proportions 

in P1 and P0, and normal distribution for the logarithm of RRUY.21

The beta distribution was used for the bias parameters P1 and P0 as it is a conjugate prior 

for the Bernoulli distribution: considering a Bernoulli distribution for the data, which is 

natural for binary variables like insufficient knowledge, and a beta distribution as the prior 

for the proportions (like P1 and P0), the posterior will also be a beta distribution. For beta 

distribution used for P1 and P0, we selected alpha and beta values so that the percentile 

2.5 and 97.5 of beta distribution exactly match the 95% prior intervals of the experts using 

a grid search. For normal distribution considered for ln(RRUY), the mean was calculated 

by averaging the logarithm of upper and lower prior limits, and standard deviation was 

computed by subtracting logarithm of lower limit from logarithm of upper limit and then 

dividing by 3.92.

Bayesian Bias Analysis for Unmeasured Confounding

Markov chain Monte Carlo (MCMC) using Gibbs sampling was used to sample from the 

posterior distribution. In each MCMC iteration, the posterior RR for exposure, adjusted for 

measured confounders, was estimated. A Gaussian random-effect Poisson model was used 

to assess the effect of unsafe injection on NBT for HIV adjusted for measured confounders. 

We assigned an uninformative normal distribution, with mean and variance equal to zero and 

106 respectively, for the regression coefficients for the exposure variable and other covariates 

in the model for NBT for HIV. The Gaussian random effects were assigned a normal 
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distribution with mean zero and variance equal to τ, where 1/τ was assigned a gamma 

(0.001, 0.001) distribution. The inverse-gamma distribution is frequently used for variance 

parameter as it is conditionally conjugate in the sense that if variance has an inverse-gamma 

prior distribution, then the conditional posterior distribution is also inverse-gamma.32 In the 

next step, a sample was drawn using beta and normal distributions of bias parameters and 

to estimate the bias correction factor, and adjusted RR for insufficient knowledge about 

HIV transmission routes was derived from unadjusted RR (adjusted only for measured 

confounders) divided by bias correction factor20:

Bias correction factor =
RRUYP1 + 1 − P1
RRUYP0 + 1 − P0

Adjusted RR= Unadjusted RR
Bias correction factor

The models converged after 4000 iterations with 1000 iterations of burn-in, and convergence 

was assessed using the Monte Carlo standard error. After convergence was achieved, we 

ran the simulation until the Monte Carlo error for adjusted RR became less than 5% of the 

sample standard deviation. This occurred at 10 000 iterations.33 We used WinBUGS (version 

1.4) for the bias analysis, and the WinBUGS computer code is given in Supplementary file 

2. We reported the RR with 95% posterior credible interval (median and 2.5th and 97.5th 

percentiles of posterior distribution) using the two experts’ 95% prior intervals separately.

Results

Our analytical sample included 601 persons with an average of 4.3 visits (SD = 7.7). 

At the baseline visit, nearly two-thirds (65.9%) reported unsafe injecting in the previous 

three months and only two individuals did not answer this question. The frequency of 

unsafe injection was significantly higher in women than in men (75.0% vs. 61.4%, P = 

0.003). Unsafe injection did not significantly vary by the other baseline covariates (history 

of incarceration, lower education, and ever tested for HIV). The mean (SD) age was 

approximately 23.6 (3.4) years, regardless of injection behavior (Table 1).

Table 2 shows the distribution of the three bias parameters based on the opinion of two 

experts. The experts estimated that the proportion of PWID with insufficient knowledge 

was between 2.5% and 40.0% among unsafe injectors, and between 1.0% and 20.0% 

among low-risk injectors. Accordingly, for expert 1, we assigned a beta (8.65, 149.42) 

prior to parameter ‘a’, and a beta (5.12, 166.35) prior to parameter ‘b’, which yield 

suitable 95% prior probability credible intervals for the proportions based on the first expert 

opinion. In contrast, expert 2 held more extreme views about the magnitude of unmeasured 

confounding. The characteristics of the beta distribution that were assigned are shown in 

Table 2. Additionally, the lower bound for the RR of the association between insufficient 

knowledge and NBT for HIV was estimated as 1.1 by both experts and the upper bound that 

was either 2.2 or 5.0. The corresponding normal distributions are presented in Table 2.
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The results of the analyses are given in Table 3. The RR for the association between unsafe 

injecting and NBT for HIV, adjusted for measured confounders (age, gender, education, 

history of imprisonment at baseline and in 3-month follow up and reporting ever testing 

for HIV at baseline) was 0.96 (95%CI, 0.89–1.03). After adjusting for the unmeasured 

confounder, insufficient HIV knowledge, the RR between unsafe injection and NBT for HIV 

(adjusted for both measured and unmeasured confounders) decreased to 0.95 (95% credible 

interval, 0.84–1.08) in the first bias analysis and 0.82 (95% credible interval, 0.64–0.99) 

in the second bias analyses. In other words, the bias analysis revealed that PWID who are 

practicing unsafe injection are more likely to be tested for HIV.

Discussion

We found that if the insufficient HIV knowledge was considered as an unmeasured 

confounder, then PWID who practice unsafe injection are more likely to be tested for HIV 

– an association that was not seen by conventional analysis. The approach can be used as a 

post-hoc correction when experts, peer-reviewers, or other emerging data deem that biases 

are possible or likely, as in the present case.10 The negative effect of unsafe injection on 

NBT can be explained by the notion that people with unsafe injection are more reactive to 

receiving knowledge about the transmission routes of HIV which in turn encourages them to 

refer more for HIV testing. In this sense, the unmeasured variable HIV knowledge mediates 

the effect of unsafe injection on NBT. In fact, depending on its measurement time (before 

or after the unsafe injection), HIV knowledge can act as a mediator or confounder. Our 

results indicated that adjustment for unmeasured insufficient HIV knowledge intensifies the 

relation between exposure and outcome. In fact, the relation between exposure and outcome 

through the confounder is positive, a positive multiplied by a positive is positive, but the 

effect estimate of the exposure is negative (adjusted RR = 0.95 and 0.82 based on inputs of 

expert 1 and 2). So, we expect the unadjusted RR, which involves some cancellation of these 

two relationships, will be closer to the null than the adjusted one.34

To better understand how Bayesian bias analysis for unmeasured confounding works, we 

can plug the typical values, arithmetic mean of prior limits for P1 and P0 and geometric 

mean of prior limits for RRUY, provided by expert 1 in the bias correction factor and 

then obtain the adjusted RR. Based on Table 2, P1 = 0.2 + 0.4
2 = 0.3, P0 = 0.1 + 0.2

2 = 0.15

and RR = 1.1 * 5 = 2.35; so, bias correction factor = 2.35 * 0.3 + 0.7
2.35 * 0.15 + 0.85 = 1.17 and adjusted 

RR = 0.96
1.17 = 0.82 which is the same point estimate we obtained from Bayesian bias analysis 

(Table 3).

Since the outcome of interest “NBT for HIV” was not a rare event, we calculated 

the RR. Estimating odds ratio when the outcome is not a rare event may result in 

misinterpretation, i.e. odds ratio exaggerates the results compared with RR and it suffers 

from non-collapsibility.35–38 The GEE method estimates the marginal effect, whereas the 

random-effect Poisson model used in the Bayesian analysis estimates the conditional effects 

(conditional on the cluster-specific random term). We performed the conventional random-

effect Poisson regression analysis using both Stata and WinBUGS (without considering the 
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unmeasured confounder, and with uninformative priors for beta coefficients) and obtained 

the same results of GEE which is not surprising given the collapsibility of RR.35

Although Bayesian analysis can be done by just one set of priors that derives from expert 

opinion,20 overconfidence of experts is an important issue and can affect the analysis results 

and conclusion.39 Because the parameters for unmeasured confounding are not identifiable 

using data, the results strongly depend on the choice of prior distribution. For example, 

the prior distributions for the prevalence of unmeasured confounder among exposed and 

unexposed suggested by two experts were very different and did not even overlap with each 

other. It means that at least one of the priors is wrong. To overcome this problem, it is better 

not to rely on only one or two experts. Instead, researchers should ideally collect data from 

several experts (and/or through a comprehensive review of the literature if it exists) and 

synthesize the results to reach a unique set of priors.21

The results from the two bias analyses based on the first and second expert opinions were 

different. The difference was due to the differences in the prior distributions provided by 

the two experts. In particular, the priors of the expert 1 seem to suffer from overconfident 

(overly precise) bias,40 strongly suggesting that the bias parameters (P1, P0, RRUY) are small 

and so insufficient HIV knowledge is a very weak confounder.

Our study has some limitations other than using only two experts. First, we use self-reported 

data on exposure, outcome and measured confounders. Although most behavioral surveys 

rely on self-reported measures of risk behaviors, they are prone to recall and social 

desirability biases.41–43 Second, we only looked at one unmeasured confounder and there 

might be other individual and population-level confounders for NBT for HIV that we did 

not assess. For example, no information was available about a history of mental illness or 

unstable housing (e.g. homelessness), and both these factors have been shown to impact 

access to HIV care.44 However, adjusting for several correlated unmeasured confounders 

requires strong untestable modelling assumptions, and is an ongoing area of statistical 

research.45

The best way to deal with unmeasured confounding is to measure and adjust for all 

important confounders. In the present study, however, unsafe injection is a time-varying 

exposure and insufficient knowledge about HIV transmission routes is indeed a time-varying 

confounder (as presented in Figure 1). Moreover, there may be feedback between unsafe 

injection and insufficient knowledge (i.e., they may affect one another). Consequently, 

insufficient knowledge about HIV transmission routes may be a time-varying confounder 

affected by the previous exposure, and causal methods are required to support a valid 

analysis.39,46–55

In addition to the bias analysis method we used to address unmeasured confounding, our 

study emphasizes the importance of sufficient HIV knowledge about HIV transmission 

routes on NBT for HIV in PWID. Interventions to increase the knowledge of PWID and 

other high-risk populations may increase the HIV testing rate and the chance of early HIV 

diagnosis.
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In conclusion, Bayesian bias analysis for unmeasured confounding adjustment can be 

accomplished using a set of priors derived from the expert opinion and translating them 

to the bias parameters for estimating the bias correction factor. The adjusted RR for 

unmeasured confounder equals unadjusted RR divided by bias correction factor. Our 

Bayesian approach that uses expert opinion to adjust for unmeasured confounders revealed 

that PWID who practice unsafe injection are more likely to be tested for HIV – an 

association that was not seen by conventional analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Causal Diagram for the Hypothesized Relationship Between E (Unsafe Injection), D 

(NBT for HIV), L (Measured Confounders Including Age, Gender, Education, History of 

Imprisonment at Baseline and 3-Month Follow-Up and Ever Tested for HIV at Baseline), 

and U (Unmeasured Confounder Insufficient Knowledge). t, denotes month.
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Table 1.

Baseline Characteristics of People Who Inject Drugs by their Injection Risk Behavior, UFO study, San 

Francisco

Characteristics No Recent Unsafe Injection; n = 204 (%) With Recent Unsafe Injection; n = 395 (%) P Value*

Gender

 Male 151 (38.62) 240 (61.38)

 Female 51 (25) 153 (75) 0.003

 Transgender 2 (50) 2 (50)

Any history of incarceration

 No 148 (34.66) 279 (65.34)
0.47

 Yes 52 (31.52) 113 (68.48)

Education

 Less than high school 74 (32.17) 156 (67.83)
0.43

 High school and up 129 (35.34) 236 (64.66)

Ever tested for HIV

 Yes 60 (35.29) 110 (64.71)
0.67

 No 141 (33.49) 280 (66.51)

Age; mean (SD) 23.8 (3.2) 23.5 (3.5) 0.21

SD, standard deviation.

*
P values were driven from chi square test except for age that was driven from independent t test.

Arch Iran Med. Author manuscript; available in PMC 2023 January 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Navadeh et al. Page 15

Ta
b

le
 2

.

E
xp

er
t O

pi
ni

on
s 

A
bo

ut
 th

e 
T

hr
ee

 B
ia

s 
Pa

ra
m

et
er

s 
an

d 
th

e 
A

ss
ig

ne
d 

D
is

tr
ib

ut
io

ns

B
ia

s 
P

ar
am

et
er

s
95

%
 P

ri
or

 I
nt

er
va

l (
by

 E
xp

er
t 

O
pi

ni
on

)
P

ri
or

 D
is

tr
ib

ut
io

ns

E
xp

er
t 

1
E

xp
er

t 
2

E
xp

er
t 

1
E

xp
er

t 
2

a)
 P

ro
po

rt
io

n 
of

 y
ou

ng
 a

du
lt 

PW
ID

 w
ith

 in
su

ff
ic

ie
nt

 H
IV

 k
no

w
le

dg
e 

am
on

g 
un

sa
fe

 in
je

ct
or

s
2.

5%
–9

.5
%

20
%

–4
0%

B
et

a 
di

st
ri

bu
tio

n
(α

 =
 8

.6
5,

 β
 =

 1
49

.4
2)

B
et

a 
di

st
ri

bu
tio

n
(α

 =
 2

3.
11

, β
 =

 5
5.

21
)

b)
 P

ro
po

rt
io

n 
of

 y
ou

ng
 a

du
lt 

PW
ID

 w
ith

 in
su

ff
ic

ie
nt

 H
IV

 k
no

w
le

dg
e 

am
on

g 
lo

w
-r

is
k 

in
je

ct
or

s
1%

–6
%

10
%

–2
0%

B
et

a 
di

st
ri

bu
tio

n
(α

 =
 5

.1
2,

 β
 =

 1
66

.3
5)

B
et

a 
di

st
ri

bu
tio

n
(α

 =
 2

7.
83

, β
 =

 1
62

.1
5)

c)
 R

is
k 

R
at

io
 o

f 
th

e 
as

so
ci

at
io

n 
be

tw
ee

n 
in

su
ff

ic
ie

nt
 H

IV
 k

no
w

le
dg

e 
an

d 
N

B
T

 f
or

 H
IV

 a
m

on
g 

lo
w

-r
is

k 
in

je
ct

or
s

1.
1–

2.
2

1.
1–

5
N

or
m

al
 d

is
tr

ib
ut

io
n

(μ
 =

 0
.4

4,
 σ

 =
 0

.1
8)

N
or

m
al

 d
is

tr
ib

ut
io

n
(μ

 =
 0

.8
5,

 σ
 =

 0
.3

9)

Arch Iran Med. Author manuscript; available in PMC 2023 January 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Navadeh et al. Page 16

Table 3.

Risk Ratio Between Unsafe Injection and NBT for HIV after Adjusting for Measured and Unmeasured 

Confounders

Risk Ratio 95% Confidence/Credible Interval

Unsafe injection 0.96
a

0.89–1.03
b

Adjusted unsafe injection Bias analysis 1 (expert 1) 0.95
c

0.84–1.08
d

Adjusted unsafe injection Bias analysis 2 (expert 2) 0.82
e

0.64–0.99
d

a
Risk Ratio adjusted for the measured confounders (age, gender, education, history of imprisonment at baseline and 3-month follow-up and ever 

tested for HIV at baseline).

b
95% Confidence Interval.

c
Risk Ratio adjusted for measured confounders (age, gender, education, history of imprisonment at baseline and 3-month follow-up and ever tested 

for HIV at baseline) and unmeasured confounder (insufficient knowledge) based on the first expert’s priors.

d
95% Credible Interval.

e
Risk Ratio adjusted for measured confounders (age, gender, education, history of imprisonment at baseline and 3-month follow-up and ever tested 

for HIV at baseline) and unmeasured confounder (insufficient knowledge) based on the second expert’s priors.

Arch Iran Med. Author manuscript; available in PMC 2023 January 17.


	Abstract
	Introduction
	Materials and Methods
	Data Source: The U-Find-Out (UFO) Study
	Participants
	Variable Definitions
	Conventional Analysis
	Bias Analysis: Prior Values and Distributions
	Bayesian Bias Analysis for Unmeasured Confounding

	Results
	Discussion
	References
	Figure 1.
	Table 1.
	Table 2.
	Table 3.

